用户名: 密码: 验证码:
急倾斜煤层覆岩导水裂隙带高度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤炭资源开采强度的不断加大,急倾斜煤层的开采越来越受到关注。急倾斜煤层开采覆岩破坏规律及导水裂隙带高度的研究是西部煤炭开采的重大课题,特别是对于河流、岩溶水、老窑积水以及降雨入渗影响的急倾斜煤层开采。本文以云南圭山煤矿急倾斜煤层顶板为研究对象,在导水裂隙带高度的计算中采用一种新思路,将受孔隙水压影响的顶板砂岩引入到急倾斜煤层覆岩顶板的模拟计算中,分析了急倾斜煤层在受孔隙水压影响下顶板覆岩力学性质发生改变时的导水裂隙带发育高度。
     首先,通过煤层顶板砂岩F-RFPA~(2D)数值模拟试验,对有孔隙水压和无孔隙水压作用下岩石的整个破坏过程进行了详细分析,得出了岩石全应力应变全程曲线。并对相同应力条件不同孔隙水压下岩石的破坏情况进行了模拟,得出岩石破坏强度与孔隙水压之间的函数关系曲线,通过曲线拟合得出曲线拟合方程;
     其次,运用材料力学、弹性力学、断裂力学知识,结合数值模拟试验对岩石中孔隙水压的物理化学作用及力学作用原理进行了分析,讨论了孔隙水压对砂岩力学参数的影响,重点分析了孔隙水压对岩石强度以及破坏模式的影响,揭示了孔隙水压引起覆岩导水裂隙带高度变化的机理;
     最后,结合急倾斜煤层覆岩破坏理论提出了孔隙水压对急倾斜煤层覆岩移动特征以及破坏结构的影响;通过对云南圭山煤矿急倾斜煤层31139工作面进行FLAC~(3D)数值模拟分析,得出由于孔隙水压的影响,导致覆岩破坏规律以及导水裂隙带发育高度呈现出与无孔隙水压时不同的特征。运用急倾斜煤层导水裂隙带高度经验公式以及现场观测数据与模拟结果进行对比,验证了数值模拟结果的正确性。最后对不同分段高度下覆岩导水裂隙带高度进行模拟研究,论证了在该地质条件下70m分段高度有利于工作面回风巷安全生产管理。并运用回归分析理论对模拟结果进行曲线拟合得出2MPa孔隙水压下分段高度和导水裂隙带高度的拟合方程。
China is one of the countries which have the world's most abundant coal resources. With the strength of the coal mining increased,steep seam mining are attracting increasing attention. The study of surrounding rock deformation and water flowing fractured zoneheight of the steep seam mining is a major issue of the Western coal mining. Especially for the steep seams which are under the rivers,karst water,old kiln water and impacted by the surface water infiltration in the rainy season. Mine water hazard prevention and control is a serious problem that can not be ignored on mine safety production. This paper studies YunNan guishan steep seam,on the basis of participation tutor's subject of research on complex coal mining, using a new method study the overburden failure law and water flowing fractured zone height of the steep seam mining under pore water pressure that caused by rainfall.
     First, using F-RFPA~(2D) numerical simulation of sandstone aquifer of the coal seam roof, detailly analyzed the whole failure process of rocks under pore pressure and no pore pressure. Obtained the whole process of stress-strain and permeability curves of the of rock. Simulated the rock damage under the same confining pressure and different pore pressure, got the curve between the rock damage strength and the porosity pressure curve. Through the curve fitting obtained the curve equation;
     Secondly, using material mechanics elastic mechanics and fracture mechanics, analyzed the physical chemistry effection and mechanical principle effection of pore pressure. Discussed the effection of pore pressure on the mechanical properties of sandstone, emphatically analyzed pore pressure's effection on rock failure mode. Reveals the mechanism of the overburden rock water flowing fractured zone height changes caused by water pore pressure.
     Finally, using the results of these studies, combination of steep seam overburden failure theory, puts forward the influential action of the pore pressure to the cover rocks movement features and the failure structureof steep seam ,and the mining working face 31139 were analyzed with a numerical simulation soft of FLAC~(3D).Research suggests roof rock strength and deformation modulus has been changed as impact of pore-water pressure. These changes caused different failure law of overburden and hydraulic conductivity fracture zone height compared with no pore pressure. Using the water flowing fractured zone height empirical formula of steep seam and field observation data proved the correctness of the simulation results without pore pressure. At the same time, proposed there is a certain difference between rempirical formula and the actual result that consided the pore pressure. Applicated the theory to simulated the rock damage conditions of different sub-cover hight and demonstrated the height of 70m sublevel under the geological conditions is beneficial to face safe production.
     And using the regression analysis theory analysed the simulation results, obtained the fitting equation of sublevel height and overburden water flowing fractured zone height under the 2MPa pore pressure.
