用户名: 密码: 验证码:
SOI横向高压器件纵向耐压理论与新结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI(Silicon On Insulator)即“绝缘体上的硅”被称为二十一世纪的硅集成技术,其独特的结构带来隔离性能好、漏电流小、速度快、抗辐照和功耗低等优点,充分发挥了硅集成电路技术的潜力,特别是SOI高压集成电路(High Voltage Integrated Circuit,HVIC)在未来空天抗辐照领域具有特殊作用,因而得以广泛发展和应用。SOI横向高压器件作为HVIC的基石,由于介质层阻止了其耗尽区向衬底层扩展,使得习用的器件纵向耐压仅由顶层硅和介质层承担。而因隔离和散热的限制,顶层硅和介质层都不能太厚,同时由界面处无电荷高斯定理,使得器件击穿时的介质层电场仅为硅临界场的3倍即100V/μm左右,远未达到实际常用介质材料如SiO2的临界场600V/μm,所以SOI横向高压器件纵向耐压较低,限制了HVIC的应用和发展,目前投入应用的还没有突破600V的瓶颈。对此,国内外众多学者进行了深入研究,当前工作主要集中在新理论模型和新器件结构两个方面。
     本文在对习用的SOI横向高压器件研究的基础上,围绕纵向耐压新理论、新模型和新器件结构进行研究。完善一个统一的纵向耐压新理论-介质场增强(ENhanced DIelectric layer Field,ENDIF)普适理论;首次建立一项新的电场模型-基于阈值能量经典雪崩击穿理论的硅临界击穿电场与其厚度定量关系模型;在ENIDF指导下提出两类电荷型SOI高压器件新结构-电荷岛型高压器件和复合介质埋层高压器件。
     第一,完善介质场增强ENDIF理论,是优化设计SOI横向高压器件纵向耐压的普适理论。该理论基于介质场临界化的思想,通过增强介质层电场而提高SOI器件的纵向击穿电压。根据包含界面电荷的高斯定理,ENDIF给出增强介质层电场的三类技术:采用具有可变高临界电场的超薄顶层硅;引入低介电系数介质埋层;在介质层界面引入电荷。用ENDIF对现有典型纵向耐压结构进行理论上的概括与解释,并用以指导新的器件结构设计。ENDIF理论是新的高压SOI器件击穿电压终端理论,它突破了传统SOI横向高压器件的局限。
     第二,首次建立硅临界电场与其厚度定量关系解析模型。基于阈值能量经典雪崩击穿理论,选择计及阈值能量的电离率公式,首次推导出适用于厚、薄硅层的硅临界电场与其厚度以及适用于高、低掺杂的硅临界电场与其掺杂浓度的新定量关系模型,获得了超薄硅层或者超高浓度情况下远高于常规30V/μm的硅临界电场,并由此获得SOI高压器件的介质场与纵向耐压的统一解析模型。讨论纳米级超薄硅层的临界场与电离率弛豫关系半经典模型。最后将该研究方法推广应用于其他半导体材料及器件。
     第三,在ENDIF指导下,提出两类新的电荷型介质场增强高压器件-具有界面电荷岛的系列高压器件和具有复合埋层的SOI高压器件。
     1)具有界面电荷岛的系列高压器件(Charge Islands,CI)。该类器件在介质层界面注入高浓度掺杂区,未耗尽高掺杂区内的电离杂质库仑力以及电场力的综合作用将在界面束缚电荷,利用界面电荷对介质场的增强作用和对顶层硅电场的削弱作用来提高器件耐压。主要包括:(1)界面电荷岛SOI高压器件(CI SOI),在5μm顶层硅、1μm介质层和60μm漂移区获得了606V的高压,介质场达582V/μm;(2)界面电荷岛部分SOI高压器件(CI PSOI),求解二维泊松方程推导此类结构纵向界面电场解析模型,获得631V高压,其最高表面温度分别比常规SOI和PSOI结构降低14.91K和7.66K;(3)改进型的界面电荷岛部分SOI高压器件(ICI PSOI),在80μm漂移区和20μm硅窗口上获得耐压663V的ICI PSOI,较相同尺寸CI PSOI提高85V,同时保持较低的自热效应;(4)基于ESIMOX技术的CI SOI高压器件,在2μm顶层硅、0.375μm介质层和15μm漂移区上获得了230V的耐压,远高于常规结构;(5)双面界面电荷岛SOI高压器件(DCI PSOI),获得了750V的耐压,高于相同尺寸下单面电荷岛结构的685V及常规SOI结构的206V。
     2)复合埋层的SOI高压器件(SOI with Composite Buried Layer,CBL SOI)。该类结构的介质埋层包含两层氧化层,两层埋氧之间填充多晶,利用两层埋氧承受耐压,且多晶硅下界面的电荷增强了第二埋氧层的电场,从而提高器件耐压。主要包括:(1)单窗口双埋层SOI高压器件(SWCBL SOI),该结构第一埋层开有一个硅窗口,获得865V的高压,高于相同尺寸常规SOI结构232V;(2)双窗口双埋层SOI高压器件(DWCBL SOI),该结构第一层埋氧层开有两个窗口,并且上下两个埋氧层相连。在20μm顶层硅、2μm第一埋氧层、1μm第二埋氧层和80μm漂移区上获得了1040V的高压,在保持高耐压的同时具有较低的自热效应。在对SWCBL SOI耐压机理研究的基础上,对其进行实验研制。详细设计实验方案,在2.5μm第一埋氧层、0.5μm第二埋氧层和80μm漂移区上研制了耐压达761V的SOI LDMOS器件,突破了实用SOI器件耐压不超过600V的瓶颈。
SOI (Silicon On Insulator) fully exerts the potential of silicon-based integrated circuit due to the advantages such as superior isolation, reduced leakage current, high speed, perfect irradiation and low power dissipation because of its unique structure, and therefore, it is widely developed and applied. Dielectric buried layer prevents the depletion layer spreading into the substrate layer, and so, as the footstone of SOI HVIC (High Voltage Integrated Circuit), SOI lateral high voltage device limits the application of SOI HVIC because of its low vertical breakdown voltage (BV) as a result of the Gauss-theory without interface charges. Up to now, the breakdown voltage of the applied SOI device is less than 600V. To resolve the problem, semiconductor researchers have carried out plentiful work, and new theory models and new device structures are their two key disquisitive aspects.
