用户名: 密码: 验证码:
污秽物吸湿性对电力设备外绝缘放电的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外绝缘起电气隔离与机械支撑作用,外绝缘影响电网运行状态。外绝缘暴露在户外,由于落灰、污染等条件影响,其表面会积聚污秽物,在湿度较大的气象条件下,污秽物吸湿受潮使得外绝缘电气性能下降,严重时会导致污闪事故。污闪事故大多发生在运行电压下,重合闸成功率低,易造成大范围停电事故。
     九十年代末期,我国电力系统经受了多次大范围污闪事故,损失巨大。此后在“绝缘到位,留有裕度”的原则下,电力系统采用增加绝缘子串爬距或涂RTV涂料、使用合成绝缘子以及定期清扫等措施,有效抑制了污闪事故,污闪相关研究也取得长足进步。但随着电网规模不断扩大,大气环境恶化,外绝缘运行环境以及其表面污秽物成分的复杂,出现了一些特殊污秽放电现象,以往理论与经验很难解释,使得运行存在安全隐患。新的、特殊的外绝缘放电现象也促使研究人员不断更新前人工作,探索更为完善的理论,从而指导生产运行。
     500kV港城变电站投运后出现了在较低湿度、低盐密下大面积外绝缘爬电现象,本文结合地理、气候、农耕等,研究放电特点与相关因素。采集了变电站土壤和外绝缘表面污秽样品,进行离子、盐灰密、糖分以及物相分析,得到结果为:污秽物中盐密值低,可溶盐成分正常,含有大量磷酸铝与葡萄糖。葡萄糖来自变电站周边大面积甘蔗地,磷酸铝来自当地土壤中大量的铝盐与磷肥的结合。量子化学与分子动力学以及相关试验表明,两类物质不会影响污层电导率,但具备良好的吸湿性和保水性(特别是磷酸铝),会增加污层在低湿度下的含水量。
     较低湿度放电试验(55%到85%)与饱和湿度污闪试验表明:低湿度下,磷酸铝显著降低污秽绝缘子起始放电电压,增强放电强度,大气湿度大于70%,现象尤为显著;污秽中葡萄糖含量大于0.10mg/cm2才影响绝缘子放电;随着大气湿度以及NaCl葡萄糖与磷酸铝含量增加,绝缘子起始放电电压降低,放电强度增强;在NaCl含量一定的情况下,污层饱和受潮时,磷酸铝和葡萄糖不会降低绝缘子串(28片)的污闪电压。试验重现了港城站放电现象,表明不同污秽的吸湿性存在明显差异,污层吸湿性会影响外绝缘在非饱和湿度下的放电现象。
     本文结合双模理论与多孔结构吸湿原理,建立外绝缘污秽物吸湿模型,模型以不溶物多孔结构作为骨架,骨架内、外表面、孔隙表面等分布有可溶物颗粒,污层吸湿主要体现在可溶物的潮解以及不可溶物吸湿(表面、孔隙)。根据研究结果,本文制定非饱和湿度下特殊放电抑制方法,经现场实际运行,可以有效抑制特殊放电,保障电力系统安全稳定运行。
Power industry is the leading sector for the development of national economy, and providing the power for industrial, agricultural and other industries. With the development of industry and growth of living standard, the electric power demand is ever increasing. The scale and transmission capacity of the power grid is expanding. Security and stability of the power system is becoming more and more important. Insulator is an important part of the power system, and plays the role of electrical isolation and mechanical support. Insulation level is one of the important factors that affect the development and operation of power grid. During normal operation, external insulation is exposure to air. There will be grime accumulated at its surface, because of the natural ash and industrial pollution. In high humidity environments (such as fog, dew, rain, snow and so on), the filthy would be wet to weaken the electric property of insulation. It will lead to a flashover accident. Pollution flashover occurs mostly in the operating voltage, short-circuit path is difficult to eliminate; reclosing has low possibility of success, often resulting in large-scale, prolonged power outages.
     The late nineties, China's electric power system is subjected to a number of large-scale pollution flashover resulting in great loss. Then under the under principle of "insulation in place, left margin", the power grid used some measures to prevent the flashover such as increasing creepage distance, using composite insulator, cleanning periodically and so on. Pollution flashover was effectively suppressed, while flashover research also made of great progress. With the operation scale constantly expanding and growing worsened ecotope, operating environment and surface grime of the insulation are increasingly complex. There has been an increasing number of special pollution insulator discharges making a security risk, which theory and past experience is difficult to explain. The research of pollution insulator is constantly being improved, and new, special external insulation discharge phenomenon also prompted researchers to continually update previous work, explore more sophisticated theory to guide the actual operation.
