用户名: 密码: 验证码:
微波多芯片组件中互连的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近半个世纪以来,微波电路发展十分迅速,它经历了从低频到高频、从单层到多层的发展历程,最终导致了微波多芯片组件的产生。随着多芯片组件密度的不断提高,互连的不连续性成为制约整体性能的瓶颈。因此,对互连进行仿真和建模,对于微波多芯片组件的设计有着重要的意义。本论文以垂直通孔互连作为研究对象,对通孔的散射参数进行了数值仿真和软件仿真,得到了一些有益的结论。主要的研究工作如下:
     首先,以分段正弦函数作为基函数,采用矩阵束矩量法(Matrix-penciled Momem Method)分析了多层封装环境下微带线-通孔-微带线互连模型,得到了通孔的散射参数,并总结了该互连结构通孔的散射参数在其几何尺寸变化时所表现出来的规律。并以B-样条函数作为基函数进行了分析,对比了以分段正弦函数作为基函数的结果,结果表明,分段正弦函数作为求解垂直通孔互连问题的矩阵束矩量法的基函数,从精度和计算量两个方面来说都是可行的。
     其次,以微带线—通孔—微带线互连结构作为研究对象,针对微带线连接角是任意角度的情况,利用Ansoft Ensemble 7.0仿真软件,对此时通孔的散射特性和辐射功率进行了仿真,得到了散射特性和辐射功率随微带线连接角的变化规律。
     第三,以低温共烧陶瓷微波多芯片组件中微带线—通孔—带状线互连模型作为仿真对象,在信号通孔周围等距离对称地加上同轴屏蔽通孔,仿真了信号通孔的散射参数,结果表明屏蔽通孔能够改善信号通孔的散射特性。保持微带线—通孔—带状线互连结构不变,在微带线和带状线之间加入一层介质,并考虑了存在同轴屏蔽通孔的情况,仿真结果表明加入介质层能明显改善信号通孔的散射特性,此时若再加上屏蔽通孔,散射特性会变差。
     第四,以共面线-共面线倒装互连结构作为研究对象,采用时域有限差分法分析了此倒装结构中焊盘的散射特性。数值结果表明,焊盘的高度或宽度越小,焊盘的散射特性越好。焊盘的自感是其不连续性的主要因素,且自感与焊盘的高度是成比例增大的。当上、下层共面线相互交迭部分的长度变短时,当芯片、主板以及上、下共面线之间这三个区域介质的介电常数变小时,在这两种情况下,焊盘的散射特性均得到改善。
     最后,对比了矩阵束矩量法和时域有限差分法的优缺点。对于垂直通孔互连问题,时域有限差分法更具优势。垂直通孔互连是微波多芯片组件封装工艺和理论分析的基础,开展垂直通孔互连的研究有着现实的意义。
During the last half century, it is rapidly developing of microwave circuit technique either from low frequency to high frequency or from single layer to multiple layers that leads to the coming of microwave multi-chip module (MMCM). With the increasing density of multi-chip module, the discontinuity of interconnect is the choke point which restrains its integral performance. Hence, it is significant for the design of MMCM to simulate and model of interconnect. The work in this dissertation is, focused on the problem of vertical via interconnect, to fulfil numerical and software simulation on via's scattering parameter. Some useful results are obtained. Main study contains the following:
    Firstly, Matrix-penciled moment method with piecewise sinusoidal basis function is used to analysis and compute via's scattering parameter of microstrip-via-microstrip interconnect model of multi-layered environment. Some laws of scattering parameter in the interconnect structure are shown while to change via's geometric parameters. Another analysis is made by considering B-spline function as the basis function to carry the same process. By contrast, the former is feasible to solve the vertical via interconnect problem for the acceptable precision and the cost of implement.
    Secondly, considering microstrip-via-microstrip interconnect structure, for the case that microstrip connecting angle is arbitrary, simulation is programmed in Ansoft Ensemble 7.0 simulation software so as to obtain scattering parameter and radiation power. The inherent relationship between changes of scattering parameter and radiation power is explored and reported when microstrip connecting angle changes.
