用户名: 密码: 验证码:
一维半导体纳米材料制备、性能及辐射探测器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维纳米材料由于其新颖的物理、化学性质在纳米器件等诸多领域所展示的潜在的应用前景,已成为当今纳米材料的前沿和研究热点。其中辐射探测器如紫外探测器和核辐射探测器无论在军用还是在民用上都有重要的应用价值,因此引起人们的极大关注。本文利用简单的水热合成方法制备了高质量的ZnO纳米棒阵列,ZnS、ZnS/Ag纳米线,过渡性元素Co掺杂的稀磁半导体ZnO纳米棒阵列,CeO_2纳米线,在研究了一维半导体纳米材料的光学、电学、磁学以及光电化学等性能的基础上,利用ZnO纳米棒及其棒阵列构筑了紫外光电导探测器,利用CeO_2纳米线研制出一种新型的γ射线液体辐射剂量计,对纳米探测器件进行了表征和性能测试,取得了如下主要研究成果:
     (1)基于锌基底的ZnO纳(微)米棒阵列的制备及性能研究利用锌片作为基底与有机强碱四甲基氢氧化铵水溶液进行水热反应,制备出有序排列的ZnO铅笔状纳米结构阵列。Zn片既可以直接充当反应物又可以作为一维纳米棒垂直生长的基底。对一维纳米材料进行了结构和形貌的表征,研究了四甲基氢氧化铵浓度及反应温度对产物形貌的影响。实验结果表明当TMAOH浓度为0.3 M,反应温度为170℃的时候,ZnO纳米棒阵列的形貌较为均匀,取向性较好。通过改变反应时间讨论了ZnO纳(微)米棒阵列的生长机制。
     通过光致发光光谱和拉曼光谱研究了铅笔状ZnO纳米棒阵列的光学性能,结果表明制备得到的ZnO纳米棒阵列具有高质量的六方纤锌矿晶体结构以及优异的光学性能,ZnO的表面缺陷较少,结晶度较高且没有其他元素掺杂。由于其在基底上均匀分布、一致的取向性以及与基底良好的接触,所制备的ZnO纳米棒阵列具有较好的场发射性能场,发射电流密度稳定,且随时间并没有明显的衰减趋势。因此,所制备的铅笔状ZnO纳米棒阵列结构是一种理想的场发射阴极材料。利用标准三电极体系,对ZnO纳米棒阵列的光电化学性能进行研究。在光照条件下(on),光电流瞬间产生且保持稳定不衰减;在挡光的瞬间(off),光电流迅速降到初始值。垂直于基底排列整齐、沿c轴统一取向生长,长度较长的纳米棒阵列具有更大的光电流。
     研究了退火温度对ZnO纳米棒阵列的形貌及光学特性的影响。检测结果表明,在退火过程中,纳米棒的形貌基本保持不变,但其发光性能有所变化。当退火温度在400℃时,ZnO纳米棒结晶质量较高且结构缺陷较少,发光特性得到了提高。这一研究为以后半导体发光材料光学性质的研究提供了新的途径。
     利用柯肯达尔效应原理,通过简单的水热法一步制备了由ZnO纳米棒自组装形成的结晶良好的“蒲公英”形状空心微球,并讨论了其形成机理。利用该原理可以制备其他金属氧化物的空心微球或具有特殊构造的金属-半导体纳米复合物,它们将在光生电子储存,三维激光器,传感器以及光催化等领域具有广阔的应用前景。
     (2)一维半导体复合纳米材料的水热法制备及其光电化学性能,磁学特性研究为了提高一维半导体纳米材料的性能和拓展其应用领域,对ZnO纳米棒阵列进行了CdS复合,Co掺杂,对ZnS纳米线进行了Ag负载,并研究了光电化学性能,磁学等特性。在ZnO纳米棒阵列表面沉积了立方体形的CdS纳米颗粒,对其形貌及其形成机理进行了讨论。研究了复合结构纳米棒阵列的光电化学性能,这种复合结构纳米棒阵列比单纯的ZnO纳米棒阵列薄膜具有更强的光催化活性。这是由于光生电子通过CdS传输到ZnO纳米棒的导带,从而使光生空穴和电子就得到了有效的分离。这种复合结构将有望在光催化,光电池及太阳能转换材料的研究等方面得到应用。
     通过简单的水热合成法在锌片基底上一步制备了Co掺杂的铅笔状ZnO纳米棒阵列。纳米棒在基底上均匀分布,取向一致,垂直于基底大面积生长。样品结构均为六方纤锌矿结构,具有高结晶质量,不含其它杂相。随着Co掺杂浓度的增加,紫外发射峰强度逐渐下降,近带隙发射峰的半峰宽也较纯ZnO变宽。拉曼光谱显示Co的掺杂使纳米棒出现了氧空位和锌填隙本征缺陷。掺杂纳米棒阵列的磁滞回线表明样品具有明显的铁磁特征。这种ZnO基稀磁半导体纳米棒阵列是一种在自旋电子器件中具有应用潜力的纳米材料。
     采用水热法制备了Ag负载的ZnS纳米线,对所合成的纳米线的结构、形貌以及光学性能进行了表征。研究了所制备的纳米线的光催化性能,讨论了ZnS/Ag纳米线光催化降解的机理。研究表明,ZnS/Ag复合纳米线比单纯的ZnS纳米线具有更强的光催化活性。经过60 min紫外光照,甲基橙脱色率可达到97.07%。这是由于Ag的加入,使电子不断向Ag迁移,减少了光生电子和空穴的复合,提高了光催化剂的活性。这种贵金属复合半导体纳米材料的方法将进一步拓展半导体在光电能量转化领域中的应用。
     (3)基于一维金属氧化物半导体纳米材料的辐射探测器件研究
     利用低温水热法,在金叉指微电极阵列中,制备了网络状的ZnO纳米棒紫外光电导型探测器。对该探测器在紫外光照下的I-V特性以及光电响应特性进行了测试研究。ZnO纳米棒之间相互接触搭桥在电极之间,有利于电子在其内部进行传输,使电子能够扩散,传递变得更加迅速,有利于光电流的快速收集。我们的结果表明这样的纳米结构具有制备简便、廉价、高响应度等优点,在大面积电子元件以及集成纳米光子和纳米电子器件方面具有重要的应用前景。
     在FTO(F掺杂SnO2)基底上制备出大面积紧密排列,垂直生长的ZnO纳米棒阵列。基于这种纳米棒阵列,研制出具有良好的可重现性、大光电流(在0.4 V电压下约为6.71 mA)的高灵敏度紫外光电探测原型器件。这种大的光电流以及欧姆I-V特性归因于在紫外光照下,纳米棒与金电极之间肖特基势垒宽度变窄以及ZnO纳米棒之间势垒的降低。光响应曲线可拟合为指数函数曲线,弛豫时间常数代表了在光生空穴与氧负离子结合的过程中电子的累积过程。这种低成本化学合成的高度有序排列的ZnO纳米结构可以用于构建性能优异的纳米电子器件。