     In this thesis, the novel theory, the new model and the novel device structures are researched aiming at the vertical breakdown voltage of SOI lateral high voltage devices. A unified vertical breakdown voltage of ENDIF (ENhanced DIelectric layer Field) theory is consummated. Based ENDIF, a new silicon critical electric field model based on threshold energy avalanche breakdown classical theory and two kinds of novel charge-mode high voltage devices (SOI high voltage devices with interface charge island and composite buried layer) are reported. Operating mechanisms of the proposed devices are investigated, the analytical models of breakdown voltage and electric field are presented, and some experimental results are obtained.
     1. ENDIF is consummated. Based on the concept of critical field approaching for dielectric buried layer, ENIDF is proposed whose standpoint is to increase vertical breakdown voltage by enhancing the electric field of dielectric buried layer (EI). From the continuity theorem of electric displacement including interface charge, three approaches to enhance dielectric layer electric field are presented by the ENDIF:①using a thin silicon layer with high critical electric field (ES,C);②introducing low permittivity dielectric buried layer;③implementing interface charges on the interface of dielectric layer. The ENDIF can well explain several existing SOI HV device structures and it is a new and effective rule for SOI HV devices, giving theoretical direction for increasing the vertical breakdown voltage.
     2. Based on the ENDIF, the analytical mode of silicon critical electric field on silicon layer thickness (tS) is firstly presented. By threshold energy avalanche breakdown classical theory and the effective ionization rate considering the threshold energy of silicon, a new dependence of ES,C on tS which is applicable for both thin and thick silicon layer and a new formula of ES,C on impurity concentration in silicon (Nd) which is applicable for both low and high impurity concentration are obtained, from which, expressions of EI and BV are given. Moreover, the semi-classical model of the relaxation dependence between critical electric field and ionization rate for nano-level unltrathin silicon layer is discussed. Finally, the researchful method is used to other semiconductor materials and devices.
     3. Based on the ENDIF, two kinds of novel charge-mode high voltage devices - interface charge island SOI and SOI with composite buried layer are reported.
     (1) Interface Charge Islands SOI device The structures are characterized by a charge islands layer on the interface of dielectric buried layer in which the equidistant high concentration n+-regions are inserted. Interface charges are located on the interface by the compositive operations of electric field force and Coulomb’s force with high concentration ionized donors in the undepleted n+-regions. The induced inversion holes greatly enhance the electric field of the buried dielectric layer and therefore, effectively increase device breakdown voltage. Include:①CI SOI (Charge Islands SOI). BV=606V are obtained on 5μm silicon layer and 1μm dielectric buried layer, and EI reaches to 582V/μm;②Charge Islands partial-SOI (CI PSOI). An analytical model of the vertical interface electric field for the CI PSOI is derived. BV=631V is obtained on 5μm silicon layer, 1μm dielectric buried layer, 80μm drift region and 15μm silicon window, and enhanced EI (△EI) by interface charges reaches to 498.2V/μm, at the same time, the maximal surface temperature of CI SOI reduces by 7.66K and 14.91K in comparison with the conventional PSOI and SOI, respectively;③Improved Charge Islands partial-SOI (ICI PSOI). BV of 663V for ICI PSOI are obtained on 5μm silicon layer, 1μm dielectric buried layer, 80μm drift region and 20μm silicon window, which is larger by 85V than that of CI PSOI with the same structure parameters, with a low self-heating effect;④CI SOI based on ESIMOX. BV of 230V is obtained on 2μm silicon layer, 0.375μm dielectric buried layer and 15μm drift region, which is much larger than that of the conventional SOI;⑤DCI PSOI (Double-side Charge Islands SOI). BV=750V is obtained on 5μm silicon layer, 1μm dielectric buried layer and 70μm compared with 685V of CI SOI and 206V of the conventional SOI.
     (2) SOI with Composite Buried Layer (CBL SOI)
     The dielectric buried layer of the structures is made of two oxide layers and polysilicon between them. Its breakdown voltage is shared by the two oxide layers, furthermore, the charges on the bottom interface of polysilicon layer enhance the second buried layer electric field, thus breakdown voltage is increased. Include:①SOI with Single-Window Composite Buried Layer (SWCBL SOI). There is a single silicon window in the first buried layer. BV=865V is obtained on 20μm silicon layer, 2.5μm the first buried layer, 0.5μm the second buried layer and 80μm compared with 633V of the conventional SOI.②SOI with Dingle-Window Composite Buried Layer (DWCBL SOI). There are two silicon windows in the first buried layer, and two buried layers are connected by an oxide layer. A high BV of 1040V is obtained on 20μm silicon layer, 2μm the first buried layer, 1μm the second buried layer and 80μm, and△EI reaches to 498.2V/μm, with a low self-heating effect. Moreover, 761V SWCBL SOI LDMOS is experimentally obtained on 20μm silicon layer, 2.5μm the first buried layer, 0.5μm the second buried layer and 80μm, which breaks through the BV <600V limitation of the conventionally applied SOI device.