    Thirdly, the object to simulate is microstrip-via-microstrip interconnect model of MMCM in LTCC, equal-distance and symmetric adding coaxially shielding via around signal via. With the simulation of signal via's scattering parameter, conclusion that shielding via can improve the scattering parameter of signal via. Considering that there exists synchronously coaxially shielding via, simulating result shows that to add a layer of dielectric between microstrip and stripline can improve evidently the scattering parameter of signal via. But if adding progressively shielding via, its scattering parameter will become worse.
    
    
    
    Fourthly, the object to study is CPW-CPW flip-chip interconnect structure. Scattering parameter of solder bump in flip-chip structure is analyzed by using FDTD. It is shown from result of numerical experiment that the less the bump's height and width are, the better of its scattering parameter. It is also come out that the bump's inductance which is proportioned to its length is the major factor to cause discontinuity. Both the case that the overlap part's length between upper and lower layer CPW becomes short, and the case that dielectric constant of the chip, mother board, and media between the chip and mother board becomes small, the bump's scattering parameter can be improved.
    Lastly, the advantage and disadvantage of two methods, namely matrix-penciled moment method and FDTD method, is presented by contrast. FDTD method is better than the other one for vertical via interconnect problem. Because vertical via interconnect is the base of theoretical analysis and package technics of MMCM, further study on vertical via interconnect is very vital and instructive to reality.
引文
[1] 顾墨琳,林守远,微波集成电路技术—回顾与展望,微波学报,2000,16(3):278—290.
    [2] 王传声,张崎,多芯片组件(MCM)的封装技术,微电子技术,2000,28(4):40—45.
    [3] 孙再吉,多层、三维MMIC技术研究动向,世界电子元器件,1998(2):37—38.
    [4] 张经国,杨邦朝,三维多芯片微组装组件,世界电子元器件,2001(4):53—56.
    [5] Said F. Al-sarawi, Derek Abbott, and Paul D. Franzon, "A review of 3-D packaging Technology," IEEE Trans. Components, Packaging, and Manufacturing Technology-Part B, vol. 21, no. 1, pp. 2-14, 1998.
    [6] 王毅,多芯片组件的应用前景(上),电子元件与材料,1997,16(5):9—12.
    [7] 王毅,多芯片组件的应用前景(下),电子元件与材料,1997,16(6):22—26.
    [8] Geert J.Carchon, Dominique M.M.-ESchreurs, et al., "A direct Ku-Band linear subharmonically pumped BPSK and I/Q vector modulator in multilayer thin-film MCM-D, "IEEE Trans. Microwave Theory Tech., vol. 49, no.8, pp. 1374-1381, 2001.
    [9] 王钧,施建俊,李征帆,微波MCM电路的设计与制作,电讯技术,1998,38(6):48—53.
    [10] 王安国,吴咏诗,三维微波集成电路的发展,微波学报,1999,15(2):167-173.
    [11] Robert H. Havemann, James A. Hutchby, "High-performance interconnects: An Integration overview," Proceedings of the IEEE, vol. 89, no. 5, pp. 586-601, 2001.
    [12] Albert E. Ruehli, Andreas C. Cangellaris, "Progress in the methodologies for the electrical modeling of interconnects and electronic packages," Proceedings of the IEEE, vol. 89, no. 5, pp.740-771, 2001.
    [13] 严伟,洪伟,薛羽,低温共烧陶瓷微波多芯片组件,电子学报,2002,30(5):711-714.
    [14] Edward Pillai, Wemer Wiesbeck, "Derivation of equivalent circuits for multilayer printed circuit board discontinuities using full wave models", IEEE Trans. Microwave Theory Tech., vol. 42, no. 9, pp. 1774-1782, 1994.
    [15] Paul H. Harms, Jin-Fa Lee, and Raj Mittra, "Characterizing the cylindrical via discontinuity," IEEE Trans. Microwave Theory Tech., vol. 41, no. 1, pp. 153-156, 1993.
    [16] W. Heinrich, A. Jentzsch, and G. Baumann, "Millimeter-wave characteristics of flip-chip
    
    interconnects for multichip modules," IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2264-2267, 1998.
    [17] T. Hirose, K. Makiyama, and K. Oho, et al., "A flip-chip MMIC design with coplanar waveguide transmission line in the W-band," IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2276-2281, 1998.