     利用简单的水热合成方法,制备了CeO_2纳米线。对产物进行了形貌和结构表征并研制出基于这种CeO_2纳米线水溶液的一种新型γ射线液体辐射剂量计。结果表明,这种CeO_2纳米线水溶液辐射剂量计对γ射线具有很高的灵敏度,检测剂量小于传统化学剂量计的检测限1000μGy,且在20μGy到500μGy之间有较好的线性响应。研究了浓度对辐照变化率的影响,研究表明,随着浓度的降低,辐照变化率逐渐增大。加入自由基清除剂后,溶液的辐射变化率较小,表明水经辐照后产生的自由基及活性粒子对CeO_2的反应过程起着至关重要的作用。
Recently, one-dimensional nanostructured materials, such as nanotubes, nanowires, nanorods and nanobelts, have been received considerable attentions due to their novel physical and chemical properties. Comparing to the bulk counterparts, one-dimensional nanomaterials have shown the application potentiality in the nanodevices. Especially, owing to the important application in the military or the civilian fields, the radiation detectors based one-dimensional nanomaterials have attracted more and more interests. In this dissertation, syntheses, and physical properties of some one-dimensional semiconductor nanomaterials as well as nano-optic-electric devices were systematically investigated. Firstly, high quality one dimensional materials such as ZnO nanorod arrays, ZnS、ZnS/Ag nanowires, large-area arrays of highly oriented Co-doped ZnO nanorods, CeO_2 nanowires were prepared successfully by a simple hydrothermal method. Secondly, the optical, electrical, photocatalytic and magnetic properties of the nanomaterials were also studied. Finally, ZnO nanorods and ZnO nanorod arrays based UV photodetectors, CeO_2 nanowires based highly sensitiveγ-radiation dosimeter were fabricated, and in particular, applied in radiation detection. The main works are summarized as follows have been achieved:
     (1) Synthesis and Properties of Oriented ZnO Nanorod Arrays Directly Grown on Zinc Substrate
     Well aligned ZnO nanorod arrays with a shape of pencil-like have been synthesized on the zinc foil in tetramethylammonium hydroxide solution via a simple hydrothermal method. The Zn foil serves as the substrate for ZnO nanorod arrays and the Zn source for ZnO nanorods. The morphology and structures of the obtained ZnO arrays were characterized by FE-SEM and XRD. Moreover, the key factors, e.g. the solution concentration and the reaction temperature, affecting the morphology, were explored carefully. It was found that the uniform-sized and oriented ZnO nanorod arrays with sharp end facets could be formed in 0.3 M TMAOH solution at 170℃. In addition, the growth mechanism of ZnO nanorod with complex structure was proposed.