引文
[1] C. Sorin. Far-future trends in SOI technology: a guess. Journal of High Speed Electronics and System, 2002, (12)2: 137-145
    [2] Chiang W. T., Liu P. W., Huang Y. T., et al. Optimal PD-SOI technology for high performance applications, International Symposium on VLSI Technology. Systems, and Applications, Proceeding, 2008: 93-94
    [3] Cristoloveanu Sorin. Silicon on insulator technologies and devices: From present to future. Solid-State Electronics, 2001, 45(8): 1403-1411
    [4] Horstmann M., Wiatr M., Wei A., et al. Advanced SOI CMOS transistor technology for high performance microprocessors. Proceeding of the 10th International Conference on Ultimate Integration of Silicon, 2009: 11-14
    [5] Bol David, De Vos Julien, Ambroise Renaud, et al. Buliding ultra-low-power high temperature digital circuits in standard high-performance SOI technology. Solid-State Electronics, 2008, 52(12): 1939-1945
    [6] Herrera G. V., Bauer Todd, Blain M. G., et al. SOI-enabled MEMS processes lead to novel mechanical, optical, and atomic physics devices. IEEE International SOI Conference, 2008: 5-8
    [7] Yu Xiaomei, Tang Yaquan, Zhang Haitao. Monolithic integration of micromachined sensors and CMOS circuits based on SOI technologies. Journal of Micromechanics and Microengineering, 2008, 18(3): 037002(7pp)
    [8] A. Nakagawa, N. Yasuhara. Prospects of high voltage power ICs on thin SOI. IEDM Tech. Dig., 1992: 229-232
    [9] A. K. Goel, T. H. Tan. High-temperature and self-heating effects in fully depleted SOI MOSFETs. Microelectronics Journal, 2006, (37)9: 963-975
    [10] M. Rossberg, R. Herzer, S. Pawel. Latch-up free 600V SOI gate driver IC for medium power and high temperature applications. European Conference on Power Electronics and Applications, 2005: 1665922
    [11] M. M. Pelella, W. Maszara, S. Sundararajan, et al. Advantages and challenges of highperformance CMOS on SOI. IEEE International SOI Conference, 2001: 1-4
    [12] Kim Jonghae, Plouchart Jean-Olivier, Zamdrner Noah. Design and manufacturability aspect of SOI CMOS RFICs. Proceedings of the IEEE Custom Integrated Circuits Conference, 2004, 1: 541-548
    [13] Fuse T., Ohta M., Tokumasu M., et al. A 0.5-V power-supply scheme for low-power system LSIs using multi-Vth SOI CMOS technology. IEEE Journal of Solid-State Circuits, 2003, 38(2): 303-311
    [14] Kabayshi K., Yanagigawa H., Mori K., et al. High voltage SOI CMOS IC technology for driving plasma display panels. Proc. of ISPSD, 1998: 141-144
    [15] Sun I.-S. M., Wai Tung Ng, Kanekiyo K., et al. Lateral high-speed bipolar transistors on SOI for RF SoC applications. IEEE Trans. Electron Devices, 2005, 52(7): 1376-1383
    [16] E. Arnold. Silicon-on-Insulator devices for high voltage and power IC applications. Electrochem. Soc., 1985: 1983-1988
    [17] Fardoun Abbas A., Hassan Mona, Mohammed Heba, et al. SOI MOSFET as potential replacement of mechanical relays in Electrical Systems. IEEE International 51st Midwest Symposium on Circuits and Systems, 2008: 718-721
    [18] Igic P., Jankovic N. New high voltage partial SOI technology for smart-power applications. 9th International Seminar on Power Semiconductors, 2008: 255-259
    [19] Kim S., Lepkowski W., Thornton T. J., et al. CMOS compatible high-voltage compliant MESFET-based analogue IC building blocks. Electronics Letters, 2009, 45(12): 624-626
    [20] Udrea Florin. SOI-based devices and technologies for high voltage ICs, Proceeding of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007: 74-81
    [21]黄如,张国艳,李映雪,张兴. SOI CMOS技术及其应用.北京:科学出版社, 2005
    [22] Wessels P. J. J. SOI based technology for smart power applications. IEEE International SOI Conference, 2007: 5-7
    [23] Charles E. Mullett, PSMA Chair. A 5-year power technology roadmap. IEEE Proc. APEC’04, 2004: 11-17
    [24] Jeffery D. Shepard. Power electronics futures. IEEE Proc. APEC’04, 2004: 31-34
    [25] Bimal K. Bose. Recent advances in power electronics. IEEE Tran. on Power Electronics, 1992, 7(1): 2-16
    [26] Stephen P. Robb, Judy L. Sutor. Recent advance in power integrated circuits with high level integration. Proc. of ISPSD, 1994: 342-348
    [27] David L. Blackburn. Status and trends in power semiconductor devices. IEEE IAS Conference, 1993: 619-624
    [28] B. Jayant Baliga. Trends in power discrete devices. Proc. of ISPSD, 1998: 5-10
    [29] P. J. Carlson. Reliability implications in using intelligent power integrated circuits (PICs). Proceedings of Power Conversion, 1989: 450-454
    [30] J. G. Kassakian. Automotive electrical systems-the power electronics market of the future. IEEE Proc. APEC, 2000: 3-9