    [18] N. Iwasaki, E Ishitsuka, H. Tsunetsugu, and K. Kato, "High-performance flip-chip technique with an optimized coplanar waveguide," Int. J. RF and Microwave CAE, no. 10, pp. 289-295, 2000.
    [19] Daniela Staiculescu, et al., "Design rule development for microwave flip-chip applications,"IEEE trans. Microwave Theory Tech., vol. 48, no. 9, pp. 1476-1481, 2000.
    [20] Ryosuke Ito, Robert W.Jackson and Thongchai Hongsmatip, "Modeling ofinterconnections and isolation within a multilayered ball grid array package," IEEE trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1819-1825, 1999.
    [21] Anh-Vu H. Pham, Joy Laskar, et al., "Ultra low loss millimeter wave multichip module interconnects," IEEE Trans. Components, Packaging, and Manufacturing Technology, vol. 21, no. 3, pp. 302-308, 1998.
    [22] Andrew W. Mathis, Andrem F. Peterson, et al.,"Rigorous and simplified models for the capacitance of a circularly symmetric via," IEEE Trans. Microwave Theory Tech., vol. 45, no. 10, pp. 1875-1878, 1997.
    [23] T. Y. Wang, R. F. Harrington, and J. R. Mautz, "Quasi-static analysis ofa microstrip via through a hole in a ground plane," IEEE Trans. Microwave Theory Tech., vol. 36, no. 6, pp. 1008-1013, 1988.
    [24] Show-Gwo Hsu, Ruey-beei Wu, "Full wave characterization of a through hole via using the matrix-penciled moment method," IEEE Trans. Microwave Theory Tech., vol. 42, no. 8, pp. 1540-1547, 1994.
    [25] Show-Gwo Hsu, Ruey-beei Wu, "Full-wave characterization of a through hole via in multi-layered packaging," IEEE Trans. Microwave Theory Tech., vol. 43, no. 5, pp. 1073-1081,
    
    1995.
    [26] Y. Hua, T. K. Sarkar, "Generalized penciled-of-functionmethodfor extracting poles of an EM system from its transient response," IEEE Trans. Antennas and Propagat., vol. 37, no. 2, pp. 229-234,1989.
    [27] 姬五胜,周霞,李英,微波MCM电路及其通孔互连的理论分析方法.军事微波技术第三届全国学术会议论文集,北京:中国电子学会微波分会军事微波技术专业委员会,2002:143—146.
    [28] R. Sorretino, F. Alessandri, and M. Mongiardo, et al., "Full-wave modeling of via hole grounds in microstip by three-dimensional mode matching technique," IEEE Trans. Microwave Theory Tech., vol. 40, no. 12, pp. 2228-2234, 1992.
    [29] S.-H. Chang, R. Coccioli, and Y. Qian, et al., "Finite element time domain based diakoptic method for microwave circuit analysis," 2000, IEEE MTT-S Intemational Microwave Symposium, Vol. I, Digest 1, pp. 235-238, 2000.
    [30] D. Koh, H.-B. Lee, and T. Itoh, "A hybrid full-wave analysis of via-hole grounds using finite-difference and finite-elment time-domain methods," IEEE Trans. Microwave Theory Tech., vol. 45, no. 12, pp. 2217-2222, 1997.
    [31] S. Maeda, T. Kashiwa, and I. Fukai, "Full wave analysis of propagation characteristicsof a through hole using the finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., vol. 39, no. 12, pp. 2154-2159, 1991.
    [32] C. W. Lam, S. M. Ali, and P. Nuytkens, "Three-dimensional modeling ofmultichip module interconnects," IEEE Trans. Componets, Hybrids, and Manufacturing Tech., vol. 16, no. 7, pp. 699-704, 1993.
    [33] 李征帆,曹毅,微波与高速电路中的电磁场理论及其数值方法,科学出版社,第六章,2002.
    [34] 钟晓征,王秉中,王豪才,共面波导垂直互连结构的人工神经网络模型,微波学报,2001,17(4):25-30.
    
    
    [35] 史维华,王宗欣,一种连接双层传输线Via结构的全波分析,微波学报,2000,16(5):485—492.