     500kV Gangcheng substation appeared low humidity, low salt density, and large area insulation creepage after putting in operation. This paper studied discharge characteristics and related factors, with the Consideration of geography, climate, farming, etc, and collected soil samples and the outer insulation surface contamination. The ion composition, ESDD/NSDD, sugar composition and phase analysis were analyzed. The result shows that salt density is low, component of soluble salts was normal, and the filth contains large amounts of aluminum phosphate and glucose. Glucose comes from a large area of sugar cane fields surrounding the substation, and aluminum phosphate comes from the combination of aluminum and phosphate fertilizer.Quantum chemistry, molecular dynamics simulation and the test show that this two substances will not affect the smear layer conductivity, but have good absorbency and retention (especially aluminum phosphate), and will increase the moisture content in the low humidity.
     Low humidity discharge test (55%to85%) and saturated humidity pollution flashover test show:under low humidity, aluminum phosphate will significantly reduce the initial discharge voltage of polluted insulator, enhanced discharge intensity, when atmospheric humidity is greater than70%, the effect is particularly significant; glucose levels in contamination greater than0.10mg/cm2will affect discharge of the insulator; with the increase of the content of atmospheric humidity, NaCl, aluminum phosphate and glucose, initial discharge voltage of the insulator is reduced, enhanced discharge intensity; during the same content of NaCl, while the saturated dirt layer damped, aluminum phosphate and glucose does not reduce the flashover voltage of the insulator string(28). The test to reappear the discharge phenomenon of Gangcheng substation, indicating the presence of significant differences in the different moisture contamination, pollution layer hygroscopic affects discharge phenomenon of external insulation in non-saturated humidity.
     This paper built a smear layer moisture model, according to the two-film theory and the porous material. Insoluble porous structure is the skeleton of medol, and the soluble substances are distributed at skeleton, outer surface and other place. Smear layer moisture is mainly reflected in the soluble and insoluble hygroscopic deliquescence. Based on the research result, this paper proposed some methods to suppress the discharge at the low humidity. Actual operation shows that these methods can effectively suppress the special discharge to protect the power system safe and stable operation.
引文
[1]陈慈萱.电气工程基础[M].中国电力出版社,2003.
    [2]刘振亚,张启平.国家电网发展模式研究[J].中国电机工程学报,2013,33(7):1-10.
    [3]孙建锋,葛睿,郑力,等.2011年国家电网安全运行情况分析[J].中国电力,2011,44(5):1-4.
    [4]刘振亚.智能电网技术[J].2010.
    [5]张刚.促进我国智能电网发展的政府责任分析[D].财政部财政科学研究所,2011.
    [6]关志成,刘瑛岩,周远翔,等.绝缘子及输变电设备外绝缘.北京:清华大学出版社,2006.
    [7]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平——对我国电网大面积污闪事故的反思[J].中国电力,2004,36(12):57-61.
    [8]严璋,朱德恒.高电压绝缘技术[M].中国电力出版社,2002.
    [9]Christophorou L G, Olthoff J K, Green D S. Gases for electrical insulation and arc interruption: possible present and future alternatives to pure SF6[M]. US Department of Commerce, Technology Administration, National Institute of Standards and Technology,1997.
    [10]Choi C, Yoo H S, Oh J M. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants[J]. Current Applied Physics,2008,8(6): 710-712.
    [11]李成榕,丁立健,吕金壮,等.氧化铝陶瓷绝缘子真空沿面闪络过程中的陷阱机制[J].中国电机工程学报,2007,27(9):1-5.
    [12]顾洪连.国产玻璃绝缘子的发展现状及技术水平[J].电瓷避雷器,2007(5):4-6.
    [13]Gao H, Jia Z, Guan Z, et al. Investigation on field-aged RTV-coated insulators used in heavily contaminated areas [J]. IEEE Transactions on Power Delivery,2007,22(2):1117-1124.
    [14]Jiang X, Yuan J, Shu L, et al. Comparison of DC pollution flashover performances of various types of porcelain, glass, and composite insulators [J].IEEE Transactions on Power Delivery,2008,23(2): 1183-1190.
    [15]罗真海,陈雄一.合成绝缘子,玻璃绝缘子,瓷绝缘子的综合技术经济比较[J].广东电力,1996,9(3):41-44.