    [31]石涌泉. SOI技术的发展及其在航天技术领域的应用.微电子学与计算机, 1995, 2: 1-5
    [32] Yoshimi Makoto, Letertre Fabrice, Cayrefourcq Ian, et al. Applications of bonding SOI technology to high performance LSI circuits. Proceedings-Electrochemical Society, Semiconductor Wafer Bonding VIII: Science, Technology and Applications, 2005, (2): 9-19
    [33] Ruth DeJuLe. SOI技术成为主流.集成电路应用, 2009, Z2: 27-30
    [34] Das Koushik, Bernstein Kerry, Burns Jeff, et al. Variability and power management in sub-100nm SOI technology for reliable high performance systems. IEEE International SOI Conference, 2008: 1-4
    [35] J. D. V. wyk, F. C. Lee. Power electronics technology-status and future. IEEE Proc. PESC, 1999: 3-12
    [36] Y. S. Huang, B. J. Baliga. Comparison of DI and JI lateral IGBTs. Proc. of ISPSD, 1992: 40-43
    [37] Y. S. Huang, S. Sridhar, and B. J. Baliga. Junction and dielectrically isolated lateral ESTs for power ICs. Proc. of ISPSD, 1992: 259-263
    [38] Y. Hiraoka, S. Matsumoto, et al. Application of the thin-film SOI power MOSFET fabricated by sub-um-rule CMOS/SOI process for the DC-DC converter. Proc. of ISPSD, 1998: 145-148
    [39] Y. K. Leung, S.C. Kuehne. High voltage, high speed lateral ICBT in thin SOI for power IC. IEEE International SOI Conference, 1996: 132-133
    [40] A. Nakagawa. Recent advances in high voltage SOI technology for motor control and antomotive applications. IEEE Proc. BCTM, 1996: 69-72
    [41] Ghavam G. Shahidi. Mainstreaming SOI CMOS technology. IEEE Proc. SPIE, 1999: 15-21
    [42]古美良,胡明. SOI技术及其发展和应用.压电与声光, 2006, 2(4): 236-239
    [43] A. Nakagawa. Impact of dielectric isolation technology on power ICs. Proc. of ISPSD, 1991: 16-21
    [44] D. Dufourt, J. L. Pelloie. SOI design challenges. Microelectronics Reliability, 2003, 43: 1361-1367
    [45] D. Bearden. SOI design experience with Motorala’s high-performance processors. IEEE International SOI Conference, 2002: 6-9
    [46] Amaury N., Denis F., Jean-J. SOI technology for future high-performance smart cards. IEEE Micro., 2003, 23(3): 58-67
    [47]伍志刚,凌荣堂. SOI技术—21世纪的硅集成技术.微电子学, 2001, 31(1): 1-5
    [48] H. M. Manasevit, W. I. Simpson. Single-crytal silicon on a sapphire substrate. Journal of Applied Physics, 1964, 35: 1349-1351
    [49] M. L. Burgener, R. E. Reedy. Minimum charge FET fabricated on a ultrathin silicon on a sapphire wafer. United States Patent, No.5416043, 1995
    [50] T. Nakamura, H. Matsuhashi, Y. Nagatomo. Silicon on Sapphire (SOS) device technology. Oki Technical Review, 2004, 71(4): 66-69
    [51] B. K. Celler. Frontiers of silicon on insulator. Journal of Applied Physics, 2003, 93(9): 4955-4978
    [52] Makoto Yoshimi, Current status and future directions of SOI technology. Solid-State Electronics, 2002, 46: 951-958
    [53] Z. Y. Cheng, Currie M. T., Leitz C. W. SiGe-On-Insulator (SGOI): substrate preparation and MOSFET fabrication for electron mobility evaluation. IEEE International SOI Conference, 2001: 13-14
    [54] F. Y. Huang, M. A. Chu, M.O. Tanner, et al. High-quality strain-relaxed SiGe alloy grown on implanted silicon-on-insulator substrate. Applied Physics Letters, 2000, 76(19): 2680-2682
    [55] Taoka, Noriyuki Sakai, Akira, et al. Control of misfit dislocations in strain-relaxed SiGe buffer layers on SOI substrates. Thin Solid Films, 2006, 508(1): 147-151
    [56] Tezuka, Tsutomu. Strain analysis in ultrathin SiGe-on-insulator layers formed from strained Si-on-insulator substrates by Ge-condensation process. Applied Physics Letters, 2007, 90(18): 181918(3pp)
    [57] U. K. Mishra, P. Parikh, P. Chavarkar. GaAs on insulator (GOI) for low power applications. Frontiers in Electronics, WOFE’97: 21-25
    [58] http://www.csip.cn/new/ip/ins/2005/0303/6604.htm
    [59] M. Ishimaru, R. M. Dickerson. Scanning transmission electron microscopy- energy dispersive X-ray/electron energy loss spectroscopy studies on SiC-on-inlulator structures. Journal of Electrochem Soc, 2000, 147(5): 1979-1981
    [60] D. Cioccio L., L. Tiec Y., Letertre F. Silicon carbide on insulator formation using the SmartCut process. Electronics Letters, 1996, 32(12): 1144-1145
    [61] G. S. Chung, K. S. Kim. Heteroepitaxy of polycrystalline 3C-SiC film on Si substrate using AlN buffer layer. Electronics Letters, 2007, 3(15): 832-834
    [62] Chen M., Chen J., Zheng W., et al. Energy dependence of low dose SIMOX wafers. Conference on Ion Implantation Technology, 2000: 277-280