     The optical properties, field emission properties and photoelectrochemical properties of the ZnO nanorod arrays were investigated. The Raman scattering and PL results confirmed that as-obtained ZnO nanostructures had a good crystal quality with a wurtzite hexagonal phase and exhibited good optical property. The ZnO nanorod arrays presented outstanding field emission properties (the stable and long time emission), which was due to the uniform distribution and good contact between the nanorods and the substrate. Therefore, the pencil-like nanorod arrays are ideal candidates for the material of flat panel field emission. Besides, the photoelectrochemical properties of the synthesized pencil-like ZnO nanorod arrays were further investigated in three-electrode system. Under the UV light irradiation, the photocurrents of the nanorods rose to a steady state immediately, and then kept at a constant value. The photocurrents decayed very sharply in the dark. The results suggested that the aligned nanorod grown along the c-axis with longer length supplied high surface area and superior carrier transport pathway, significantly enhancing the photoelectrochemical activites of ZnO nanorod.
     The annealing effects on the morphology and the optical properties of ZnO nanorod arrays were investigated. SEM analyses of the samples revealed that there was no distinct change in the morphology after thermal annealing in air. The results showed that after the annealing treatment at around 400℃in air atmosphere, the crystal structure and optical properties became much better due to the decrease of surface defects. The annealing treatment provides a new approach to study the optical properties of luminescent semiconductor materials.
     Micrometer scale hollow ZnO dandelions organized by ZnO nanorods were formed via hydrothermal method, following a modified Kirkendall process. In principle, a lot of metal oxides and metal-semiconductor composites can be obtained in this synthetic architecture. Hopefully, they can be applied in many fields, such as light-generated electrons, three-dimensional lasing, and new photocatalysts.
     (2) Photoelectric and Magnetic Properties of One-Dimensional Nanocomposite Materials
     In order to improve the properties and expand the applications of one-dimensional semiconductor nanomaterials, we fabricated CdS-ZnO composite nanorod arrays, Co-doped ZnO nanorod arrays and the silver supported ZnS nanowires.
     We fabricated CdS nanocubes-ZnO nanorod heterostructure through a simple hydrothermal route. The photocatalytic properties of the CdS-ZnO nanorod arrays were investigated by measuring the photodegradation of methyl orange under ultraviolet radiation. It was found that the CdS nanoparticles-ZnO nanorod heterostructure arrays possessed enhanced photocatalytic activities compared with the bare ZnO nanorod arrays. The photo-generated electrons of CdS transferred to the conduction band of ZnO nanorod, which could efficiently separate electron-hole pairs and reduce their recombination. It can be expected that this kind of heterostructure arrays have a bright future in photocatalysts, photoelectrodes and solar-energy conversion materials.
     Large-area arrays of highly oriented Co-doped ZnO nanorods with hexagonal structure were grown on Zn substrates by single-step hydrothermal process. The intensity of UV emission peak decreased with the Co doping concentrations increasing. When Co was doped into ZnO lattice, oxygen vacancies and Zn interstitials were created. The concentration of these defects increased with rise of the Co concentration. Magnetic measurement revealed that the Co doped ZnO nanorod arrays exhibited clearly room-temperature ferromagnetic behavior, which was useful in building components for spintronics.