    [16]舒立春,冉启鹏,蒋兴良,等.瓷和玻璃绝缘子人工污秽交流闪络特性比较[J].高电压技术, 2007,33(3):9-13.
    [17]顾乐观,孙才新,等.高电压与绝缘技术,电力系统的污秽绝缘[M].重庆大学出版社,1990.
    [18]关志成,王绍武.我国电力系统绝缘子污闪事故及其对策[J].高电压技术,2000,26(6):37-39.
    [19]吴维宁,吴光亚,张锐.输变电设备污闪原因及对策[J].高电压技术,2004,30(7):9-11.
    [20]胡毅.“2.22电网大面积污闪”原因及对策[J].高电压技术,2001,27(2):30-32.
    [21]宿志一,李庆峰.我国电网防污闪措施的回顾和总结[J].电网技术,2010,34(12):124-130.
    [22]宿志一,张开贤.我国电网污闪事故的时空分布[J].中国电力,1997,30(5):3-5.
    [23]崔江流,宿志一,车文俊,等.2001年初东北,华北和河南电网大面积污闪事故分析[J].电力设备,2005(4):6-20.
    [24]宿志一,李庆峰.我国电网防污闪措施的回顾和总结[J].电网技术,2010,34(12):124-130.
    [25]陶文秋.辽宁电网污闪原因及防治对策[J].高电压技术,2004,29(12):52-53.
    [26]李大勇,李颖慧.微气象条件对输电线路的影响及防御措施[J].四川电力技术,2013,36(5):91-94.
    [27]樊灵孟,刘平原,郑晓光,等.广东电网污闪原因分析和防污对策[J].电瓷避雷器,2006(2):1-6.
    [28]吴光亚,钱之银,肖勇,等.防污闪技术的现状与发展趋势[J].电力设备,2005,6(3):5-9.
    [29]GB/T4585.交流系统用高压绝缘子的人工污秽试验[S].2004.
    [30]关志成.绝缘子及输变电设备外绝缘/清华大学学术专著[M].清华大学出版社有限公司,2006.
    [31]江秀臣,安玲.等值盐密现场测量方法的研究[J].中国电机工程学报,2000,20(4):40-43.
    [32]Miller H C. Flashover of insulators in vacuum:review of the phenomena and techniques to improved holdoff voltage[J]. Electrical Insulation, IEEE Transactions on,1993,28(4):512-527.
    [33]Guan Z, Zhang R. Calculation of DC and AC flashover voltage of polluted insulators[J]. Electrical Insulation, IEEE Transactions on,1990,25(4):723-729.
    [34]Sundararajan R, Gorur R S. Role of non-soluble contaminants on the flashover voltage of porcelain insulators [J]. Dielectrics and Electrical Insulation, IEEE Transactions on,1996,3(1):113-118.
    [35]孙才新,顾乐观,张建辉.以天然气为原料的化工污秽地区电气设备外绝缘涂硅油效果的研究[J].高压电器,1986,2:007.
    [36]常国梁,张淑珍.飘尘污染对输变电设备外绝缘的影响[J].电力设备,2007,8(6):63-64.
    [37]张俊涛.酸性湿沉降环境下污秽绝缘子闪络特性研究[D].重庆大学,2004.
    [38]Mei H, Wang L, Guan Z, et al. Influence of sugar as a contaminant on outdoor insulation characteristics of insulators in a substation [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(4):1318-1324.
    [39]刘平原,王黎明,何宏明.500kV港城变电站外绝缘放电原因分析[J].南方电网技术,2009,3(B11):84-88.
    [40]张仁豫.绝缘污秽放电[M].北京:水利电力出版社,1994.
    [41]Karady G G, Shah M, Brown R L. Flashover mechanism of silicone rubber insulators used for outdoor insulation-I[J]. Power Delivery, IEEE Transactions on,1995,10(4):1965-1971.
    [42]Shah M, Karady G G, Brown R L. Flashover mechanism of silicone rubber insulators used for outdoor insulation-II[J]. Power Delivery, IEEE Transactions on,1995,10(4):1972-1978.
    [43]顾春晖,李江涛,张磊洲,等.户外绝缘子积污特性的试验与仿真(英文)[J].高电压技术,2011.11:034.
    [44]李恒真.高压输电线路外绝缘动态积污机理及在线监测研究[D].华南理工大学,2012.
    [45]石岩.基于泄漏电流特征量的绝缘子污闪预测模型及方法研究[D][D].重庆大学,2010.