    [63] Chen Jing, Chen Meng, Dong Yemin, et al. Increased thickness of buried oxide layer of silicon on insulator in separation by implantation of oxygen with water plasma. Journal of Vacuum Science and Technology B: Microelectrics and Nanometer Structure, 2003, 21(6): 2975-2979
    [64] Jooh Hyuk Park, Culurciello E. Phototransistor image sensor in silicon on sapphire. IEEE International Symposium on Circuits and Systems, 2008: 1416-1419
    [65]S. Bengtsson, M. Choumas, W. P. Maszara. Silicon on aluminum nitride structures formed by wafer bonding. Proc. IEEE Int. SOI Conference, 1994: 35-36
    [66] C. L. Men, Z. Xu, Z. H. An, et al. Preparation of large area AlN films on silicon and its application to the SOI structure. ICSICT, 2001: 1460-1463
    [67] C. L. Men, C. L. Lin. A comparison of pulsed-laser-deposited and ion-beam-enhanced-deposited AlN thin films for SOI application. Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133: 124-128
    [68]门传玲,徐政,安正华.制备AlN薄膜为绝缘埋层的新型SOI材料.功能材料与器件学报, 2002, 8(4): 331-334
    [69]谭利文,王俊,王启元.双异质外延SO1材料Si/γ-A1203/Si的外延生长.半导体学报, 2003, 24(12): 1289-1292
    [70] G. S. Chung, S. Kawahito, M. Ishida, et al. Temperature-independent pressure sensors using epitaxially stacked Si/Al2O3/Si structures, Sensors and Actuators. A: Physical, 1991, 29(2): 107-115
    [71]谢欣云,刘卫丽,门传玲等.多孔硅外延转移技术制备以氮化硅为绝缘埋层的SOI新结构.半导体学报, 2003, 24(2): 189-193
    [72] Q. B. Liu, Q. Lin, W. L. Liu. Fabrication and simulation of silicon-on-Insulator structure with Si3N4 as a buried insulator. Chinese journal of semiconductors, 2005, 26(9): 1722-1726
    [73] R. J. Dexter, S. T. Waterski, and W. Beezhold. Epitaxial silicon layer grown on ion-implanted silicon nitride layer. Appl. phys. Lett., 1973, 23: 455-457
    [74] G. S. Chung, S. Kawahito, M. Ishida, et al. Novel pressure sensors with multilayer SOI structures. Electronics Letters, 1990, 26(12): 775-777
    [75] M. Zhu, Q. Lin, X. H. Liu, et al. Reduction of self-heating effect in SOI MOSFET by forming a new buried layer structure. Nuclear Science and Techniques, 2003, 14(2): 119-123
    [76] A. Nakagawa, Y. Yamaguchi, T. Ogura. 500V three phase inverter ICs based on a new dielectric isolation technique. Proc. of ISPSD, 1992: 328-332
    [77] Sugawara Y., Inoue Y., Oqawa S., et al. New dielectric isolation for high voltage power ICs by single silicon poly silicon direct bonding (SPSDB) technique. Proc. of ISPSD, 1992: 316-321
    [78] H. Sumida, A. Hirabayashi, H. Shimabukuro, et al. A high performance plasma display panel drivert IC using SOI. Proc. of ISPSD, 1998: 137-140
    [79] J. M. Tendler, J. S. Dodson, J. S. Fields, et al. Power system microarchitecture. IBM Journal of Research and Development, 2002, 46(1): 5-25
    [80] T. J. King. Taking silicon to the limit: challenges and opportunities. International Conference on Solid-State and Integrated-Circuit Technology, 2004, 1: 1-6
    [81]肖清华等. SOI材料制备技术.稀有金属, 2002, 26(6): 460-466
    [82]赵璋,文羽中.日益成熟的SOI技术.电子工业专用设备, 2001, 30(1): 16-22
    [83]罗浩平,张艳飞. SOI技术特点及晶圆材料的制备.电子与封装, 2008, 8(6): 1-5
    [84] J. B. Jasky. Wafer Bonding for silicon-on-insulator technologies. Applied Physics Letters, 1986, 48(1): 78-80
    [85] C. Harendt, W. Wondrak, U. Apel, et al. Wafer bonding for intelligent power ICs: integration of vertical structures. IEEE International SOI Conference, 1995: 152-153
    [86]张佐兰.新型SOI技术.半导体技术, 1994, 3: 16-20
    [87] A. Ogura. Highly uniform SOI fabrication by applying voltage during KOH etching of bonded wafers. IEEE International SOI Conference, 1995: 58-59
    [88]陈军宁,傅兴华.硅/硅直接键合SDB硅片的减薄研究.半导体技术, 1996, 1: 40-43
    [89] http://www.canon.com/about/history/main10.html
    [90] http://www.sibond.com/main_products.htm
    [91] http://www.sisc.com.cn/study/study.asp
    [92] http://www.simgui.com.cn/zw/news.asp
    [93]刘广荣.我国第一片8英寸键合SOI晶片研制成功.半导体信息, 2009, 2: 17-18
    [94] J. P. Colinge. The development of CMOS/SIMOX technology. Microelectronic Engineering, 1995, 28(1): 423-430
    [95]卢殿通, P. L. F. Hemment. SIMOX薄膜材料的电学性能.半导体杂志, 2000, 25(1): 6-9
    [96] Aspar B., Builhalmenc C., Pudda C., et al. Buried oxide layer formed by low dose SIMOXprocesses. Microelectronic Engineering, 1995, 28(1): 411-414
    [97]郑望,陈猛,陈静.低剂量SIMOX圆片线缺陷合针孔的研究.功能材料与器件学报, 2001, 7(4): 431-433
    [98]郑望,陈猛,陈静.低剂量SIMOX圆片表层硅缺陷密度.半导体学报, 2001, 22(7): 871-874
    [99] X. L. Cheng, Z. L. Lin, Y. J. Wang, et al. A study of Si epitaxial layer growth on SOI wafer prepared by SIMOX. Vacuum, 2004, 75(1): 25-32
    [100] Giles L. F., Kunii Y. Characterization of crystallographic defects in thermally oxidized SIMOX materials. Microelectronic Engineering, 1995, 28(1): 391-397
    [101] http://www.ibis.com/simox.htm