    [36] Jian-She Wang, Raj Mittra, "Finite element analysis of MMIC structures and electronic packages using absorbing boundary conditions," IEEE Trans. Microwave Theory Tech., vol. 42, no. 3, pp. 441-449, 1994.
    [37] 李世智,电磁辐射与散射问题的矩量法,电子工业出版社,1985,1-21.
    [38] R. Mittra, Computer techniques for Electromagnetics. New York: Pergamon, 1973, ch. 2, pp. 7-77.
    [39] M. L. Van Blaricum and R.mittra, "A technique for extracting the poles and residues of a system directly from its transient response," IEEE Trans. Antennas Propagation, vol.23, no.6, pp. 777-781, 1975.
    [40] A.J.Poggio et al.,"Evaluation of a processing technique for transient data," IEEE trans. Antennas Propagation, vol.26, no. 1, pp. 165-173, 1978.
    [41] M.L.Van Blaricum and R.mittra, "Problem and solutions associated with Prony's method for processing transient data," IEEE trans. Antennas Propagation, vol.26, no. 1, pp 174-182, 1978.
    [42] D.W.Tufts and R..Kumaresan, "Frequacy estimation of multiple sinusoids: making linear prediction perform like maximum likelihood," Proceedings of the IEEE, vol. 70, pp.975-989, September 1982.
    [43] Tapan K.Sarkar, Odilon Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials", IEEE Antennas and Magazine, vol. 37, no. 1, pp. 48-55, 1995.
    [44] Feng Cheng, Quanrang Yang, "On the use of matrix-pencil technique to improve the computational efficiency of the FDTD method", Microwave and Optical Technology Letters, vol. 27, no. 3, November 5 2000, pp. 213-216.
    [45] T. K. Sarkar, et al., "Suboptimal approximation/identification of transient waveforms from electromagnetic system by pencil-of-function method," IEEE Trans. Antennas Propagation, vol. 37, no. 2, pp. 229—234, 1979.
    
    
    [46] G.H.格卢布,C.F.范络恩著,袁亚湘译,矩阵计算,科学出版社,2001,209-215.
    [47] 陈景良,陈向晖,特殊矩阵,清华大学出版社,2001.
    [48] K. K. Mei, "On the integral equations of thin wire antennas," IEEE Trans. Antanna Propagation, vol. 13, pp. 374-378, May1965.
    [49] 汪文秉,瞬态电磁场,西安交通大学出版社,1991,151—156.
    [50] Q. Gu, Y. E. Yang, and M. A. Tassoudji, "Modeling and analysis of vias in multilayered integrated circuit," IEEE Trans. Microwave Theory Tech., vol. 41, no. 2, pp. 206-214, 1993.
    [51] Chalmers M. Bulter, D.R.Wilton, "Analysis of various numerical techniques applied to thinwire scatterers," IEEE Trans. Antanna Propagation, vol. 23, pp. 534-540, July 1975.
    [52] 李岳生,样条与插值,上海科学技术出版社,1983,127—132.
    [53] 姬五胜,李英等,B样条有限元法解矩形边值问题的高斯积分矩阵传递算法,电子学报,2003,31(12):1771—1775.
    [54] Wusheng Ji, Bin You, Xuedong Wang, and Ying Li, "Relationship between the propagation characteristics of via and microstrip connecting angle", M icrowave and Optical Technology Letters, Vol. 38, No. 3, pp. 225-228, August 5 2003.
    [55] Show-Gwo Hsu, Ruey-Beei Wu, "Full-wave Characterization of a through hole via discontinuity in multi-layered packaging", IEEE 3rd Topical Meeting on Electrical Performance of Electronic packaging, 2-4 Nov. 1994, pp. 219-222.
    [56] Ramesh Abhari, George V. Eleftheriades, Emilie Van Deventer-Perkins, "Physics-based CAD models for the analysis of vias in parallel-plate environments," IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1697-1706, 2001.
    [57] Chalmers M. Butler, Talya L. keshavamurthy, "Investigation of a radial, parallel-plate waveguide with an annular slot" Radio Science, vol. 16, no. 2, pp. 159-168, 1981.
    [58] 王秉中,计算电磁学,科学出版社,2002.
    [59] 葛德彪,闫玉波,电磁波时域有限差分方法,西安电子科技大学出版社,2002.