    [46]Guan Z C, Cui G S. A Study On The Leakage Current Along The Surface Of Polluted Insulator[C]. IEEE Proceedfings of the 4th International Conference On Properties And Applications Of Dielectric Materials, Brisbane Australia,1994,2:495-498.
    [47]Ghosh P S, Chatterjee N. Polluted insulator flashover model for ac voltage[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,1995,2(1):128-136.
    [48]Sundararajan R, Gorur R S. Dynamic arc modeling of pollution flashover of insulators under dc voltage[J]. Electrical Insulation, IEEE Transactions on,1993,28(2):209-218.
    [49]Rudakova V M, Tikhodeev N N. Influence of low air pressure on flashover voltages of polluted insulators:test data, generalization attempts and some recommendations[J]. Power Delivery, IEEE Transactions on,1989,4(1):607-613.
    [50]苑吉河.输电线路绝缘子(串)交流污闪特性及放电过程的研究[D].重庆:重庆大学,2008.
    [51]贾志东,关志成.沿有机硅表面染污放电现象的研究[J].电工电能新技术,2000,19(3):21-26.
    [52]Karady G. The effect of fog parameters on the testing of artificially contaminated insulators in a fog chamber[J]. Power Apparatus and Systems, IEEE Transactions on,1975,94(2):378-387.
    [53]Chrzan K, Pohl Z, Kowalak T. Hygroscopic properties of pollutants on HV insulators[J]. Electrical Insulation, IEEE Transactions on,1989,24(1):107-112.
    [54]Matsuoka R, Kondo K, Naito K, et al. Influence of nonsoluble contaminants on the flashover voltages of artificially contaminated insulators[J]. Power Delivery, IEEE Transactions on,1996, 11(1):420-430.
    [55]戴罕奇,梅红伟,周志成,等.绝缘子污层受潮过程中湿度和温差的作用[J].高电压技术,2012,38(010):2623-2632.
    [56]梅红伟,毛颖科,卞星明,等.相对湿度对绝缘子泄漏电流最大值的影响[J].高电压技术,2010(3):627-631.
    [57]关志成,牛康,王黎明,等.环境湿度对硅橡胶材料憎水迁移性的影响[J].高电压技术,2012,38(008):2030-2036.
    [58]张建兴,律方成,刘云鹏,等.高压绝缘子泄漏电流与温,湿度的灰关联分析[J].高电压技术,2006,32(1):40-41.
    [59]张重远,黄彬,王娟,等.悬式瓷制绝缘子泄漏电流与表面污秽的关系[J].高电压技术,2008,34(4):655-659.
    [60]方春华,王建国,操平梅,等.污秽绝缘子泄漏电流与环境温湿度相关分析[J].高电压技术,2012,38(4):885-891.
    [61]李恒真,刘刚,李立涅.绝缘子表面自然污秽成分分析及其研究展望[J].中国电机工程学报,2011,31(16):128-137.
    [62]李恒真,刘刚,李立涅,等.采用离子交换色谱法的自然污秽离子成分测量与分析[J].高电压技术,2010(9):2154-2159.
    [63]刘凯,朱天容,刘庭,等.绝缘子污秽成分分析与清洗剂去污机理研究[J].高电压技术,2012,38(4):892-898.
    [64]宿志一,杨源龙.我国农业地区的大气污染与输变电设备污秽等级的划分[J].中国电力,1997,30(12):3-6.
    [65]Holte K C, Kim J H, Cheng T C, et al. Dependence of flashover voltage on the chemical composition of multi-component insulator surface contaminants[J]. Power Apparatus and Systems, IEEE Transactions on,1976,95(2):603-609.
    [66]Cheng T C, Wu C T, Kim Y B, et al. EPRI-HVDC Insulator, Studies:Part II Laboratory Simulation Studies[J]. Power Apparatus and Systems, IEEE Transactions on,1981 (2):910-920.
    [67]Williams L J, Kim J H, Kim Y B, et al. Contaminated insulators-chemical dependence of flashover voltages and salt migration[J]. Power Apparatus and Systems, IEEE Transactions on,1974 (5): 1572-1580.
    [68]关志成,张仁豫,薛家麒,等.自然污秽可溶盐构成及其对污闪电压值的影响[J].电瓷避雷器,1989,6(13.18).
    [69]李恒真,刘刚,李立涅.自然污秽成分CaSO4对电力设备外绝缘沿面绝缘特性的影响综述[J].电网技术,2011,35(3):140-145.