    [102]林成鲁. SOI技术的新进展.半导体技术, 2003, 28(9): 39-43
    [103] http://www.simgui.com.cn/zw/product.asp
    [104] www.simgui.com.cn/zw/product16.asp
    [105] Carlos M., Ian C., Bruno G., et al. Moving from today’s SOI to advanced substrate engineering. Solid-State Technology, 2003, 7: 111-115
    [106] Y. J. Wu, M. Zhang, Z. H. An, et al. Fabrication of thick BOX SOI by smart-cut technology. Nuclear Science & Technology, 2003, 14(2): 115-118
    [107] A. J. Auberton-Herve, C. Maleville. 300nm ultra thin SOI material using Smart-Cut technology. IEEE International SOI Conference, 2002: 1-5
    [108] C. Maleville, C. Mazure. Smart-Cut technology: for 300nm ultra thin SOI production to advanced engineered substrate, Solid-State Electronics, 2003, 47: 1055-1063
    [109] C. Mazure, G. K. Celler, C. Maleville, et al. Advanced SOI substrate Manufacturing. Proc. IEEE ICICDT, 2004: 105-111
    [110]张苗,林成鲁,陈立凡等.硅中注H+的退火行为及智能剥离SOI新材料的微结构分析.固体电子学研究与进展, 1998, 18(2): 181-187
    [111] http://www.soitec.com/en/products/p_1/htm
    [112]江兴. SOITEC携领SOI技术进军中国市场.半导体信息, 2008, 3: 28-29
    [113] http://article.sichinamag.com/2003-7/20061121430442e9c9.htm
    [114] T. Yonehara. Epitaxial layer transfer by bond and etch back of porous Si. Applied Physics Letters, 1994, 68(16): 2108-2110
    [115] A. Plool. Silicon-on-insulator: materials aspects and applications. Solid-State Electronics, 2000, 44(5): 775-782
    [116] K. Sakaguchi. SOI wafers based on eptaxial technology. Solid-State Technology, 2000, 43(6): 88-92
    [117] R. P. Zingg, I. Weijland, H. V. Zwol, et al. 850V DMOS-switch in silicon-on insulator with specific Ron 13?-mm2. IEEE International SOI Conference, 2000: 62-63
    [118] Sumida H., Hirabayashi A., Kobayashi H. A high-voltage lateral IGBT with significantly improved on-state characteristics on SOI for an advanced PDP scan driver IC. IEEE International SOI Conference, 2002: 64-65
    [119] M. A. Amberetu, C. Andre, T. Salama. 150-V Class Super junction Power LDMOS Transistor Switch on SOI. IEEE Journal of Solid-State Circuits, 2002: 101-104
    [120] B.X. Duan, B Zhang, Z. J. Li. A new partial SOI power device structure with P-type buried layer. Solid-State Electronics, 2005, 49: 1965-1968
    [121] I. J. Kim, S. MatSumoto, T. Sakai, et al. Breakdown voltage improvement for thin-film SOI power MOSFET’s by a buried oxide step structure. IEEE Electron device letter, 1994, 15(5): 148-150
    [122]郭宇锋,李肇基,张波,等.阶梯分布埋氧层固定电荷SOI高压器件新结构和耐压模型.半导体学报, 2004, 25(12): 1623-1628
    [123] Xiaorong Luo, Bo Zhang, Zhaoji Li, et al. A Novel 700-V SOI LDMOS with Double-Side Trench. IEEE Electron Device Letters, 2007, 28(5): 422-424
    [124] H. Funaki, Y. Yamaguchi, K. Hirayama, et al. New 1200V MOSFET structure on SOI with SIPOS shielding layer. Procs. Proc. of ISPSD, 1998: 25-28
    [125]郭宇锋. SOI横向高压器件耐压模型和新器件结构研究: [博士学位论文].成都:电子科技大学, 2005
    [126] A. Nakagawa, N. Yasuhara, Y. Baba. Breakdown Voltage Enhancement for Devices on Thin Silicon Layer/Silicon Dioxide Film. IEEE Trans. Electron Devices, 1991, 38(7): 1650-1654
    [127] Y. F. Guo, Z. J. Li, B. Zhang. A new analytical model for optimizing SOI LDMOS with step doped drift region. Microelectronics Journal, 2006, 37: 861-866
    [128] J. A. Appels and H. M. J. Vaes. High-voltage thin layer devices. IEDM Tech. Dig., 1979: 238-241
    [129] J. Appels, M. Collet, P. Hart, et al. Thin layer high voltage devices (RESURF DEVICES). Philips J. Res., 1980, 35: 1-13
    [130] Y. S. Huang, B. J. Baliga. Extension of resurf Principle to dielectrically isolated power devices. Proc. of ISPSD, 1991: 27-30
    [131] I. J. Kim, S. Matsumoto, T. Sakai, et al. Analytical approach to breakdown voltages in thin-film SOI power MOSFETs. Solid-State Electronics, 1996, 39(1): 95-100
    [132] S. K. Chung, S. Y. Han, J. C. Shin. An analytical model for minimum drift region length of SOI RESURF diodes. IEEE Electron Device Letters, 1996, 17(1): 22-24
    [133]富力文,阎力大. RESURF原理应用于SOI LDMOS晶体管.半导体学报, 1996, 17(4): 283-288
    [134] S. K. Chung and S.Y. Han. Analytical model for the surface field distribution of SOI RESURF devices. IEEE Trans. Electron Devices, 1998, 5: 1374-1376
    [135] S. Merchant. Analytical Model for the Electric Field Distribution in SOI Resurf and TMBS Structures. IEEE Transaction on Electron Devices, 1999, 46(6): 1264-1267
    [136]李文宏,罗晋生.薄膜SOI RESURF结构击穿电压分析.半导体学报, 2000, 21(2): 161-168
    [137] A. Popescu, F Udrea, W. Milne. A numerical study of the RESURF effect in bulk and SOI power devices. Procs. IEEE CAS, 1997, 1: 127-130
    [138] TMA MEDICI 4.2. Palo Alto CA: Technology Modeling Associates Inc.