     ZnS/Ag nanocomposite wires were prepared by hydrothermal method. The morphology, structures and the optical properties of the obtained products were characterized. The photocatalytic properties of the nanowires were investigated by measuring the photodegradation of methyl orange under ultraviolet radiation. The ZnS/Ag nanowires exhibited higher photocatalytic activity in contrast with that of ZnS nanowires. The decolorizing rate of methyl orange could reach 97.07% after irradiating 60 min. The excellent photocatalytic activity was attributed to that Ag clusters promoted the separation of the pairs of photogenerated electrons and holes. The noble metal-semiconductor composite nanowires can be promising materials for photoelectrical energy conversion devices.
     (3) A Series of Functional Radiation Detector Nanodevices Were Fabricated by Using One-Dimensional Semiconductor Nanomaterials
     Using a low temperature hydrothermal synthesis method, ZnO nanorod networks have been directly grown across trenched Au microelectrodes arrays. The characteristics of current-voltage (I-V) and photoresponse were obtained both in dark and under ultraviolet illumination. The bridged nanorods network demonstrated highly sensitive to UV illumination in atmosphere at room temperature. It can be useful for nanoscale optoelectronic applications serving as chemical, biological sensors, and switching devices.
     Large scale densely packed and vertically oriented ZnO nanorod arrays were grown on F-doped SnO2 (FTO) substrates through a simple hydrothermal synthesis route. Based on the arrays of hexagonal ZnO nanorod, a prototypical photoelectrical device was fabricated for ultraviolet detection, showing good reproducibility and a large photocurrent of around 6.71 mA at the applied voltage of 0.4 V. The large photocurrent and the ohmic I-V characteristics of the ZnO nanorods under the illumination could be ascribed to the decrease of the barrier height among the ZnO nanorods and the Schottky barrier between the nanorods and the Au electrodes .The photoresponse curve is well fitted to an exponential curve with the relaxation time constant representing the accumulation of conduction electrons. These well-aligned ZnO nanostructures of high quality could be easily fabricated by a cost-effective chemical route and used for constructing nanoscale devices with excellent performances.
     Solution of CeO_2 nanowires synthesized by a hydrothermal method was investigated for the purpose of developing a new aqueousγ-radiation dosimeter. The aqueous CeO_2 nanowire dosimeter exhibited high sensitivity toγ-radiation of dose less than 1000μGy and a good linearity of response in dose range from 20μGy to 500μGy. The relative absorption rate varied greatly at lower initial aqueous concentrations. By addition of radical scavenger, almost no change of the absorption occurred, indicating the radicals produced from water radiolysis were closely relevant to the reaction of the CeO_2 nanowires withγ-ray. The nanowires dosimeter may be used as a highly sensitive as well as cost-effective dosimeter in ultra-low-dose environment.
引文
[1]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001:1~5.
    [2]朱静.纳米材料与器件.北京:清华大学出版社,2003:1~3.
    [3]霍海滨.一维半导体纳米材料及其电子和光电子器件研究.北京:北京大学博士学位论文,2007.
    [4] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide anowire arrays. Science, 2006, 312 (5771): 242~246.
    [5] Glotzer S C. Solomon M J. Anisotropy of building blocks and their assembly into complex structures. Nature Materials, 2007, 6: 557~562.
    [6] Eychmuller A. Structure and photophysics of semiconductor nanocrystals. The Jouranl of Physical Chemistry B, 2000, 104(28): 6514~6528.
    [7] Labrenz M, Druschel G K, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science, 2000, 290 (5497): 1744~1747.
    [8] Kubo R. Electronic properties of metallic fine particles.1. Journal of Physical Society of Japan., 1962, 17: 975~986.
    [9] Halperin W P. Quantum size effects in metal particles. Reviews of Modern Physics,1986, 58(3): 532~535.
    [10] Ball P, Garwin L. Science at the Atomic Scale. Nature, 1992 (355): 761~766.
    [11]蔡树芝,牟季美,张立德,等.纳米非晶氮化硅键态的X射线径向分布函数研究.物理学报, 1992,41(10): 1620~1626.
    [12] Geerligs L J, Averin D V, Mooij J E. Observation of macroscopic quantum tunneling through the coulomb energy barrier. Physical Review Letters, 1990, 65 (24): 3037~3040.
    [13] Lu J,Tinkhan M.无机材料表面结构分析.物理, 1998,27 (3): 137~145.
    [14] Albery W J, Bartlett P N. The Transport and Kinetics of Photogenerated Carriers in Colloidal Semiconductor Electrode Particles. Journal of The Electrochemical Society, 1984, 131(2): 315~325.
