用户名: 密码: 验证码:
棉花线粒体基因组的测序和序列初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物线粒体基因组具有大且大小可变,外源迁移序列,重复序列具有重组活性,存在多元的亚基因组分子,基因表达依赖于广泛的RNA编辑等复杂特征。同时,线粒体基因组异常的序列重组,导致形成一些嵌合基因,而大量研究表明植物细胞质雄性不育因子与线粒体的一些嵌合基因相关。棉花是重要的经济作物,但是其线粒体基因组测序和CMS分子机理的研究尚未报道。本文分别利用高通量测序技术和基因组文库,对海岛棉Pima90-53和陆地棉CMS保持系2074B的线粒体基因组进行了测序和序列初步分析。
     对海岛棉基因组BAC文库进行筛选,获得了10个线粒体阳性克隆,根据重叠性和插入片段大小分析预测可基本覆盖其线粒体基因组。我们对其中一个富含基因标记的BAC克隆进行测序,拼接后得到一个大小为115kb的序列。基因注释表明,该克隆中含有15个已报道的线粒体功能基因。用8个基因组成联合基因集对20个植物物种进行分子系统发生研究,客观反映了物种间的进化关系。同时,我们对该克隆序列的组成特征和基因排列的共线性进行分析,并对RNA编辑进行了初步的预测。
     利用454测序技术对陆地棉2074B的mtDNA进行测序,获得约为114M数据量,平均reads读长为399bp。对拼接产生的Large contig序列利用NCBI进行同源性分析,800bp以上contig序列中有110个与植物线粒体基因组同源性很高,大小为541.478kb,约占分析序列总大小的42%。同时,我们对Large Contig中所有大于500bp的contig序列进行同源性分析,将与线粒体基因组同源的contig数量增加至133个,总长度为561.522kb。鉴于高等植物线粒体基因组中基因间区序列的可变性,我们初步确定这133个contig序列为棉花mtDNA中的序列。
     根据植物mtDNA组成特征和2074A拼接序列,设计引物进行contig间的初步拼接,用89个测序片段将102个contig拼接为13个较大的contig序列,原来133个contig减少至43个,总大小增加到581.332kb。基因组注释,获得了54个线粒体基因,包括35个蛋白编码基因和19个RNA编码基因,这些基因或内含子序列分布于其中的18个contig中。重复序列分析发现,43个contig中最大的重复序列仅为488bp,更多的是在100bp以下,所以较大片段重复序列的获得和组装可能是下步完成mtDNA图谱工作的重点。为了进步进行序列的拼接,我们构建了2074B线粒体基因组的Fosmid文库,包括21个96孔板,计2016个克隆,平均插入片段约40kb。用拼接contig末端和功能基因标记共62个标记,对Fosmid文库的6个混合池进行筛选,获得了28个阳性克隆。分析发现三个Fosmid克隆与拼接的contig司存在重叠关系,预计这些克隆的测序可将总contig数量减少至35个。同时,通过克隆与contig重叠关系的分析,也发现了一些相互矛盾的连接次序,这些连接是否线粒体多元分子构型的体现,以及如何正确组装这些序列无疑对完成其线粒体基因组至关重要。
     总之,通过海岛棉和陆地棉mtDNA测序和筛库结果,对其序列特征和基因组成得到了深入的研究,这些工作为进一步完成棉花线粒体Finish图谱奠定了基础。
The plant mitochondrial genome displays complex features, including large and highly variable sizes, the incorporation of foreign DNA sequences, recombinationally active repeats, the presence multiple subgenomic molecules and gene expression dependent on RNA editing. At the same time, an high incidence of illegitimate recombination in the mitochondria genome results in forming chimerical genes, some of which have been revealed through plenty of studies to have associated with cytoplast male sterility factor. In this study, sequencing and analysis mitochondrial genome of2074B, which is a maintainer line for gossypium hirsutum L. CMS, and pima90-53of gossypium barbadense L. were preliminarily studied with technique of high-throughput sequencing and genomic library.