    [139]罗小蓉.基于介质电场增强理论的SOI横向高压器件: [博士学位论文].成都:电子科技大学, 2007
    [140] Xiaorong Luo, Bo Zhang, Zhaoji Li. A New Structure and its Analytical Model for the Electric Field and Breakdown Voltage of SOI High Voltage Device with Variable-k Dielectric Buried Layer. Solid-State Electronics, 2007, 51: 493-499
    [141] W. Falck, W. Gerlach, W. Reckel. Calculation of the blocking capability of SOI power devices under the influence of interconnections. Microelectronics Journal, 1996, 27: 201-207
    [142] He Jin, Zhang Xing, Huang Ru, et al. A novel analytical model for surface electrical field distribution and optimization of TFSOI RESURF devices. Chinese Journal of Semiconductor, 2001, 22: 403-408
    [143] S. K. Chung. An analytical model for breakdown voltage of surface implanted SOI RESURF LDMOS. IEEE Trans. On Electron Devices, 2000, 47(5): 1006-1009
    [144] Xiaorong Luo, Wei Zhang, Bo Zhang, et al. A new SOI high-voltage device with a step-thickness drift region and its analytical model for the electric field and breakdown voltage. Semicond. Sci. Technol. 2008, 23: 035028 (6pp)
    [145] Adriaan W. Ludikhuize. A review of RESURF technology. Proc. of ISPSD, 2000: 11-18
    [146] R. Sunkavalli, A. Tamba, B. J. Bbaliga. Step drift doping profile for high voltage DI lateralpower devices. IEEE International SOI Conference, 1995: 139-140
    [147] J. Luo, G. Cao, S. N. E. Madathil, et al. A high performance RF LDMOSFET in thin film SOI technology with step drift profile. Solid-State Electronics, 2003, 47: 1937-1941
    [148] S. Merchant, E. Arnold, H. Baumgart, et al. Realization of high breakdown voltage (>700V) in thin SOI devices. Proc. of ISPSD, 1991: 31-35
    [149] S. D. Zhang, J. K. O. Sin, T. M. L. Lai, et al. Numerical model of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans. on Electron Devices, 1999, 46(5): 1036-1041
    [150] T. M. L. Lai, J. K. O. Sin and Ping K. Ko. A finite width impurity source model for linear doping profiles. IEEE Region 10 International Conference on Microelectronics and VLSI, 1995, 2: 432-435
    [151] Luo Xiaorong, Zhang Bo, Li Zhaoji, et al. SOI high-voltage device with step thickness sustained voltage layer. Electronics Letters, 2008, 44(1): 1231-1233
    [152] H. W. Kim, Y. I. Choi, S. K. Chung. Linearly-graded surface-doped SOI LDMOSFET with recessed source. Microelectronic Engineering, 2000, 51: 547-554
    [153] W. S. Son, Y. H. Sohn, S. Y. Choi. RESURF LDMOSFET with a trench for SOI power integrated circuits. Microelectronics Journal, 2004, 35: 393-400
    [154] S. J. Yoo, S. H. Kim, Y. I. Choi, et al.. Numerical analysis of SOI LDMOS using a recessed source and a trench drain. Microelectronics Journal, 2000, 31: 963-967
    [155]段宝兴,张波,李肇基.阶梯埋氧型SOI结构的耐压分析.半导体学报, 2005, 26(7): 1396-1400
    [156] Baoxing Duan, Bo Zhang, Zhaoji Li. New Thin-Film power MOSFETS With a Buried Oxide Double Step Structure. IEEE Electron Device Letters, 2006, 27(5): 377-379
    [157] F. Udrea and G. A. J. Amaratunea. Semiconductor device and method of forming a semiconductor device. US, 6703684, 2004. 3. 9
    [158] Xiaorong Luo, Lei Lei, Zhan Zhan, et al. A new membrane SOI power device. International Conference on Communications, Circuits and Systems, 2008: 1282-1285
    [159] Lei Lei, Xiaorong Luo, Zhan Zhan, et al. New lateral IGBT on partial membrane. International Conference on Solid-State and Integrated-Circuit Technology, 2008: 184-187
    [160] Jeon B. C., Kin D.Y., Lee Y. S., et al. Buried air gap Structure for improving the breakdown voltage of SOI power MOSFET’s. PIEMC, 2000, 3: 1061-1063
    [161]段宝兴,张波,李肇基等.埋空隙PSOI结构的耐压分析.半导体学报, 2005, (9): 1818-1822
    [162] Shuming Xu, K. P. Gan, G. S. Samudra, et al.. 120V interdigitated-drain LDMOS (IDLDMOS) on SOI substrated breaking power LDMOS limit. IEEE Transactions on Electron Devices, 2000, 47(10): 1980-1985
    [163] Kapels H, Plikat R, Silber D. Dielectric charge traps: a new structure element for power devices. Proc. of ISPSD, 2000: 205-208
