用户名: 密码: 验证码:
Zn-CO_2-H_2O体系中芳香硝基化合物选择还原制备芳香羟胺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香羟胺和对氨基苯酚均是重要的精细化学品,主要用于药物及其中间体的合成。迄今为止,由芳香硝基化合物选择还原制备芳香羟胺的传统方法仍在沿用,即在氯化铵水溶液中用锌粉还原的方法。该方法需要加入大量的氯化铵,反应后产生含盐废水。对氨基苯酚可以经由苯羟胺在酸性(常用硫酸)介质中发生Bamberger重排而制得。然而,酸是过量的,反应后需加碱中和,产生大量含盐废水。因此,开发一种可以有效地避免使用无机酸、盐的环境友好合成方法是一项既有重要应用价值,又有学术意义的研究课题。
     CO2-H2O体系是原位酸,可以促进许多酸催化的有机反应。本文提出在CO2-H2O体系中用锌粉选择还原芳香硝基化合物制备芳香羟胺,进一步探讨CO2-H2O体系在Bamberger重排反应中的应用。
     以硝基苯为底物,系统考察了常压CO2-H2O体系中反应温度、锌粉量、水量、反应时间等反应因素对硝基苯选择还原制备苯羟胺反应的影响。在nNB=10 mmol,n2n/nNB=3,T=25℃,VH2O=20mL,t=1.5 h的优化反应条件下,苯羟胺的产率达88%。反应后水回收使用了20次,苯羟胺的产率基本不变。而且,此法对具有不同取代基的芳香硝基化合物也有较好的反应效果,相应羟胺的产率达86%-98%。然后,在常压Zn-CO2-H2O体系中系统研究了邻硝基甲苯选择还原制备邻甲基苯羟胺反应,但邻甲基苯羟胺的产率在所研究的条件下没有超过70%。发现乙醇能明显提高邻甲基苯羟胺的选择性,在25℃常压Zn-CO2-H2O体系中,加入适量乙醇,邻甲基苯羟胺的选择性由70%增加到90%。
     为了抑制芳香羟胺进一步还原成芳胺,控制反应停留在羟胺阶段,本文在常压Zn-CO2-H2O体系中引入超声波,研究超声波对反应的影响。发现超声波能有效地促进芳香硝基化合物选择还原反应,缩短了反应时间、减少了锌粉用量、提高了目标产物的选择性,苯羟胺的产率从88%升至95%。
     最后,本文在加压CO2-H2O体系中研究了锌粉选择还原硝基苯制备苯羟胺,在nNB=10 mmol,nZn/nNB=3,T=40℃,PCO2=0.5 MPa,VH2O=25 mL,t=3 h的优化条件下,苯羟胺的产率达79%。然后,在此体系中进一步探讨了苯羟胺的Bamberger重排反应,在本实验的研究条件下,对氨基苯酚的产率可达80%。为由硝基苯一步生成对氨基苯酚提供了依据。
Both N-arylhydroxylamines and p-aminophenol are useful fine chemicals, and mostly applied in the synthesis of the pharmaceuticals and important intermediates. To date, the traditional method that N-arylhydroxylamines are prepared from the selective reduction of nitroarenes is still used. Nevertheless, during the reaction a large amount of NH4Cl is consumed and a lot of wastewater is formed.p-Aminophenol can be prepared by the Bamberger rearrangement of N-phenylhydroxylamine in the presence of acid medium (H2SO4 widely used), and alkali needs to be added after the reaction, thus a lot of wastewater is formed. So it is essential to open up an environmentally benign method, which efficiently avoids using inorganic acid and salt, and the subject is quite pertinent value and academic significance.
     Carbonic acid is formed in situ and it can be served as an acidic promoter for some reactions. We put forward the protocol that nitroarenes are reduced selectively to N-arylhydroxylamines using Zn in CO2-H2O system, and the application of the system is further explored in the Bamberger rearrangement.
     Firstly, nitrobenzene was selected as a model substrate, and the effects of many reaction factors on the selective reduction of nitrobenzene to N-phenylhydroxylamine, such as the reaction temperature, the molar ratio of Zn to nitrobenzene, the amount of water and the reaction time, were investigated systematically in normal pressure CO2-H2O system. Under the optimal reaction condition of nNB=10 mmol,nZn/nNB=3,T=25℃,VH2O=20mL, t=1.5 h, the yield of N-phenylhydroxylamine was 88%.The yield of N-phenylhydroxylamine was almost constant for 20 times of H2O recovered in the conditions adopted. And good results were also obtained for other nitrobenzenes substituted with other reducible functionaries, and the yields of the corresponding N-arylhydroxylamines were from 86% to 98%.Then the reduction of o-nitrotoluene to N-(o-methylphenyl)hydroxylamine was studied in Zn-CO2-H2O system systematically, and the yield of N-(o-methylphenyl)hydroxylamine was less 70% under the conditions adopted. The promoting effect of ethanol on the selectivity of N-methylphenyl)hydroxylamine in Zn-CO2-H2O system was observed. By adding appropriate amount of ethanol, the selectivity of N-(o-methylphenyl) hydroxylamine increased from 70% to 90% when the reduction was carried out at 25℃under normal pressure of CO2.
     Secondly, to suppress the further reduction of A N-arylhydroxylamine to aniline, the reaction need stop in the N-arylhydroxylamine stage. Ultrasound was introduced in Zn-CO2-H2O system and the effect of ultrasound on the reaction was studied. The results demonstrated that ultrasound did promote the selective reduction of nitroarenes to N-arylhydroxylamines, the reaction time was shortened, the amount of Zn powder was decreased and the selectivity of N-phenylhydroxylamine was improved. The yield of N-phenylhydroxylamine increased from 88% to 95%.