     Through screening bacterial artificial chromosome (BAC) clones of mitochondria genome from G. barbadense,10positive clones containing mitochondria DNA fragments were obtained, and may basically cover all the mitochondria genome based on overlapping fragment and inserting fragment size analysis and prediction. One of these BAC clones was sequenced, in which abounding gene marks, and after splicing a115kb sequence was obtained. Gene annotation analysis revealed that this clone contained15reported functional genes of the mitochondria genome. Eight of these genes were chosen to make up of a linked gene cluster used for study on phylogeny of20plant species, which was to disclose evolutionary relation between these species objectively. Meanwhile, organization characteristics of this sequence and collinearity of its gene arrangement were analyzed, and RNA editing was predicted preliminarily.
     Using454sequencing technology the mtDNA of2074B were sequenced, we obtained the amount of data about114M, with an average reads length was399bp. Homology analysised with plant mitochondrial genome for large contig of sequences assmebledd by NCBI databases,110contig sequences have high similarity with the mitochondrial genome above800bp and total size is541.478kb, about42%of the analysis sequences. Meanwhile, we analyzed all of the contig sequences more than500bp and the number of homologous contig increased to133, total length is561.522kb. In view of the variability in intergenic regions of plant mitochondrial genome, we initially identified the133contig sequences as the mtDNA sequence of2074B.
     According to the composition characteristics of plant mitochondrial and2074A assembly sequences, we design primers for contig between the initial regions and89sequencing fragments assembling102contig to13larger contig sequences, the original133contig reduced to43and the total size increased to581.332kb. Genome annotation acquired54mitochondrial genes, including35protein coding genes and19RNA coding genes, these genes or introns located in the18contig. Repeat sequence analysis showed that the largest contig43repeats only488bp and more less100bp, so the acquisition of large fragments and accuracy assembly the repetitive sequences could be important step to next step complete the finsh map.
     In order to futher assembling those sequences, we constructed a2074B Fosmid mitochondrial genome library, which including2016clones and average insert of about40kb. Use62markers compsed with contig end and gene markers and6mixed pools of fosmid library, we screened28positive clones. Analysis found three clones that have overlapping relationship between the clone and assembly sequence, and the total number of the clones can be reduced to35after these clone sequenced. Analysis of the overlapping relationship with the clone and contig by markers, we found some conflicting connection order aslo exist, these connections whether display multiple molecular structure of mitochondrial, and how to assemble these sequences is undoubtedly essential to complete mitochondrial genome.
     In short, we have made a progress for the composition features and functional genes through mtDNA sequencing and library screening, and this work contribute for the further completion of the mitochondrial genome of G. barbadense and G hirsutum.
引文
1. 崔明晖.棉花细胞质雄性不育相关基因分离及标记转化:[硕士学位论文].北京:中国农业科学院,2010.
    2. 代培红,孟志刚,罗淑萍等.棉花线粒体基因组细菌人工染色体文库的构建.新疆农业大学学报,2007(4):57-62.
    3. 侯思宇,张锐,张晓等.棉花细胞质雄性不育与育性恢复研究进展.中国农业科技导报,2010(1):1-7.
    4. 华金平,李双双,薛龙飞等.一种提取棉花的线粒体DNA的方法.中国专利.201010033946.X,2010-01-03.
    5. 黄晋玲.棉花晋A细胞质雄性不育系的遗传研究:[博士学位论文].太原:山西农业大学,2003.
    6. 黄晋玲,胡建斌,张锐等.制备棉花高分子量线粒体DNA的方法.棉花学报,2007(1):74-75.
    7. 蒋培东.棉花细胞质雄性不育机理的研究:[博士学位论文].南京:浙江大学,2007.
    8. 雷彬彬,李双双,刘国政等.高等植物线粒体基因组进化分析.分子植物育种,2012,10(4),490-500.
    9. 李茂峰,徐奇,刘康等.棉花细胞质雄性不育与恢复特性的cDNA-AFLP分析.江苏农业学报,2010(5):914-919.
    10.李朋波.雷蒙德氏棉叶绿体基因组测序及其在棉属分化中的应用:[博士学位论文].北京:中国农业大学,2008.
    11.李双双,刘国政,陈志文等.哈克尼西棉细胞质陆地棉雄性不育系orf160的克隆及遗传转化.作物学报,2013,39(9):1538-1547.
    12.李双双.棉花线粒体基因组及其细胞质雄性不育机理的初步研究:[博士学位论文].北京:中国农业大学,2013.
    13.李双双,薛龙飞,苏爱国等.高等植物线粒体基因组测序和序列分析.中国农业大学学报,2011(2):22-27.