    [70]宿志一.换流站直流绝缘子的自然积污特性与直交流积污比[C].,2007.
    [71]Matsuoka R, Kondo K, Naito K, et al. Influence of nonsoluble contaminants on the flashover voltages of artificially contaminated insulators[J]. IEEE Transactions on Power Delivery,1996, 11(1):420-430.
    [72]Hasegawa Y, Naito K, Arakawa K, et al. A comparative program on HVDC contamination tests [J]. IEEE Transactions on Power Delivery,1988,3(4):1986-1995.
    [73]赵其国,王振权,刘兆礼.我国富铝化土壤发生特性的初步研究[J].土壤学报,1983,20(4):333-348..
    [74]卢仁骏,严小龙,黄志武,等.广东省砖红壤旱地土壤养分状况的网室调查[J].华南农业大学学报,1992,13(2):74-80.
    [75]赵其国,王振权,刘兆礼.我国富铝化土壤发生特性的初步研究[J].土壤学报,1983,20(4):333-348.
    [76]黄宗道.我国热带地区砖红壤利用的经验与教训[J].国水土保持,1980,2:005.
    [77]李兰涛,郭荣发,梁世杨,等.湛江蔗区最佳磷肥施肥量的研究[J].广西蔗糖,2008(1):7-10.
    [78]刘永贤,曾维宾,熊柳梅,等.不同磷肥用量对桂中蔗区甘蔗生长性状与产量的影响[J].南方农业学报,2012,43(5):634-636.
    [79]李杰,石元亮,陈智文.土壤磷素活化剂应用效果研究[J].土壤通报,2012,43(3):751-755.
    [80]Stevenson F J, Cole M A. Cycles of soils:carbon, nitrogen, phosphorus, sulfur, micronutrients[M]. John Wiley & Sons,1999.
    [81]Ryden J C, McLaughlin J R, Syers J K. Time-dependent sorption of phosphate by soils and hydrous ferric oxides[J]. Journal of Soil Science,1977,28(4):585-595.
    [82]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].清华大学出版社,1984.
    [83]周健,陆小华.超临界水的分子动力学模拟[J].物理化学学报,1999,15(11):1017-1022.
    [84]Yildirim T. Strong coupling of the Fe-spin state and the As-As hybridization in iron-pnictide superconductors from first-principle calculations[J]. Physical review letters,2009,102(3):037003.
    [85]Berges J, Caillet J, Langlet J, et al. Hydration andinverse hydration'of platinum (II) complexes:an analysis using the density functionalas PW91 and BLYP[J]. Chemical physics letters,2001,344(5): 573-577.
    [86]Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. The Journal of Physical Chemistry,1994,98(45):11623-11627.
    [87]赵振华,赵瑞兰.磷酸铝分子筛AIPO4-12的合成与性能研究[J].分子催化,2000,14(4):285-288.
    [88]Flanigen E M, Lok B M, Wilson S T. Crystalline metallophosphate compositions:U.S. Patent 4,310,440[P].1982-1-12.
    [89]Cannan T R, Flanigen E M, Gajek R T, et al. Crystalline silicoaluminophosphates:U.S. Patent 4,440,871 [P].1984-4-3.
    [90]Aradi B, Hourahine B, Frauenheim T. DFTB+, a sparse matrix-based implementation of the DFTB method[J]. The Journal of Physical Chemistry A,2007,111(26):5678-5684.
    [91]Sattelmeyer K W, Tirado-Rives J, Jorgensen W L. Comparison of SCC-DFTB and NDDO-based semiempirical molecular orbital methods for organic molecules[J]. The Journal of Physical Chemistry A,2006,110(50):13551-13559.
    [92]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,2(111):1.
    [93]肖继军,谷成刚,方国勇,等TATB基PBX结合能和力学性能的理论研究[J].化学学报,2005,63(6):439-444.
    [94]Cramariuc O, Hukka T I, Rantala T T. A DFT study of asymmetric meso-substituted porphyrins and their zinc complexes[J]. Chemical physics,2004,305(1):13-26.
    [95]Saikia N, Deka R C. Density functional calculations on adsorption of 2-methylheptylisonicotinate antitubercular drug onto functionalized carbon nanotube[J]. Computational and Theoretical Chemistry,2011,964(1):257-261.
    [96]DL/T784-2000.330kV及500kV交流架空送电线路绝缘子串的分布电压[S].,2000.
    [97]Zhou W, Li H, Yi X, et al. A criterion for UV detection of AC corona inception in a rod-plane air gap[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2011,18(1):232-237.