     At last, it was investigated that the selective reduction of nitrobenzene to N-phenylhydroxylamines using Zn in pressured CO2-H2O system, Under the optimal condition of nNB=10 mmol, nZn/nNB=3,T=40℃,PCO2=0.5 MPa,VH2O=25mL,t=3h, the yield of N-phenylhydroxylamine was 79%.Then the Bamberger rearrangement of N-phenylhydroxylamines to p-aminophenol was further explored in the system, the yield of p-aminophenol was 80% in the conditions adopted. It provides a basis for the selective reduction of nitrobenzene to p-aminophenol.
引文
[1]Sugimoto T, Nojima M, Kusabayashi S. Synthesis of 1,4,2-dioxazolidines by the reaction of ketoaldehydes with N-phenylhydroxylamine.Intramolecular[3+2] cycloaddition between the nitrone and carbonyl moieties.[J].J. Org. Chem.,1990, 55:4221-4222.
    [2]Srivastava R S,Nichloas K M. On the mechanism of allylic amination catalyzed by iron salts.[J].J. Am. Chem. Soc.,1997,119:3302-3310.
    [3]Ho C, Lau T. Copper-catalyzed amination of alkenes and ketones by phenylhydroxylamine.[J].New J. Chem.,2000,24:859-863.
    [4]Liang J, Huang J, Zhou Z,et al.Interaction between dioxoruthenium(Ⅵ) porphyrins and hydroxylamines:coordination of N-substituted hydroxylamine to ruthenium and x-ray crystal structures of ruthenium complexes with a unidentate nitrosoarene ligand.[J].Chem. Eur. J.,2001,7(11):2306-2317.
    [5]Spence J D, Raymond A E, Norton D E. Condensations of N-arylhydroxylamines for the preparation of 5,5'-di-tert-butyl-2,2-dihydroxyldiphenylamine.[J].Tetrahedron Lett.,2003,44:849-851.
    [6]Takeuchi H,Tateiwa J, Hata S,et al. Selective aromatic N-substitution with N-(4-tolyl)hydroxylamine by addition of polar aprotic or diethereal solvent.[J]. Eur. J. Org. Chem.,2003,3920-3922.
    [7]Sternson L A, Chandrasakar R. Further evidence for nitrenium ion intermediacy in N-phenylhydroxylamine rearrangement to aminophenol.[J].J. Org. Chem.,1984,49 (22):4295-4297.
    [8]Coates R M, Hutchins C W. New synthesis of ethyl 2,3-dihydro-lH-pyrrole[1,2-a] indole-9-carboxylates via apparent 1-aza-1'-oxa[3,3]sigmatropic rearrangement. [J].J. Org. Chem.,1979,44(25):4742-4744.
    [9]Smith D G, Gribble A D, Haigh D, et al.The inhibition of human cytomegalovirus (hCMV)protease by hydroxylamine derivatives.[J].Bioorg. Med. Chem. Lett.,1999, 9:3137-3142.
    [10]McGill A D, Zhang W, Wittbrodt J, et al. para-Substituted A-nitroso-N-oxybenzenamine ammonium salts:a new class of redox-sensitive nitric oxide releasing compounds.[J].Bioorg. Med. Chem.,2000,8:405-412.
    [11]Yadav J S, Reddy B V S, Sreedhar P. Three-component one-pot synthesis of α-hydroxylamino phosphonates using ionic liquids.[J].Adv. Synth. Catal.,2003, 345:564-567.
    [12]Knolker H, Reddy K R. Isolation and synthesis of biologically active carbazole alkaloids. [J].Chem. Rev.,2002,102(11):4303-4427.
    [13]Knox R J, Friedlos F, Jarman M, et al.Anew cytotoxic DNA interstrand crosslinking agent 5-(aziridin-1-yl)-4-hydroxylamino-2-nitrobenzamide,is formed from 5-(aziridin-1-yl)-2,4-dinitrobenzamide(CB1954)by a nitroreductase enzyme in walker carcinoma cells.[J].Biochem. Pharmacol.,1988,37:4661-4669.
    [14]Knox R J, Friedlos F, Marchbank T, et al.Bioactivation of CB1954:reaction of the active 4-hydroxylamino derivative with thioesters to form the ultimate DNA-DNA interstrand crosslinking specie.[J].Biochem. Pharmacol.,1991,42:1691-1697.
    [15]Anlezark G M, Melton R G,Sherwood R F, et al.Bioactivation of dinitrobenzamide mustards by an E. coli B nitroreductase.[J].Biochem. Pharmacol.,1995,50: 609-618.
    [16]Johansson E, Parkinson G N, Denny W A, et al. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form.[J].J. Med. Chem.,2003,46:4009-4020.
    [17]Fujiwara J, Fukutani Y, Sano H, et al. Nucleophilic aromatic substitution by organoaluminum reagents.Application to the synthesis of indoles.[J].J. Am. Chem. Soc.,1983,105:7177-7179.
    [18]Taya K. Hydrogenation activity of an iridium catalyst.[J].Chem. Commun.,1966, 464-465.
    [19]Brand I K, Steiner J. Catalytic reduction of aromatic nitro compounds and a new method of preparation of β-arylhydroxylamines.[J].Ber.,1922,55B:875-887.
    [20]Rylander P N, Karpenko I M, Pond G R. Selective hydrogenation nitroaromatics to the corresponding N-arylhydroxylamine.[P].US3694509,1972.
    [21]Karwa S L, Rajadhyaksha R A. Selective catalytic hydrogenation of nitrobenzene to phenylhydroxylamine.[J].Ind. Eng. Chem. Res.,1987,26:1746-1750.