    [60] 王长清,祝西里,电磁场计算中的时域有限差分法,北京大学出版社,1994.
    
    
    [61]高本庆,时域有限差分法FDTD Method,国防工业出版社,1995.
    [62] K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, no(3), pp. 302—307, 1966.
    [63] A.Bayliss and E.Turkel,"Radiation boundary conditions for wave-like equations",Comm. Pure AppL. Math., vol. 23, pp. 707-725, 1980.
    [64] B.Engquist and A.Majda, "Absorbing boundary conditions for the numerical simulation of waves", Mathematics of Computation, vol. 31, no. 139, pp. 629-651, 1977.
    [65] G. Mur,"Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations", IEEE trans. Electromagnetic Compatibility, vol. 23, no. 4, PP. 377-382, 1981.
    [66] R.L. Wanger and W. C. Chen,"An analysis of Liao's absorbing boundary condition",Joumal of electromagnetic wave application," vol. 9, no. 7/8, pp. 993-1009, 1995.
    [67] K. K. Mei and J. Y. Fang, "Superabsorption: a method to improve absorbing boundary conditions", IEEE Trans. Antenna Propagation, vol. 40, no. 9, PP.1001-1010, 1992.
    [68] David H. Francis, "Trends in flip-chip and advanced interconnection," 1997 International Conference on Multichip Modules, pp. 25-28.
    [69] A. Jentzsch, W. Heinrich, "Optimization of flip-chip interconnects for millimeter-wave frequencies," IEEE MTT-S Digest 1999, pp. 637-640.
    [70] Andrea Jentzsch, Wolfgang Heinrich, "Theory and measurement of flip-chip interconnects for frequencies up to 100 GHz," IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 871-878, 2001.
    [71] Deniela S taiculescu, Albert S utono, and Joy lascar, "Wideband scalable electrical model for microwave/millimeter wave flip chip interconnects," IEEE Trans. Advanced Packagirig, vol, 24, no. 3, pp. 255-259, 2001.
    [72] F. J. Schmuckle, A.Jentzsch and W. Heinrich, et al., "LTCC as MCM substrate: design of strip-line structures and flip-chip interconnects," IEEE MTT-S Digest 2001, pp. 1903-1906.
    [73] Peter Li, Hui Wu, Tong LI, et al., "Broadband time-domain characterization of multiple flip-chip
    
    interconnects," IEEE MTT-S Digest 2001, pp. 1891-1894.
    [74] Chun-Long Wang and Ruey-Beei Wu, "Locally matching design for flip-chip transition", Proceedings of APMC 2001, Taipei, pp. 547-549.
    [75] K. Onodera, T. Ishii, et al., "Controllability of novel Sno.95Au_(0.05) microbumps using interlaminated tin and gold layers for Flip-chip interconnection", IEEE Microwave and Wireless Components Letters, vol. 13, no. 7, pp. 256-258, 2003.
    [76] T. Krems, W. Haydl, H. Massler, J. Rudiger, "Millimeter-wave performance of chip interconnections using wire bonding and flip-chip," IEEE MTT-S Digest 1996, pp. 247-250.
    [77] K. Maruhashi, M. Ito, et al., "Rf performance of a 77GHz monolithic CPW amplifier with Flip-chip interconnections," IEEE MTT-S Digest 1998, pp. 1095-1098.
    [78] 梁联倬,微波网络及其应用,电子工业出版社,1985,69.
    [79] Anastasis C. Polycarpou, Panayiotis A. Trikas, et al., "The finite-element method for modeling circuits and interconnects for electronic packaging," IEEE Trans. Microwave Theory and Theory, vol. 45, no.10, 1997, pp. 1868-1874.
    [80] Houfei Chen, Qin Li, et al., "Coupling of lrge number of vias in electronic packaging structures and differential signaling," IEEE MTT-S Digest 2002, pp. 983-986.
    [81] Houfei Chen, Qin Li, et al., "Analysis of a large number of vias and differential signaling in multilayered structures," IEEE trans. Microwave Theory and Techniques, vol.51, no. 3, pp. 818-828, 2003.
    [82] Leung tsang, Houfei Chen, et al., "Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations", Microwave and Optical Technology Letters, vol. 31, no. 3, pp. 201-208, November 5 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700