    [98]北川浩,铃木谦一郎,吸附的基础和设计,化学工业出版社,1983。
    [99]周理,吕昌忠,王怡林,等.述评超临界温度气体在多孔固体上的物理吸附[J].化学进展,1999,11(3):221-226.
    [100]叶振华化工吸附分离过程[M].中国石化出版社,1992.
    [101]陆伟,王德明,戴广龙,等.煤物理吸附氧的研究[J].湖南科技大学学报:自然科学版,2006,20(4):6-10.
    [102]Kodama A, Hirayama T, Goto M, et al. The use of psychrometric charts for the optimisation of a thermal swing desiccant wheel[J]. Applied Thermal Engineering,2001,21(16):1657-1674.
    [103]蒋化,陆云.亚甲基蓝化学吸附动力学的SERS研究[J].化学物理学报,1998,11(1):82-86.
    [104]刘士阳,张国英.化学吸附的量子力学绘景[M].科学出版社,2004.
    [105]孙洁林,胡钧,徐磊,等.NaCl晶体表面潮解过程的扫描介电力显微镜研究[J].1997.
    [106]王碧玲,高航,滕晓辑,等.抛光加工参数对KDP晶体材料去除和表面质量的影响[J].人工晶体学报,2010,39(1):29-33.
    [107]杜若飞,冯怡,刘怡,等.中药提取物吸湿特性的数据分析与表征[J].中成药,2009,30(12):1767-1771.
    [108]丁志平,乔延江.不同粒径黄连粉体的吸湿性实验研究[J].中国实验方剂学杂志,2004,10(3):5-7.
    [109]刘德华,胡华.双膜传质模型在应用中的某些问题及修正方法[J].石油学报(石油加工),1994,10(4):86-91.
    [110]岑超平,古国榜.尿素/添加剂湿法烟气同时脱硫脱氮研究(Ⅱ)——净化过程中SO2和NOx的吸收特性[J].华南理工大学学报:自然科学版,2004,32(2):14-17.
    [111]Whitman W G. The two film theory of gas absorption[J]. International Journal of Heat and Mass Transfer,1962,5(5):429-433.
    [112]Hills B P, Harrison M. Two-film theory of flavour release from solids[J]. International journal of food science & technology,1995,30(4):425-436.
    [113]Hansen E, Mollerup J. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns [J]. Journal of Chromatography A,1998,827(2):259-267.
    [114]Gossett J M. Measurement of Henry's law constants for Cl and C2 chlorinated hydrocarbons[J]. Environmental Science & Technology,1987,21(2):202-208.
    [115]Mackay D, Shiu W Y. A critical review of Henry's law constants for chemicals of environmental interest[J]. Journal of physical and chemical reference data,1981,10(4):1175-1199.
    [116]Yang R T.吸附法气体分离(王树森,曾美云,胡竞民译)[J].1991.
    [117]Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society,1940,62(7):1723-1732.
    [118]毕殿洲.药剂学[M].中国医药科技出版社,2000.
    [119]贾春霞.硅胶基复合干燥剂强化除湿机理及其应用研究[D].上海交通大学,2006.
    [120]徐如人.分子筛与多孔材料化学[M].科学出版社,2004.
    [121]刘培生.多孔材料引论[M].清华大学出版社有限公司,2004.
    [122]Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradients [J]. Transactions, American Geophysical Union,1957,38:222-232.
    [123]Collins R E. Flow of fluids through porous materials[J].1976.
    [124]Childs E C, Collis-George N. The permeability of porous materials [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1950,201(1066):392-405.
    [125]Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417(6891): 813-821.
    [126]Kim S H, Cherney E A, Hackam R. The loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings [J]. Power Delivery, IEEE Transactions on,1990,5(3):1491-1500.
    [127]Yoshimura N, Kumagai S, Nishimura S. Electrical and environmental aging of silicone rubber used in outdoor insulation[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,1999,6(5): 632-650.
    [128]Kim S H, Cherney E A, Hackam R. Hydrophobic behavior of insulators coated with RTV silicone rubber[J]. Electrical Insulation, IEEE Transactions on,1992,27(3):610-622.
    [129]Zhou W, Liu M, Liu S, et al. On the mechanism of insulator cleaning using dry ice[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2012,19(5):1715-1722.
    [130]刘溟,王家礼,马心良,喻剑辉,黄杨珏,周文俊.干冰清洗变电站绝缘子试验[J].高电压技术,2011,37(7):1649-1655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700