    [164] Wenlian Wang, Bo Zhang, Zhaoji Li, et al. High-voltage SOI SJ-LDMOS with a nondepletion compensation Layer. IEEE Electron Device Lett., 2009, 30(1): 69-71
    [165] P. Ratnam. Novel silicon-in-Insulator MOSFET for high-voltage integrated circuits. Electronics Letter, 1989, 25(8): 536-537
    [166] Udrea F, Popescu A. Breakdown analysis in JI, SOI and partial SOI power structures. IEEE International SOI Conference, 1997: 102-103
    [167] Xiaorong Luo, Bo Zhang, Zhaoji Li. New high-voltage (>1200V) MOSFET with the charge trenches on partial SOI. IEEE Trans. On Electron Devices, 2008, 55(7): 1756-1761
    [168] Joe W. McPherson, Jinyoung Kim, Ajit Shanware, et al. Trends in the Ultimate Breakdown Strength of High Dielectric-Constant Materials. IEEE Trans. On Electron Devices, 2003, 50(8): 1771-1777
    [169] Harari E. Conduction and trapping of electrons in highly stressed ultrathin films of thermal SiO2. Applied Physics Letters, 1977, 30(6): 601-603
    [170] Bo Zhang, Zhaoji Li, Shengdong Hu, and Xiaorong Luo. Field enhancement for dielectric layer of high-vltage devices on silicon on insulator. IEEE Trans. Electron Devices, 2009, 56(10): 2327-2334
    [171] R. Van Overstraeten, H. De Man. Measurement of the ionization rates in diffused silicon p-n junctions. Solid-State Electron, 1970, 13(5): 583-608
    [172] C. L. Anderson, C. R. Crowell. Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors. Phys. Rev. B, 1972, 5: 2267-2272
    [173] W. Fulop. Calculation of Avalanche Breakdown Voltages of Silicon p-n Junctions. Solid-State Electron, 1967, 10: 39-43
    [174] S. M. Sze and G. Gibbons. Avalanche Breakdown Voltage of Abrupt and Linearly Graded p-n Junctions in Ge, Si, GaAs, and GaP. Appl. Phys. Letters, 1966, 8(5): 111-113
    [175] A. S. Grove. Physics and Technology of Semiconductor Devices. New York: John Wiley and Sons, Inc., 1967: 193
    [176] A. Nakagawa, Y. Yamaguchi, and N. Yasuhara. New High Voltage SOI Devices StructureEliminating Substrate Bias Effects. IEDM Tech. Dig., 1996: 477-483
    [177] http://tech.163.com/digi/09/0219/23/52I8IJC6001618J1.html
    [178] A. G. Chynoweth, K. G. Mckay. Threshold energy for electron-hole pair-production by electrons in silicon. Physical Review, 1957, 108(1): 29-34
    [179] J. W. Slotboom, G. Streutker, M. J. V. Dort, et al. A. Pruijmboom and D. J. Gravesteijn. Non-local impact ionization in silicon devices. IEDM Tech. Dig., 1991: 127-130
    [180] E. F. Crabbe, J. M. C. Stork, G. Baccarani, et al. The impact of non-equilibrium transport on breakdown and transit time in bipolar transistors. IEDM Tech. Dig., 1990: 463-466
    [181] P. Agarwal, M. J. Goossens, V. Zieren, et al. Impact ionization in thin silicon diodes. IEEE Electron Device Letters, 2004, 25(12): 807-809
    [182] Shengdong Hu, Zhaoji Li, and Bo Zhang. Quantificational Dependence of Vertical Breakdown Voltage on Top Silicon and Dielectric Layer Thicknesses for SOI High Voltage Devices. IEEE International Conference on Communications, Circuits and Systems, 2008, 2: 1274-1277
    [183] Shengdong Hu, Bo Zhang, and Zhaoji Li. High critical electric field of thin silicon film and its realization in SOI high voltage devices. IEEE International Conference on Electron Devices and Solid-State Circuits, 2008: 1-4
    [184]林成鲁,刘卫丽.纳米技术时代的高端硅基材料-SOI, sSOI和GOI.功能材料与器件学报, 2007, (13)4: 1-5
    [185] S. M. Sze and Kowk K. Ng. Physics of Semiconductor Devices (Third Edition). New York: A John Wiley and Sons, Inc., Publication 2007
    [186] Bo Zhang, Baoxing Duan, Zhaoji Li. Breakdown voltage analysis of a REBULF LDMOS structure with an n+-floating layer. Chinese Journal of Semiconductor, 2006, 27(4): 730-734
    [187] Jianbing Cheng, Bo Zhang, Zhaoji Li. A novel 1200-V LDMOSFET with floating buried layer in substrate. IEEE Electron Device Letters, 2008, 29(6): 645-647
    [188] Xiaorong Luo, Zhaoji Li, Bo Zhang, et al. Realization of high voltage (>700V) in new SOI devices with a compound buried layer. IEEE Electron Device Letters, 2008, 29(12): 1395-1397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700