    14.刘国政.陆地棉线粒体基因组全序列及高等植物线粒体基因组进化分析.[硕士学位论文].北京:中国农业大学,2013.
    15.刘少林,靖深荣,郭立平.作物雄性不育及杂种优势研究进展.北京:中国农业出版社,1996.
    16.苏爱国,李双双,王玉美等.植物线粒体结构基因组研究进展.中国农业科技导报,2011,13(3)9-16.
    17.王巍敏,李云昌,胡琼等.植物细胞质雄性不育基因的鉴定及育性调控机理.分子植物育种,2008(6):1139-1145.
    18.王文生Pima90-53细菌人工染色体(BAC)文库构建及抗黄萎病相关基因筛选:[硕士学位论文].保定:河北农业大学,2006.
    19.王学德.细胞质雄性不育棉花线粒体蛋白质和DNA的分析.作物学报,2000(1):35-39.
    20.杨景华,张明方.线粒体反向调控介导高等植物细胞质雄性不育发生机制.遗传,2007(10): 1173-1181.
    21.杨路明.棉花细胞质雄性不育恢复基因的图位克隆及PPR基因家族的分析:[博士学位论文].南京:南京农业大学,2009.
    22.赵海燕,黄晋玲.棉花细胞质雄性不育研究进展.现代农业科技,2010(7):57-60.
    23. Adams K L, Qiu Y L, Stoutemyer M, et al. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution:Proc Natl Acad Sci,2002,99:9905-9912.
    24. Allen J O, Fauron C M, Minx P, et al. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics,2007,177(2):1173-1192.
    25. Allen J O, Fauron C M, Mx P. Comparisons Among Two Fertile and Three Male-Sterile Mitochondrial Genomes of Maize Male-Sterile Mitochondrial Genomes of Maize. Genetics,2007, 177:1173-1192.
    26. Alverson A J, Wei X X, Rice D W, et al. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Molecular Biology and Evolution,2010,27(6):1436-1448.
    27. Alverson A J, Zhuo S, Rice D W, et al. The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats. PkoS one,2011,6(1): 1436-1448.
    28. Andre C, Levy A, Walbot V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends in Genetics,1992,8(4):128-132.
    29. Ashutosh, Kumar P, Kumar V D, et al. A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm. Plant Cell Physiol,2008,49(2):284-289.
    30. Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proceedings of the National Academy of Sciences of the United States of America,2002,99(16):10887-10892.
    31. Bergthorsson U, Richardson A O, Young G J, et al. Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proceedings of the National Academy of Sciences of the United States of America,2004,101(51):17747-17752.
    32. Carlsson J, Lagercrantz U, SundstroM J, et al. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. The Plant Journal,2007,49(3):452-462.
    33. Chaw S M, Shih A C-C, Wang D, et al. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Molecular Biology and Evolution,2008,25(3):603-615.
    34. Clifton S W, Minx P, Fauron C M R, et al. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant physiology,2004,136(3):3486-3503.
    35. Cui P, Liu H T, Lin Q, et al. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Journal of Genetics,2009, 88(3):299-307.
    36. Dietrich A, Small I, Cosset A, et al. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie,1996,78(6):518-529.
    37. Djajanegara I, Finnegan P M, Mathieu C, et al. Regulation of alternative oxidase gene expression in soybean. Plant molecular biology,2002,50(4):735-742.
    38. Duroc Y, Gaillard C, Hiard S, et al. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Science,2006,170(4):755-767.
    39. Dyall S D, Brown M T, Johnson P J. Ancient invasions: from endosymbionts to organelles. Science,2004,304:157-253.
    40. Ellis J. Promiscuous DNA-chloroplast genes inside plant mitochondria. Nature,1982,299(5585): 678-679.
    41. Feng C D, Guo J H, Nie Y C, et al. Cytoplasmic-nuclear male sterility in cotton: comparative RFLP analysis of mitoehondrial DNA. Proceedings of the Beltwide Cotton Conferennce,2000,1: 511-512.
    42. Fujii S, Komatsu S, Toriyama K. Retrograde regulation of nuclear gene expression in CW-CMS of rice. Plant molecular biology,2007,63(3):405-417.