引文
[1]谢和平.可持续发展与煤炭工业报告文集[M].北京:煤炭工业出版社,1998
    [2]Wu Jian.ect.Safety problems in fully-mechanized top-coal caving long wall faces.Journal of China University of Mining&Teehnology,1994,(2):20-25
    [3]Lu Xiaoyan.ect.The Technology on Top-coal Caving Hydraulie Support for Tick Seam Mining.Proeeedings of'99 International Workshop on Underground Thick -seam Mining,Edutedby Wu Jian&Wang Jiaehen,China Coal Industry Publishing House,1999,113-122
    [4]Shi Pingwu.The Epitomes of Surrounding Stratum Breaking Movement in Mining Steep seam.Ming Science & Technology Proceedings of the 2nd Inter- national Syposium on Mining Technology and Science,Chian University of Mining & Technology,1991,573-581
    [5]Wu Jian.ect.Theory and Application of Lonwall Caving system in China.Proceedings of the 2nd International Symposiumon Mining Technology and Science,Chian University of Mining & Teehnology,1991,187-194
    [6]Zhang Yingdi.ect.Practice of Fully Maehanized Top-coal Caving in Dongtan Mine.Proceedings of'99 International Workshop on Underground Thick-seam Min- ing,Eduted by WuJian & Wang Jiachen,China Coal Industry Publishing House,1999,136-141
    [7]Zhao Hongzhu.Features of Under ground Pressure and Control Measures for Meehanised Top Coal Caving Faee.Ming Science & Technology.Procee- dings of the 2nd Intemational Symposium on Mining Technology and Science,Chian University of Mining & Technology,1991,598-607
    [8]吴绍倩,石平五.急倾斜煤层矿压显现规律的研究[J].西安矿业学院学报,1990(2):4-8
    [9]石平五,陈文伟.急斜长壁采场顶板破断和岩块运动规律[J],西安科技大学学报,1990,02
    [10]石平五.急倾斜长壁面顶板破断和空间结构特征[J].矿山压力与顶板管理,1989,2
    [11]石平五.急斜煤层老顶破断运动的复杂性[J].矿山压力与顶板管理,1999,Z1
    [12]邓广哲.急倾斜硬煤爆破松动放顶煤矿压显现[J].东北煤炭技术.1991,8(4),32-35
    [13]邓广哲.急倾斜特厚煤层覆岩运动规律研究[D].西安:西安矿业学院.1991
    [14]邓广哲.放顶煤采场上覆岩层运动和破坏规律研究[J].矿山压力与顶板管理,1994, 13(2):23-26
    [15]邓广哲.大断面沿空掘巷可缩性支护研究[J].煤矿现代化,1993,4(2):32-34
    [16]赵朔柱.急斜放顶煤工作面的矿压显现和上覆层结构[J].矿山压力与顶板管理.1992(1):38-42
    [17]黄庆享.急倾斜放项煤工作面来压规律[J].矿山压力与项板管理,1993,01
    [18]黄庆享.顶煤弹性深梁力学模型及应用[J].岩石力学与工程学报,1998,17(2):167-172
    [19]冯国才,于政喜,张清河.综放开采煤层可放性分级评价[J].东北煤炭技术.1996,(5):60-71
    [20]宋元文.急斜水平分段放项煤开采老顶来压规律探讨[J].1997,25(12):35-38.
    [21]戴华阳,王金庄.急倾斜煤层开采非连续性变形的相似模拟实验研究[J].湘潭矿业学院学报,2000,15(3):1-7
    [22]崔希民,左红卫,王金安.急斜煤层开采地表塌陷坑形成机理与安全矿柱尺寸研究[J].中国地质灾害与防治学报,2000,11(2):67-69
    [23]王卫军,侯朝炯.急倾斜煤层放顶煤顶煤破碎与放煤巷道变形机理分析[J].岩土工程学报.2001,23(5):623-626
    [24]平寿康,黄建功.大倾角煤层采面顶板岩层运动研究[J].矿山压力与顶板管理,2002,(02)
    [25]赵伏军,李夕兵,胡柳青.巷道放顶煤顶煤破坏机理研究[J].岩石力学与工程学报.2002,21(增2),2309-2313
    [26]张义顺,刘建新,赵忠明.大倾角煤层上覆岩层运动规律的实测研究[J].煤炭工程,2003,(08)
    [27]高召宁,石平五.急斜煤层开采老顶破断力学模型分析[J].矿山压力与顶板管理,2003(1):81-84
    [28]邵小平.急斜煤层大段高安全开采围岩控制基础研究[博士论文].西安科技大学,2008
    [29]杨帆.急倾斜煤层采动覆岩移动模式及机理研究[博士论文].沈阳:辽宁工程技术大学,2006
    [30]印度R.N.占波达等.井下防水煤校的设计[C].第21庙国际采矿安全会议论文集,世界煤炭技术编辑郎编辑出版.1985年10月
    [31]鲍莱茨基、M.胡戴克.矿山岩石力学[M].煤炭工业出版社
    [32]E.Hock.E.T.Brown,Underground Excavation in Rock,The Australasian Institute of Metallurgy,1980
    [33]H.J.Hargraves,Subsidence in mines,The Australasian Institute of Metallurgy,1973
    [34]煤炭工业局,建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M],北京:煤炭工业出版社,2000
    [35]刘天泉.煤矿地表移动与覆岩破坏规律及其应用[M].煤炭工业出版社,北京:1981
    [36]刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J].岩士工程学报,2001,23(2):201-204.