    [22]Gotz N, Muller B, Sauter H, et al. Preparation of n-aryl-and n-hetarylhydroxylamines.[P].US5831093,1998.
    [23]Tsurutani T. Selective hydrogenation of aromatic nitro compounds.[P].JP 54024837, 1979.
    [24]Chapman D W, Caskey D C. Process for the preparation of arylhydroxylamines.[P]. EP0086363,1983.
    [25]Davis G C. Moderated reduction reactions for producing arylhydroxyamines.[P]. US4723030,1988.
    [26]Belley M, Sauer E, Beaudoin D, et al. Syntheis and reactivity of N-hydroxy-2-aminoindoles.[J].Tetrahedron Lett.,2006,47:159-162.
    [27]Pernoud L, Candy J P, Didillon B, et al. Selective hydrogenation of nitrobenzene to phenylhydroxylamine on silica supported platinum catalysts.Studies in surface science and catalysis,2000,130C(International Congress on Catalysis,2000,Pt. C),2057-2062.
    [28]Takenaka Y, Kiyosu T, Choi J, et al.Selective synthesis of N-arylhydroxylamines by the hydrogenation of nitroaromatics using supported platinum catalysts.[J]. Green Chem.,2009,11:1385-1390.
    [29]Sato M, Oono K. Method for producing hydroxylamine compound using platinum catalyst fixed on ion exchange resin. [P].WO 2004072019,2004.
    [30]Takenaka Y, Choi J C, Sakakura T, et al.Method for producing arylhydroxylamine. [P].WO 2008117844,2008.
    [31]Izakovich E N, Shupik A N, Shulga Y M. Selective hydrogenation of aromatic nitro compounds in the presence of platinum-polyethylenimine complex.[J].Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya,1989,7:1499-1503.
    [32]Shevaldova A D, Kravtsova V N, Bolshinskova T A, et al.Selective hydrogenation of nitrobenzene to phenylhydroxylamine in the presence of catalytic systems.[J]. Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya,1975,1665-1667.
    [33]Abidova M F,Pitsaris V K,Sultanov A S,et al.Reduction of nitrobenzene and nitrocyclohexane in the presence of tin catalysts.[J].Uzbekskii Khimicheskii Zhurnal,1963,7(1):60-65.
    [34]Hughes J B, Wang C, Yesland K, et al. Bamberger rearrangement during TNT metabolism by clostridium acetobutylicum.[J].Environ. Sci.Technol.,1998,32:494-500.
    [35]Bruns-Nagel D, Drzyzga.O, Steinbach K, et al.Anaerobic/Aerobic composting of 2, 4,6-trinitrotoluene-contaminated soil in a reactor system.[J].Environ. Sci. Technol.,1998,32:1676-1679.
    [36]Hughes J B,Wang C Y, Zhang C. Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by clostridium acetobutylicum:A pathway through dihydroxylamino intermediates.[J].Environ. Sci.Technol.,1999,33:1065-1070.
    [37]Tong W R, Seagrave R L, Wiederhorn R.3,4-Dichloroaniline autoclave incident.[J]. Loss Prev.,1977,11:71-75.
    [38]Simonov V D, Denisenko T V, Savchenko V I, et al.Study of the decomposition of phenylhydroxylamine and its derivatives in the presence of hydrogenation catalysts. [J].Zh. Org. Khim.,1976,12:1036-1040.
    [39]Savchenko V I, Denisenko T V, Sklyar S Y, et al. Kinetics and direction of the reduction of chloronitrobenzenes on Raney nickel.[J].Zh. Org. Khim.,1975,11: 2149-2153.
    [40]Vollheim G. Hydrogenation of chloronitrobenzenes using noble metal catalysts treated with a sulfoxide and a hydrazine. [P].US3897499,1975.
    [41]Caskey D C, Chapman D W. Process for preparing p-aminophenol and alkyl substituted p-aminophenol.[J].US 4415753,1983.
    [42]Le Ludec J. Process for the preparation of hydroxylamines by hydrogenation of aromatic nitro derivatives.[P].US 3927101,1975.
    [43]Bavin P M G. The preparation of amines and hydrazo compounds using hydrazine and palladized charcoal.[J].Can. J. Chem.,1958,36:238-241.
    [44]Rondestvedt C S Jr, Johnson T A. Rapid preparation of chloroarylhydroxylamines by hydrazine-palladium reduction of chloronitroarenes.[J]. synthesis,1977,850-851.
    [45]Ayyangar N R, Brahme K C, Kalkote U R, et al. Facile transfer-reduction of nitroarenes to N-arylhydroxylamines with hydrazine in the presence of Raney Nickel. [J].Synthesis,1984,938-941.
    [46]Entwistle I D, Gilkerson T, Johnstone R A W, et al. Rapid catalytic transfer reduction of aromatic nitro compounds to hydroxylamines.[J].Tetrahedron,1978, 34:213-215.
    [47]Pilgram K H.N-Cyclopropyl-N-(fluorophenyl)-N-hydroxyureas.[P].US 4299778, 1981.
    [48]Gilkerson T, Kirby P.Herbicidal N-hydroxyurea derivatives.[P].GB 1599107,1981.
    [49]Bamberger E. Reduction of nitrocompounds.[J].Ber.,1894,27:1347-1350.
    [50]Bamberger E. Phenylhydroxylamine.[J].Ber.,1894,27:1548-1557.
    [51]Wohl A. Reduction of nitro-compounds.[J].Ber.,1894,27:1432-1437.
    [52]Gintl,W H. Experiments on the reduction of nitrobenzene.[J].Angew. Chem.,1902, 15:1329-1336.