    43. Fujii S, Yamada M, Toriyama K. Cytoplasmic male sterility-related protein kinase, OsNek3, is regulated downstream of mitochondrial protein phosphatase 2C, DCW11. Plant and Cell Physiology,2009,50(4):828-837.
    44. Gallagher L J, Betz S K, Chase C D. Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet,2002,42(3):179-184.
    45. Giege P, Brennicke A. RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proceedings of the National Academy of Sciences of the United States of America,1999, 96(26):15324-15329.
    46. Glover K E, Spencer D F, Gray M W. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem,2001,276(1): 639-648.
    47. Goremykin V V, Salamini F, Velasco R, et al. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Molecular Biology and Evolution,2009,26(1):99-110.
    48. Gray G R, Maxwell D P, Villarimo A R, et al. Mitochondria/nuclear signaling of alternative oxidase gene expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant cell reports,2004,23(7):497-503.
    49. Gray M W, Covello P S. RNA editing in plant mitochondria and chloroplasts. FASEB J,1993,7(1): 64-71.
    50. Grewe F, Herres S, Viehover P. A unique transcriptome: 1782 positions of RNA editing alter 1406 codon identities in mitochondrial mRNAs of the lycophyte Isoetes engelmannii.2011,39 (7), Nucleic Acid Research.
    51. Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed(Brassica napus L.):comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic acids research,2003,31 (20):5907-5916.
    52. Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. The Plant Cell Online,2004,16(1):154-169.
    53. Heazlewood J L, Whelan J, Millar A H. The products of the mitochondrial orf25 and orfB genes are FO components in the plant FIFO ATP synthase. FEBS letters,2003,540(1-3):201-205.
    54. Hedgcoth C, El-Shehawi A M, Wei P, et al. A chimeric open reading frame associated with cytoplasmic male sterility in alloplasmic wheat with Triticum timopheevi mitochondria is present in several Triticum and Aegilops species, barley, and rye. Current Genetics,2002,41(5):357-366.
    55. Hernould M, Suharsono S, Litvak S, et al. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proceedings of the National Academy of Sciences of the United States of America,1993,90(6):2370-2374.
    56. Hoch B, Maier R M, Appel K, et al. Editing of a chloroplast mRNA by creation of an initiation codon. nature,1991,335:178-180.
    57. Hsu C L, Mullin B C. Physical characterization of mitochondrial DNA from cotton. Plant molecular biology,1989,13(4):467-468.
    58. Huang S W, Li R Q, Zhang Z H, et al. The genome of the cucumber, Cucumis sativus L. Nature genetics,2009,41(12):1275-1281.
    59. Izuchi S, Terachi T, Sakamoto M, et al. Structure and expression of tomato mitochondrial genes coding for tRNACys(GcA), tRNAAsn(Guu) and tRNATyrGUA):a native tRNACys gene is present in dicot plants but absent in monocot plants. Curr Genet,1990,18:239-243.
    60.J拉萨姆布鲁克,DW拉塞尔.分子克隆实验指南(第三版),(黄培堂译).北京:科学出版社,2002.
    61. Kadowaki K, Suzuki T, Kazama S. A chimeric gene containing the 5'portion of atp6 is associated with cytoplasmic male-sterility of rice. Molecular and General Genetics MGG,1990,224(1): 10-16.
    62. Karpova O V, Kuzmin E V, Elthon T E, et al. Differential expression of alternative oxidase genes in maize mitochondrial mutants. The Plant Cell Online,2002,14(12):3271-3284.
    63. Kim D H, Kang J G, Kim B D. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper(Capsicum annuum L.). Plant molecular biology, 2007,63(4):519-532.
    64. Knoop V. (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Current Genetics 46:123-139.
    65. Kotera E, Tasaka M, Shikanai T. A pentatricopeptide repeat protein is essential for RNA editing in chloroplasts. Nature,2005,433(7023):326-330.
    66. Kubo N, Arimura S. Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA research,2010,17(1):1-9.
    67. Kubo T, Newton K J. Angiosperm mitochondrial genomes and mutations. Mitochondrion,2008, 8(1):5-14.
    68. Kubo T, Nishizawa S, Sugawara A, et al. The complete nucleotide sequence of the mitochondrial genome of sugar beet(Beta vulgaris L.) reveals a novel gene for tRNACys (GCA). Nucleic acids research,2000,28(13):1571-1576.