    [15] Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Accounts of Chemical Research, 1999, 32 (5): 435~445.
    [16]徐亮.准一维金属氧化物半导体纳米材料的气相合成、结构表征及发光性能研究.合肥:合肥工业大学硕士学位论文,2006.
    [17] Wong E W, Sheehan P E, Lieber M. Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science, 1997, 277 (5334): 1971~1975.
    [18] Duan X F, Huang Y, Cui Y, Wang J F, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409: 66~69.
    [19] Zhang Z B, Sun X Z, Dresselhaus M S, et al. Electronic transport properties of single-crystal bismuth nanowire arrays. Physical Review B: Condensed Matter, 1999, 61 (7):4859~4861.
    [20] Huang M H, Mao S, Feick H, et al. Room temperature ultraviolet nanowire nanolasers. Science, 2001, 292 (5523): 1897~1899.
    [21]刘金章.一维纳米功能材料的制备与特性研究.兰州:兰州大学硕士学位论文,2006.
    [22] Wang Z L. Nanowire and Nanobelts-Materials, Properties and Devices.北京:清华大学出版社,2004.
    [23] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 2003, 15 (5): 353~389.
    [24] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters, 1964, 4 (5):89~90.
    [25] Wu YY, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 2001,123 (13):3165~3166.
    [26] Gudiksen M S, Lieber C M. Diameter-selective synthesis of semiconduct nanowires. Journal of the American Chemical Society, 2000,122 (36): 8801~8802.
    [27] CuiY, Lauhon L J, Gudiksen M S, et al. Diameter-controlled synthesis of single crystal silicon nanowires. Applied Physics Letters, 2001, 78 (15): 2214~2216.
    [28] Gudiksen M S, Wang J F, Lieber C M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. Journal of Physical Chemistry B, 2001,105 (19):4062~4064.
    [29] Pan Z W, Dai Z R, Wang Z L. Nanobelts of Semiconducting Oxides. Science, 2001, 291 (5510): 1947~1949.
    [30] Zhang R Q, Lifshitz Y, Lee S T. Oxide-assisted growth of semiconducting nanowires. Advanced Materials, 2003, 15 (7-8): 635~640.
    [31] Trentler T J, Hickman K M, Buhro W E., et al. Solution-Liquid-Solid growth of crystalline III-V semiconductors: an analogy to Vapor-Liquid-Solid growth. Science, 1995, 270 (5243): 1791~1794.
    [32] Buhro W E, Hickman K M, Trentler T J, et al. Turning down the heat on semiconductor growth solution-chemical syntheses and the solution liquid solid mechanism. Advanced Materials, 1996,8 (8):685~688.
    [33] Rabenau A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition, 1985, 24 (12):1026~1040.
    [34] Feng S, Xu R. New Materials in Hydrothermal Synthesis. Accounts of Chemical Research, 2001, 34 (3): 239~247.
    [35] Sun X M, Chen X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Materials Chemistry and Physics, 2002, 78 (1): 99~104.
    [36] An C H, Tang K B, Liu X M, et al. Hydrothermal preparation ofα-MnS nnaorods from elements. Journal of crystal growth, 2003, 252 (4):575~580.
    [37] Zang W, Yang Z, Huang X, et al. Low temperature growth of bismuth sulfide nanorods by a hydrothermal method, Solid State Communications, 2001, 119 (3):143~146.
    [38] Yan L, Zhuang J, Sun X, et al. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Materials Chemistry and Physics, 2002, 76 (2):119~122.
    [39] Wang J W, Deng Z X, Li Y D. Synthesis and characterization of Sb2Se3 nanorods. Materials Research Bulletin, 2002, 37 (3): 495~502.
    [40] Zhang W X, Yang Z H, Zhan J H, et al. Hydrothermal synthesis of marcasite iron ditelluride FeTe2 nanorods at low temperature. Materials Letters, 2001, 47 (6): 367~370.
    [41] Hu J Q, Deng B, Zhang W X, et al. A convenient hydrothermal route to mineral Ag3CuS2 nanorods. International journal of inorganic materials, 2001 3 (7): 639~642.
    [42] Hu J Q, Lu Q Y, Deng B, et al. A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications, 1999, 2 (12): 569~571.
    [43] Wang C R, Tang K B, Yang Q, et al. Characterization of PbSnS3 nanorods prepared via an iodine transport hydrothermal method. Journal of Solid State Chemistry, 2001, 160 (1): 50~53.