    [53]Goldschmidt C. Phenylhydroxylamine.[J].Ber.,1896,29:2307.
    [54]Kim B H,Jun YM, Suh S W,et al.Synthesis of N,O-diacetylated N-arylhydroxylamines by reduction of nitroaromatics with zinc and acetic anhydride.[J].J. Chem. Research(S),1998,1:46-47.
    [55]Kamm O. β-Phenylhydroxylamine.[M].Org. Synth.,1941,Coll,Vol.1:445-447.
    [56]刘铭芴.N-亚硝基-β-苯胲铵盐的合成.[J].化学试剂,1992,14:375-376.
    [57]Luckarift H R, Nadeau L J, Spain J C. Continuous synthesis of aminophenols from nitroaromatic compounds by combination of metal and biocatalyst.[J].Chem. Commun.,2005,383-384.
    [58]Li L, Marolla T V, Nadeau L J, et al.Probing the role of promoters in zinc reduction of nitrobenzene:continuous production of hydroxylaminobenzene.[J].Ind.Eng. Chem. Res.,2007,46:6840-6846.
    [59]Ung S,Falguieres A, Guy A, et al.Ultrasonically activated reduction of substituted nitrobenzenes to corresponding N-arylhydroxylamines. [J].Tetrahdreon Lett.,2005, 46:5913-5917.
    [60]Shi Q, Lu R, Jin K, et al.Ultrasound-promoted highly chemoselective reduction of aromatic nitro compounds to the corresponding N-arylhydroxylamines using zinc and HCOONH4 in CH3CN.[J].Chem. Lett.,2006,35:226-227.
    [61]Kimbaris A, Cobb J, Tsakonas G,et al. Novel pyrrolo[1,2-a][3.1.6] benzothiadiazocine ring synthesis. Unusual Truce-Smiles type rearrangement of 1-{[1-(2-nitrophenyl)-1H-pyrrol-2-yl]sulfonyl (or sulfinyl)}acetone.[J]. Tetrahedron,2004,60:8807-8815.
    [62]Kim B H, Cheong J W, Han R, et al.Indium mediated reductive acylations of nitroarenes towards N,O-diacylated N-arylhydroxylamines.[J].Synth. Commun.,2001,31: 3577-3586.
    [63]Wislicenus H, Kaufmann L. Amalgamated aluminium as a neutral reducing agent.[J]. Ber.,1895,28:1323-1327.
    [64]Wislicenus H.Quantitative reduction of the nitro-group to the hydroxylamine-group. [J]. Ber.,1896,29:494-496.
    [65]Kruglikova T A, Ovchinnikov P N,Tsenyuga V S. Reduction of nitrobenzene in a water-benzene medium-on Raney nickel.[J].Zhurnal Prikladnoi Khimii (Sankt-Peterburg, Russian Federation),1974,47:700-702.
    [66]Lukashevich V O. The reduction of aromatic nitro compounds.Ⅲ Reduction of nitro compounds and the nature of the products in the presence of acid. [J].Zhurnal Obshchei Khimii,1937,7:2209-2225.
    [67]Pasha M A, Nanjundaswamy H M. Green protocol for the rapid generation of arylhydroxylamines and hydrazoarenes in water.[J].Organic Chemistry (Rajkot, India),2006,2(5-6):97-101.
    [68]Ren P, Dong T, Wu S. Synthesis of ALarylhydroxylamines by antimony-catalyzed reduction of nitroarenes.[J].Synth. Commun.,1997,27(9):1547-1552.
    [69]Yanada K, Yamaguchi H, Meguri H, et al.Selenium-catalysed reduction of aromatic nitro compounds to N-arylhydroxylamines.[J].J. Chem. Soc.,Chem. Commun.,1986, 1655-1656.
    [70]Uchida S,Yanada K, Yamaguchi H, et al.Synthesis of N-arylhydroxylamines by Tellurium-catalyzed reduction of aromatic nitro compounds.[J].Chem. Lett.,1986, 1069-1070.
    [71]Ren P, Pan X, Jin Q, et al.Reduction of nitroarenes to A-arylhydroxylamines with KBH4/BiCl3 system.[J].Synth. Commun.,1997,27(20):3497-3503.
    [72]Geske D H, Maki A H. Electrochemical generation of free radicals and their study by electron spin resonance spectroscopy;the nitrobenzene aninon radial.[J].J. Am. Chem. Soc.,1960,82:2671-2676.
    [73]Pezzatini G, Guidelli R. Double-layer structure and mechanism of electrode reactions. Part II. Nitrobenzene reduction on mercury from aqueous solutions.[J]. J. Electroanal. Chem.,1979,102:205-219.
    [74]Darchen A,Moinet C. Reduction mechanism of mononitrobenzenes in aqueous media. Secondary product formation during electrolysis.[J].J. Electroanal.Chem.,1976, 68:173-180.
    [75]Vijayalakshamma S K, Subrahmanya R S.Polarographic and coulometric behavior of aromatic nitrocompounds I.Nitrobenzene in ethanol.[J].J. Electroanal.Chem., 1969,23:99-114.
    [76]Cyr A, Laviron E, Lessard J. Electrochemical behavior of nitrobenzene and phenylhydroxylamine on copper rotating disk electrodes.[J].J. Electroanal.Chem., 1989,263:69-78.
    [77]Pouillen P,Martre A M,Martinet P. Electrochemical reduction of nitrobenzene in aqueous micellar solutions of various pH. Influence of the type of surfactant.[J]. Electrochim. Acta,1982,27:853-860.