    69. Kubo T. T, Mikami M. Organisation and. variation of angiosperm mitochondrial genome. Physiol Plant,2007,129:6-13.
    70. Kurland C G, Andersson S G E. Origin and evolution of the mitochondrial proteome. Microbiology and molecular biology reviews,2000,64(4):786-820.
    71. Lei B B, Li S S, Liu G Z, et al. Evolution of Mitochondrial Gene Content: Loss of Genes, tRNAs and Introns Between Gossypium harknessii and Other Plants. Plant Systematics and Evolution, 2013.
    72. Lemieux C, Otis C, Turmel M. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature,2000,403(6770):649-652.
    73. Levings D R, Pring C S. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science,1976,193(4248):158-160.
    74. Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature, 2009,463(7279):311-317.
    75. Li S S, Liu G Z, Chen Z W, et al. Construction and initial analysis of five Fosmid libraries of mitochondrial genomes of cotton(Gossypium). Chinese Scince Bulletin,2013. (Have been accepted)
    76. Liu G Z, Cao D D, Li S S et al. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genome. PLOS ONE,2013,8(8):1-14.
    77. Lonsdale D M, Brears T, Hodge T P. The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. Philos Trans R Soc Lond B Biol Sci,1988, 319(1193):149-163.
    78. Lurin C, Andres C, Aubourg S, et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. The Plant Cell Online,2004, 16(8):2089-2103.
    79. Malek O, Brennicke A, Knoop V. Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Natl Acad Sci,1997,94:553-558.
    80. Marchfelder A, Binder S. Plastid and plant mitochondrial RNA processing and RNA stability. Molecular Biology and Biotechnology of Plant Organelles,2004,2(10):261-294.
    81. Mardis E R. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 2008,24(3):133-141.
    82. Marechal A, Brisson N. Recombination and the maintenance of plant organelle genome stabilit. New Phytol,2010,186:299-317.
    83. Marrchal L, Guillemaut P, Grienenberger J M, et al. Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp:evidence for a high degree of homology. Nucleic Acids Res,1985,13:4411-4416.
    84. Metzker M L. Sequencing technologies-the next generation. Nature Reviews Genetics,2009,11(1): 31-46.
    85. Mower J P. PREP-Mt: predictive RNA editor for plant mitochondrial genes, chloroplast genes and user-defined alignments. BMC bioinformatics,2005,37:253-259.
    86. Mower J P. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic acids research,2009,37(2):253-259.
    87. Mower J P, Touzet P, Gummow J S. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol,2007,7(135):1-14.
    88. Nakazono M, Nishiwaki S, Tsutsumi N, et al. A chloroplast-derived sequence is utilized as a source of promoter sequences for the gene for subunit 9 of NADH dehydrogenase (nad9) in rice mitochondria. Molecular and General Genetics,1996,252(4):371-378.
    89. Narayanan K K, Sentbilkumar P, Sridhar V. V. Organization of the mitochondrial Cob 2 pseudogene in different lines of rice. Theor Appl Genet,1995,90:7-8.
    90. Nathalie P, Hodges M, Palmieri L, et al. The growing family of mitochondrial carriers in Arabidopsis. Trends in plant science,2004,9(3):138-146.
    91. Notsu Y, Masood S, Nishikawa T, et al. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Molecular Genetics and Genomics,2002,268(4):434-445.
    92. Ogihara Y, Yamazaki Y, Murai K, et al. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucleic acids research,2005,33(19):6235-6250.
    93. Oldenburg D J, Bendich A J. Size and structure of replicating mitochondrial DNA in cultured tobacco cells. The Plant Cell Online,1996,8(3):447-461.
    94. Palmer J D, Herbon L A. Plant mitochondrial DNA evolves rapidly instructure, but slowly in sequence. J Mol Evol,1988,28(1-2):87-97.
    95. Prioli L M, Huang J, Levings C S. The plant mitochondrial open reading frame orf221 encodes a membrane-bound protein. Plant molecular biology,1993,23(2):287-295.
    96. Richardson A O, Palmer J D. Horizontal gene transfer in plants. Journal of experimental botany, 2007,58(1):1-9.
    97. Rothberg J M, Leamon J H. The development and impact of 454 sequencing. Nature biotechnology, 2008,26(10):1117-1124.
    98. Sabar M, Gagliardi D, Balk J, et al. ORFB is a subunit of F1FO-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO reports,2003,4(4):381-386.