    [37]张明,刘传武,赵武升.应用数值模拟方法研究煤层覆岩破坏规律[J].煤炭科技,2003(4):6-7
    [38]王金安,冯锦艳,蔡美峰.急倾斜煤层开采覆岩裂隙演化与渗流的分形研究[J].煤炭学报,2008(1):162-165
    [39]Gao Yanfa,Shi Longqing,Lou Huajun.Floor water-inrush mechanism and prediction[M].Beijing:China University of Mining and Technology Press,1999.
    [40]Wang Jinan,Park H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002,63(3/4):291-300
    [41]赵经彻,陶廷云,刘先贵等.关于综放开采的岩层运动和矿山压力控制问题[J].岩石力学与工程学报,1997,16(2):132-139.
    [42]Cui Xinmin,Chen Zhida.The Application of Nonlinear Gauge Method to the Analysis of Local Finite Deformation in the Necking of Cylindrical Bar[J].Applied Mathematics and Mechanics,1999,20(2):119-127
    [43]戴华阳,王金庄,张俊英,郑志刚.急倾斜煤层开采非连续变形的相似模型实验研究[J].湘潭矿业学院学报,2000,(03)
    [44]Lajtai E.Z.Brittle Fracture in compression.Int.Frac.1977,10(4):129-137
    [45]黄润秋,王贤能等.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000(9):573-576
    [46]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩体力学,2000,21(1):64-67
    [47]Jeffrey R G,Mills K W.Hydraulic fracturing applied to including longwall coal mine goaf-falls.PacifficRock,Girard,Liebman,Breeds,Doe(eds).Balkeman,Rotterdam.2004,423-430
    [48]Bruno M S,Nakagawa F M.Pore Pressure influence on tensile fracture propagation in sedimentary rock.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.,1991,28(4):261-273
    [49]Dournary E,Mclennan et al.Poroelastic concepts explain some of the hydraulic fracturing mechanism.SPE 1990,152-162
    [50]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报,2001,26(5):478-482
    [51]邓广哲.煤体致裂软化理论与应用[M].西安:陕西科学技术出版社,2004
    [52]邓广哲.裂隙岩体流变学[M].西安:世界图书出版社,1999
    [53]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率.应变方程[J1.岩土工程学报,1995,17(2):13-19
    [54]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,22(6):30-35
    [55]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(3):415-419
    [56]杨天鸿等.岩石破裂过程的渗流特性[M],北京:科学出版社2004
    [57]周健,池永等.颗粒流方法及PFC2D程序[J].岩土力学,2000(3):271-274
    [58]冯启言,韩宝平,隋望华.鲁西南地区红层软弱水岩作用特征与工程应用[J].工程地质学报,1999,7(3):266-271
    [59]曾云.盘道岭遂洞软弱岩石浸水软化对强度和变形特征的影响[J].陕西水力发电,1994,10(1):29-33
    [60]汤连生,张鹏程,王洋.水作用下岩体断裂强度讨论[J].岩石力学与工程学报,2004,23(19):3337-3341
    [61]朱海苍.孔隙水压作用下急倾斜煤层围岩运动规律研究[D].西安:西安科技大学,2008
    [62]李平.孔隙压力作用下岩体蠕变研究[D].沈阳:辽宁工程技术大学,2008
    [63]胡德富,孔宪立,李华.地下采空区引起的地表斜变形和滑移的研究.第四届全国工程地质大会论文集.北京:海洋出版社.1992:1179-1190
    [64]钱鸣高,刘听成.矿山压力及其控制.北京:煤炭工业出版社,1984,89-105
    [65]谭学术,鲜学福,郑道访,赵永忠.复合岩体力学理论及基应用.北京:煤炭工业出版社,1994,274-318
    [66]宋振琪,实用矿山压力控制[M],徐州:中国矿业大学出版社,1985
    [67]杜时贵,翁欣海,煤层倾角与覆岩变形破裂分带[J],工程地质学报,2007,5(13),210-216
    [68]王双美.导水裂隙带高度研究方法概述[J].江苏地质,2006,30(1):64-66
    [69]疏开生,倪宏革.煤层覆岩破坏高度的数学分析[J].淮南矿业学院学报,1992.
    [70]邓广哲,朱海苍,关瑞斌,许勃等.云南省圭山煤矿不稳定煤层开采关键技术及参数研究报告.教育部西部矿井开采及灾害防治重点实验室,2007
    [71]黄志安,童海方等.采空区上覆岩层“三带”的界定准则和仿真确定[J].北京科技大学学报,2006,7(28):609-612
    [72]煤炭工业部.矿井水文地质规程[M].北京:煤炭工业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700