    [78]Nishihara C, Shindo H. Reduction of nitrobenzene in aqueous alkaline solution at a Ag electrode.[J].J.Electroanal.Chem.,1986,202:231-239.
    [79]Shindo H,Nishihara C. Detection of nitrosobenzene as an imtermediate in the electrochemical reduction of nitrobenzene on Ag in a flow reactor. [J].J. Electroanal.Chem.,1989,263:415-420.
    [80]Cyr A, Huot P, Marcoux J F, et al.The electrochemical reduction of nitrobenzene and azoxybenzene in neutral and basic aqueous methanolic solutions at polycrystalline copper and nickel electrodes.[J].Electrochim. Acta,1989,34: 439-445.
    [81]Benoit J C, Daniel D, Richard L, et al. The electrohydrogenation of 2-iodonitrobenzene at mercury and Raney metal electrodes in aqueous methanol.[J]. J. Electroanal.Chem.,1993,355:219-233.
    [82]Nishihara C, Shindo H. Two distinct surface conditions of a gold electrode from the viewpoint of the reduction of nitrobenzene in aqueous alkaline solution.[J]. J. Electroanal. Chem.,1987,221:245-250.
    [83]Nishihara C,Kaise M. Nitrosobenzene anion radical as an intermediate species of reduction of nitrobenzene at a gold electrode in aqueous alkaline solution. [J]. J. Electroanal.Chem.,1983,149:287-290.
    [84]Fan L, Wang C, Chang S, et al.Reaction of nitrobenzene on gold single-crystal electrodes:surface crystallographic orientation dependence.[J].J. Electroanal. Chem.,1999,477:111-120.
    [85]Smith W H, Bard A J. Electrochemical reactions of organic compounds in liquid ammonia.Ⅱ.Nitrobenzene and nitrosobenzene.[J].J. Am. Chem. Soc.,1975,97: 5203-5210.
    [86]Vassiliev Y B, Bagotzky V S,Khazova 0 A, et al.General scheme of adsorption, electroreduction, and catalytic hydrogenation of nitro compounds on platinum. Ⅱ. Mechanism of electroreduction and catalytic hydrogenation. [J].Electrochim. Acta, 1981,26:563-577.
    [87]Rubinstein I.Voltammetric study of nitrobenzene and related compounds on solid electrodes in aqueous solutions.[J].J. Electroanal.Chem.,1985,183:379-386.
    [88]Kokkinidis G, Juettner K. The electrocatalytic influence of underpotential lead adsorbates on the reduction of nitrobenzene and nitrosobenzene on silver single-crystal surfaces in methanolic solutions.[J].Electrochim. Acta,1981,26: 971-977.
    [89]李美超,吴海峰,胡佳琦等.对硝基苯酚在酸性介质中的电化学还原反应机理.[J].物理化学学报,2008,24(10):1937-1940.
    [90]Ortiz B,.Saby C, Champagne G Y, et al.Electrochemical modification of a carbon electrode using aromatic diazonium salts.2.Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media.[J].J. Electroanal.Chem., 1998,455:75-81.
    [91]Kokkinidis G, Papoutsis A, Papanastasiou G. Electrocatalytic reduction of nitro compounds on gold UPD modified electrodes. Part 1.Reduction of nitrobenzene and 3-nitro-1,2,4-triazole on Au and Au/M(UPD)(M=Pb,T1).[J].J. Electroanal.Chem., 1993,359(1-2):253-271.
    [92]Seshadri G, Kelber J A. A study of the electrochemical reduction of nitrobenzene at molylbdenum electrodes.[J].J. Electrochem. Soc.,1999,146(10):3762-3764.
    [93]Fryer R I,Walser A. Triazolobenzodiazepines. [P].US4032535,1977.
    [94]Kuzmich D, Mulrooney C. Synthesis of 2-aryl-l-hydroxyazaindoles and 2-aryl-azaindoles via oxidation of o-hydroxyaminostyrylpyridines.[J].Synthesis,2003, 11:1671-1678.
    [95]Graham D, Kennedy A R, McHugh C J, et al.The crystal structures of three primary products from the selective reduction of 2,4,6-trinitrotoluene.[J].New J. Chem. 2004,28:161-165.
    [96]Bartra M, Romea P, Urpi F, et al.A fast procedure for the reduction of azides and nitro compounds based on the reducing ability of Sn(SR)3 species.[J].Tetrahedron, 1990,46 (2):587-594.
    [97]Haworth R D, Lapworth A. Preparation of p-bromophenylhydroxylamine by the emulsification process. A modification. [J]. J. Chem. Soc.,1925,127:2970.
    [98]Li F, Cui J, Qian X, et al. A novel strategy for the preparation of arylhydroxylamines:chemoselective reduction of aromatic nitro compounds using bakers'yeast.[J].Chem. Commun.,2004,2338-2339.
    [99]Li F, Cui j, Qian X, et al.Highly chemoselective reduction of aromatic nitro compounds to the corresponding hydroxylamines catalyzed by plant cells from a grape (Vitis vinifera L.).[J].Chem. Commun.,2005,1901-1903.
    [100]Sone T, Karikura M, Shinkai S,et al.Studies on Bamberger-type rearrangements. 1.Catalytic reduction of o-nitroanisole with hydrogen in sulfuric acid-methanol solution.[J].Nippon Kagaku Kaishi,1979,1532-1535.
    [101]韦少平,覃国红,韦志明,翁德洪.苯基羟胺在无机酸溶液中转位的研究.[J].化学世界,2003,482-484.
    [102]Lain-tze L, Chen M H, Yao C N. Process for manufacturing p-aminophenol.[P].US 4885389,1989.