    99. Sandhu A P S, Abdelnoo R V, Mackenzie S A. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proceedings of the National Academy of Sciences,2007,104(6):1766-1770.
    100. Sanger F, Coulson A R, Friedmann T, et al. The nucleotide sequence of bacteriophage φpX174. Journal of molecular biology,1978,125(2):225-246.
    101. Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences,1977,74(12):5463-5467.
    102. Sarria R, Lyznik A, Vallejos C E, et al. A cytoplasmic male sterility-Cassociated mitochondrial peptide in common bean is post-translationally regulated. The Plant Cell Online,1998,10(7): 1217-1228.
    103. Shedge V, Montiel M A, Christensen A C, et al. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. The Plant Cell,2007,19(4):1251-1264.
    104. Shendure J, Ji H. Next-generation DNA sequencing. Nature biotechnology,2008,26(10): 1135-1145.
    105. Shikanai T. RNA editing in plant organelles: machinery, physiological function and evolution. Cellular and molecular life sciences,2006,63(6):698-708.
    106. Sloan D.B., Alverson A.J., Storchova H., Palmer J.D., Taylor D.R. (2010) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evolutionary Biology 10:274.
    107. Small I, Akashi K, Chapron A, et al. The strange evolutionary history-of plant mitochondrial tRNAs and their aminoacyl-tRNA synthetases. J Hered,1999,90(3):333-337.
    108. Song J, Hedgcoth C. A chimeric gene (orf256) is expressed as protein only in cytoplasmic male-sterile lines of wheat. Plant Mol Biol,1994,26(1):535-539.
    109. Su A G, Li S S, Liu G Z, et al. Study on the mitochondrial genome of Sea Island cotton (Gossypium barbadense L.) by BAC library screenin. Journal of Integrative Agriculture,2013. (Have been accepted)
    110. Sugiyama Y, Watase Y, Nagase M, et al. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Molecular Genetics and Genomics,2005,272(6):603-615.
    111. Suzuki H, Yu J, Ness SA, et al. RNA editing events in mitochondrial genes by ultra-deep sequencing methods:a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Genet Genomics.2013,288(9):445-57.
    112. Tanaka Y, Tsuda M, Yasumoto K et al. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics,2012,13(352):1-12.
    113. Takenaka M, Verbitskiy D, Merwe J A, et al. The process of RNA editing in plant mitochondria. Mitochondrion,2008,8(1):35-46.
    114. Terasawa K, Odahara M, Kabeya Y, et al. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Molecular Biology and Evolution, 2007,24(3):699-709.
    115. Tian X, Zheng J, Hu S, et al. The rice mitochondrial genomes and their variations. Plant physiology,2006,140(2):401-410.
    116. Unseld M, Marienfeld J R, Brandt P, et al. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature genetics,1997,15(1):57-61.
    117. Wang F, Feng C, Connell M A, et al. RFLP analysis of mitochondrial DNA in two cytoplasmic male sterility systems (CMS-D2 and CMS-D8) of cotton. Euphytica,2010,172(1):93-99.
    118. Wang X F, Ma J, Wang W S, et al. construcion and characterization of the first bacterial artificial chromosome library for the cotton species gossypium barbadense L. Genome,2006,49: 1388-1393.
    119. Wang Z, Zou Y, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. The Plant Cell Online,2006,18(3):676-687.
    120. Ward B L, Anderson R S. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). cell,1981,25:793-803.
    121. Wei Mi M, Wei H L, Wu M, et al. Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biology 2013,13(66):1-14.
    122. Wolfe K H, Li W H, Sharp P M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci,1987,84(24):9054-9058.
    123. Xiao H L, Zhang F D, Zheng Y L.The 5' stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility,2006,864-872.
    124. Yamamoto M P, Kubo T, Mikami T. The 5'-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Molecular Genetics and Genomics,2005,273(4):342-349.
    125. Zhang J, Turley R B, Stewart J M. Comparative analysis of gene expression between CMS-D8 restored plants and normal non-restoring fertile plants in cotton by differential display. Plant cell reports,2008,27(3):553-561.
    126. Zhou X, Ren L, Meng Q, et al. The next-generation sequencing technology and application. Protein and Cell,2010,1(6):520-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700