    [103]Thomas J D, Cedar H. Method for preparing p-aminophenol.[J].US 4264529,1981.
    [104]Sone T, Tokuda Y, Sakai T,et al.'Kinetics and mechanisms of the Bamberger rearrangement.Part 3. Rearrangement of phenylhydroxylamines to p-aminophenols in aqueous sulphuric acid solutions.[J].J. Chem. Soc.Perkin Ⅱ,1981,298-302.
    [105]Kukhtenko I I.Mechanism of the rearrangement of N-phenylhydroxylamine into p-aminophenol.[J].Zh. Org. Khim.,1971,7:330-333.
    [106]李建生,张淑云,吴保庆.利用苯基羟胺重排制备对氨基苯酚.[J].精细石油化工1992,23-25.
    [107]储伟,武森涛,崔名全.一种硝基苯选择加氢重排制对氨基苯酚的催化剂.[P].CN1562465,2004.
    [108]Chaudhari R V,Divekar S S,Vaidya M J, et al.Single step process for the preparation of p-aminophenol.[P].US6028227,2000.
    [109]Takayuki K, Tatsuo H. Gas phase synthesis of para-aminophenol form nitrobenzene on Pt/zeolite catalysts.[J].Applied Catalysis A:General,2004,276:95-102.
    [110]马原辉.金属/固体酸催化剂上合成对氨基苯酚反应研究.[D].硕士论文.河北工业大学,2007.
    [111]Wang S, Ma Y, Wang Y, et al.Synthesis of p-aminophenol from the hydrogenation of nitrobenzene over metal-solid acid bifunctional catalyst.[J].J. Chem. Technol. Biotechnol.,2008,83:1466-1471.
    [112]Ratnam K J, Reddy R S,Sekhar N S, et al.Bamberger rearrangement on solid acids. [J].Applied Catalysis A:General,2008,348:26-29.
    [113]崔咏梅,袁达,王延吉,赵新强.酸性离子液体作催化剂的硝基苯加氢合成对氨基苯酚.[J].化工学报,2009,2:345-350.
    [114]Toews K L,Shroll R M, Wai C M, et al.pH-Defining equilibrium between water and supercritical CO2. Influence on SFE of organics and metal chelates.[J].Anal.Chem. 1995,67(22):4040-4043.
    [115]Roosen C, Ansorge-Schumacher M, Mang T, et al.Gaining pH-control in water/carbon dioxide biphasic systems.[J].Green Chem.,2007,9:455-458.
    [116]Weikel R R, Hallett J P, Liotta C L, et al.Self-neutralizing in situ acid catalysts from CO2.[J].Topics in Catalysis,2006,37(2-4):75-80.
    [117]West K N, Wheeler C, McCarney J P,et al.In situ formation of alkylcarbonic acid with CO2.[J].J. Phy. Chem. A,2001,105:3947-3948.
    [118]Hallett J P, Pollet P, Liotta C L, et al.Reversible in situ catalyst formation. [J].Account of chemical research,2008,41(3):458-467.
    [119]Rayner C M. The potential of carbon dioxide in synthetic organic chemistry. [J]. Org. Process Res. Dev.,2007,11(1):121-132.
    [120]Miyazawa T, Funazukuri T. Polysaccharide hydrolysis accelerated by adding carbon dioxide under hydrothermal conditions.[J].Biotechnol.Prog.,2005,21:1782-1785.
    [121]Hunter S E, Savage P E. Quantifying rate enhancements for acid catalysis in CO2-enriched high-temperature water.[J].American Institute of Chemical Engineers (AIChE Journal),2008,54(2):516-528.
    [122]Hunter S E, Savage P E. Acid-catalyzed reactions in carbon dioxide enriched high-temperature liquid water.[J].Ind. Eng. Chem. Res.,2003,42:290-294.
    [123]Hunter S E, Ehrenberger C E, Savage P E. Kinetics and mechanism of tetrahydrofuran synthesis via 1,4-butanediol dehydration in high-temperature water.[J].J. Org. Chem.,2006,71:6229-6239.
    [124]Yamaguchi A, Hiyoshi N, Sato 0, et al.Enhancement of cyclic ether formation from polyalcohol compounds in high temperature liquid water by high pressure carbon dioxide.[J].Green Chem.,2009,11:48-52.
    [125]Hunter S E, Savage S E. Recent advances in acid-and base-catalyzed organic synthesis in high-temperature liquid water.[J].Chem. Eng. Sci.,2004,59:4903-4909.
    [126]Li G,Jiang H, Li J. Use of water as a direct hydrogen donor in supercritical carbon dioxide:a novel and efficient Zn-H2O-CO2 system for selective reduction of aldehydes to alcohols.[J].Green Chem.,2001,3:250-251.
    [127]Huang X, Jiang H. Reduction of aldehydes by Fe-H2O-CO2 system in supercritical carbon dioxide.[J].Chem. Res. Chin. Universities,2008,24(5):658-660.
    [128]Jiang H F, Huang X Z.Synthesis of vicinal diamines via Zn-H2O-CO2-induced reduction of aromatic imines in supercritical carbon dioxide.[J].J. Supercritical Fluids, 2007,43:291-294.
    [129]Jiang H F, Dong Y S.Water as a direct hydrogen donor in supercritical carbon dioxide: a novel and efficient Zn-H2O-CO2 system for chemoselective reduction of nitrobenzenes to anilines.[J].Chin. J. Chem.,2008,26(8):1407-1410.
    [130]Gao G, Tao Y, Jiang, J. Environmentally benign and selective reduction of nitroarenes with Fe in pressurized CO2-H2O medium.[J].Green Chem.,2008,10: 439-441.
    [131]Tundo P,Loris A,Selva M. Formation and reduction of diazonium salts in a CO2-H2O system.[J].Green Chem.,2007,9:777-779.
    [132]Ganchegui B, Leitner W. Oxybromination of phenol and aniline derivatives in H2O/scCO2 biphasic media.[J].Green Chem.,2007,9:26-29.
    [133]Aleman P A, Boix C, Poliakoff M. Hydrolysis and saponification of methyl benzoates A green procedure in high temperature water.[J].Green Chem.,1999,1:65-68.
    [134]Cheng H,Meng X,Liu R, et al.Cyclization of citronellal to p-menthane-3,8-diols in water and carbon dioxide.[J].Green Chem.,2009,11:1227-1231.
    [135]Miao C, He L, Wang J, Wu F. Self-neutralizing in situ acidic CO2-H2O system for aerobic oxidation of alcohols catalyzed by TEMPO functionalized imidazolium salt/NaNO2. [J].J. Org. Chem.,2010,75:257-260.
    [136]Tatsumi K, Kitamura S, Yoshimura H,et al. Susceptibility of aromatic nitro compounds to xanthine oxidase-catalyzed reduction.[J].Chem. Pharm. Bull.,1978, 26:1713-1717.
    [137]Peltier D, Gueguen M. Valency frequencies of substituted phenylhydroxylamines. Hammett relation.[J].Bulletin de la Societe Chimique de France,1969,264-267.
    [138]张受谦.化工手册.[M].济南:山东科学技术出版社,1986.
    [139]Harned H S, Davis R Jr. The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50 [J].J. Am. Chem. Soc.,1943,65:2030-2037.
    [140]Guan G, Kida T, Ma T, et al.Reduction of aqueous CO2 at ambient temperature using zero-valent iron-based composites.[J].Green Chem.,2003,5:630-634.
    [141]程能林等.溶剂手册.[M].化学工业出版社,1994.
    [142]Lindstrom R, Svensson J, Johansson L G. The influence of salt deposits on the atmospheric corrosion of zinc.[J].J. Electrochem. Soc.,2002,149(2):B57-B64.
    [143]Fontana M G. In corrosion engineering. Rao S,Editor, McGraw-Hill Book Company, New York 1987.
    [144]Zhang X G. In corrosion and electrochemistry of zinc.Plenum Press, New York,1996.
    [145]侯春青,李志念,刘长令.新型Strobin类杀菌剂唑菌胺酯.[J].农药,2002,41(6):41-43.
    [146]Porzelle A, Woodrow M D, Tomkinson N C 0. Facile Procedure for the Synthesis of N-Aryl-N-hydroxyl Carbamates.[J].Synlett,2009,798-802.
    [147]Ross R Jr, Nguyen D V, Shaber S H. Aryl and heteroarylcyclopropyl oxime ethers and their use as fungicides. [P].WO 02/46142,2002.
    [148]Chamblee T S,Weikel R R, Nolen S A, et al.Reversible in situ acid formation for β-pinene hydrolysis using CO2 expanded liquid and hotwater.[J].Green Chem.,2004, 6:382-386.
    [149]冯若,李化茂.声化学及其应用.[M].合肥:安徽科学技术出版社,1992.
    [150]Richards W T, Loomis A L. The chemical effects of high frequency sound waves I. A preliminary survey.[J].J. Am. Chem. Soc.,1927,49:3086-3100.
    [151]李延盛,尹其光.超声波化学.[M].北京:科学出版社,1995.
    [152]Suslick K S,Hammerton D A, Cline R E Jr. The sonochemical hot spot.[J].J. Am. Chem. Soc,1986,108:5641-5642.
    [153]Cintas P, Luche J L. Green chemistry. The sonochemical approach. [J].Green Chem., 1999,1:115-125.
    [154]Boudjouk P. Synthesis with ultrasonic waves.[J].J. Chem. Educ.,1986,63(5): 427-429.
    [155]Luche J L, Einhorn C, Einhorn J, et al.Organic sonochemistry:a new interpretation and its consequences.[J].Tetrahedron Lett.,1990,31(29):4125-4128.
    [156]覃兆海,陈馥衡,谢毓元.超声波在有机合成中的应用.[J].化学进展,1998,10:63-73.
    [157]Grinstaff M W,Cichowlas A A,Choe S B,et al.Effect of cavitation conditions on amorphous metal synthesis.[J].Ultrasonics,1992,30:168-172.
    [158]Suslick K S, Doktycz S J. The sonochemistry of zinc powder. [J].J. Am. Chem. Soc. 1989,111:2342-2344.
    [159]Flannigan D J, Hopkins S D, Suslick K S.Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions. [J].J. organometallic Chem.,2005,690:3513-3517.
    [160]Repic O, Vogt S.Ultrasound in organic synthesis:cyclopropanation of olefins with zinc-diiodomethane.[J].Tetrahedron Lett.,1982,23:2729-2732.
    [161]孙海洲,李基森.环丙烷基三甲基硅醚类化合物的脱硅基及酯化反应的研究.[J].有机化学,1999,19:34-39.
    [162]Bose A K, Gupta K, Manhas M S. β-Lactam formation by ultrasound-promoted reformatskii type reaction.[J].J. Chem. Soc.,Chem. Commun.,1984,86-87.
    [163]Kitazume T. Ultrasound-promoted synthesis of fluorinated β-keto-γ-butyro lactones.[J].Synthesis,1986,855-857.
    [164]Han B H, Boudjouk P. Organic Sonochemistry. Ultrasound-promoted reaction of zinc with α,α'-dibromo-o-xylene.Evidence for facile generation of o-xylylene.[J].J. Org. Chem.,1982,47:751-752.
    [165]Costa V E U, Moellmann,M E S, Riatto, V B. Dechlorination reactions of hexachlorinated polycyclic compounds using ultrasound radiation. [J].Synth. Commun.,1995,25:2091-2097.
    [166]Sharon M, Parker A, Rizzo C J. Facile addition of dichloroketene to acetylenes mediated by zinc and ultrasound.[J].Synth. Commun.,1995,25:2781-2789.
    [167]Han B, Boudjouk P. Organic sonochemistry.Sonic acceleration of the reformatsky reaction.[J]. J. Org. Chem.,1982,47:5030-5032.
    [168]Kitazume T, Ishikawa N. Trifluoromethylation of carbonyl compounds with trifluoromethylzinc iodide under ultrasonic irradiation.[J].Chem. Lett.,1981, 1679-1680.
    [169]Delair P, Luche J L. A new spnochemical carbonyl cross-coupling reaction.[J]. J. Chem. Soc.,Chem. Commun.,1989,398-399.
    [170]Lie Ken Jie M S,Mustafa J, Pasha M K. An efficient ultrasound-assisted zinc reduction of fatty esters containing conjugated enynol and conjugated enynone systems.[J].Lipids,1998,33:941-945.
    [171]Basu M K, Becker F F, Banik B K. Ultrasound-promoted highly efficient reduction of aromatic nitro compounds to the aromatic amines by samarium/ammonium chloride. [J].Tetrahedron Lett.,2000,41:5603-5606.
    [172]Rai G, Jeong J M, Lee Y, et al. Ionic liquid mediated efficient reduction of nitroarenes using stannous chloride under sonication.[J].Tetrahedron Lett.,2005, 46:3987-3990.
    [173]Pasha M A, Jayashankara V P. A comparative study and development of an improved method for the reduction of nitroarenes into arylamines by Al/NH4X(X= Cl,Br,I) in methanol under ultrasonic conditions.[J].Ultrason. Sonochem.,2006,13:42-46.
    [174]Nagaraja D, Pasha M A. Reduction of aryl nitro compounds with aluminium/NH4Cl:effect of ultrasound on the rate of the reaction.[J].Tetrahedron Lett.,1999,40: 7855-7856.
    [175]Pasha M A, Jayashankara V P.Reduction of arylnitro compounds to azoarenes and/or arylamines by Al/NaOH in methanol under ultrasonic conditions.[J].Ultrason. Sonochem.,2005,12:433-435.
    [176]Han B H, Shin D H, Cho S Y. Organic Sonochemistry. Ultrasonic acceleration of the reduction of aromatic nitro compounds with hydrazine-iron in the presence of activated carbon. [J].Bull.Korean Chem. Soc.,1985,6:320.
    [177]Heropoulos G A, Georgakopoulos S,Steele B R. High intensity ultrasound-assisted reduction of sterically demanding nitroaromatics.[J].Tetrahedron Lett.,2005, 46:2469-2473.
    [178]Hung H M, Ling F H, Hoffmann M R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental Iron in the presence of ultrasound.[J]. Environ. Sci.Technol.,2000,34:1758-1763.
    [179]Liang F, Fan J,Guo Y, et al.Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent Iron particles.[J].Ind. Eng. Chem. Res.,2008,47:8550-8554.
    [180]Zhang H, Jiang M, Wang Z, et al.Decolorisation of Cl reactive Black 8 by zero-valent iron powder with/without ultrasonic irradiation. [J].Color. Technol.,2007,123: 203-208.
    [181]Dunn S A. Some physical properties of p-raminophenol.[J].J. Am. Chem. Soc.,1954, 762:6191-6192.
    [182]Proskouriakoff A, Titherington R J. Mercury derivatives of acetylaminocresols.[J]. J. Am. Chem. Soc.,1930,52:3978-3984.
    [183]Meyssami B, Balaban M 0, Teixeira A A. Prediction of pH in model systems pressurized with carbon dioxide.[J].Biotechnol.Prog.,1992,8:149-154.
    [184]Stolcova M,Groskova D,Hronec M. RP-HPLC for the determination of N-phenylhydroxylamine and related compounds.[J].Chromatographia Supplement, 2001,53, suppl.,S-456-S-459.
    [185]Kohnstam G, Petch W A, Williams D Lyn H, Kinetic substituent and isotope effects in the acid-catalyzed rearrangement of N-phenylhydroxylamines. Are nitrenium ions involved?[J].J. Chem. Soc. Perkin Trans.2,1984,423-427.
    [186]Zhao J, Wang L, Xu H, et al.Solubilities of p-aminophenol in sulfuric acid+water from(286.15 to 362.80) K.[J].J. Chem. Eng. Data,2005,50:977-979.
    [187]Sone T, Hamamoto K, Seiji Y, et al.Kinetics and mechanisms of the Bamberger rearrangement.Part 4. Rearrangement of sterically hindered phenylhydroxylamines to 4-aminophenols in aqueous sulfuric acid solution.[J].J. Chem. Soc.Perkin Trans.2,1981,1596-1598.
    [188]Zoran A, Khodzhaev 0, Sasson Y. Phosphinic acid as a bifunctional reagent in the catalytic Bamberger rearrangement of nitrobenzene to para-Aminophenol.[J].J. Chem. Soc.,Chem. Commun.,1994,2239-2240.
    [189]Fishbein J C, McClelland R A. Halide ion trapping of nitrenium ions formed in the Bamberger rearrangement of N-arylhydroxylamines. Lifetime of the parent phenylnitrenium ion in water.[J].Can. J. Chem.1996,74:1321-1328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700