    [44] Li W J , Shi W, Chen Z Z, et al. Hydrothermal synthesis of MoS2 nanowires. Journal of Crystal Growth, 2003, 250 (3-4): 418~422.
    [45] Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chemical Physics Letters, 2002, 365 (3-4): 300~304.
    [46] Zhu D L, Zhu H, Zhang Y H. Microstructure and magnetization of single-crystal perovskite manganites nanowires prepared by hydrothermal method. Journal of Crystal Growth, 2003, 249 (1-2): 172~175.
    [47] Seo D S, Lee J K, Kim H. Preparation of nanotube-shaped TiO2 powder. Journal of CrystalGrowth, 2001, 229 (1-4): 428~432.
    [48] Azambre B, Hudson M J. Growth of copper nanoparticles within VOx nanotubes. Material Letters, 2003, 57 (20): 3005~3009.
    [49] Yu S H ,Yang J,WuY S, et al. Hydrothermal preparation and characterization of rod-like ultrafine powders of bismuth sulfide. Materials Research Bulletin, 1998, 33 (11): 1661~1666.
    [50] Mo M S, Zeng J H, Liu X M., et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Advanced Materials, 2002, 14 (22): 1658~1662.
    [51] Liu Z P, Li S,Yang Y, et al. Complex-surfactant-assisted hydrothermal route to terromagnetic nickel nanobelts. Advanced Materials, 2003, 15 (22): 1946~1948.
    [52] Li Y D, Liao H W,Qian Y T, et al. Solvothermal Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod. Inorganic Chemistry, 1999, 38 (7): 1382~1387.
    [53] Yang J, Xue C, Yu S H, et al. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angewandte Chemie International Edition, 2002, 41 (21): 4697~4700.
    [54] Yu D B,Wang D B, Meng Z, et al. HSynthesis of closed PbS nanowires with regular geometric morphologiesH. Journal of Materials Chemistry, 2002, 12 (3): 403~405.
    [55] Xie Y, QianY T, Zhang S Y, et al. Coexistence of wurtzite GaN with zinc blende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy. Applied Physics Letters,1996,69 (3): 334~336.
    [56] Jiang Y, Wu Y, Zhang S, et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. Journal of the American Chemical Society, 2000, 122 (49): 12383~12384.
    [57] Tang K B,H J Q, Lu Q Y, et al. A novel low-temperature synthetic route to crystalline Si3N4. Advanced Materials,1999, 11 (8): 653~655.
    [58] J Q Hu,Q Y Lu,Tang K B, et al. A new rapid reduction-carbonization route to nanocrystallineβ-SiC. Chemistry of Materials, 1999, 11 (9): 2369~2371.
    [59] Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characterization of carbide nanorods. Nature, 1995, 375: 769~772.
    [60] Cobden D H. Nanowires begin to shine. Nature, 2001, 409: 32~33.
    [61]见网页:Hhttp://cmliris.harvard.edu/research/overview/index.php
    [62] Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291 (5505): 851~853.
    [63] Derycke V, Martel R, Appenzeller J, et al. Carbon nanotube inter and intramolecular logic gates. Nano Letters, 2001, 1(9): 453~456.
    [64] Bachtold.A, Hadley. P, Nakanishi.T, et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294 (5545): 1317~1320.
    [65] Huang Y, Duan X F, Lieber C M, et al. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294 (5545): 1313~1317.
    [66] Kong J, Franklin N R, Dai H J, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287 (5453): 622~625.
    [67] Cui Y, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293 (5533): 1289~1292.
    [68] Favier F, Walter E C, Zach M P, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science, 2001,293 (5538): 2227~2231.
    [69] Jie J S, Zhang W J, Jiang Y, et al. Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Letters, 2006, 6(9): 1887~1892.
    [70] Kind H, Yan H , Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002,14 (2): 158~160.
    [71] Han S, Jin W, Zhang D H, et al. Photoconduction studies on GaN nanowire transistors under UV and polarized UV illumination.Chemical Physics Letters, 2004, 389 (1-3): 176~180.
    [72] Itkis M E, Borondics F, Yu A P, et al. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science, 2006, 312 (5772): 413~416.
    [73] Wang J F, Gudiksen M S, Lieber C M, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293 (5534): 1455~1457.
    [74] Law M, Greene L E, Yang P D, et al. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4: 455~459.
    [75] Wang X D, Song J H, Wang Z L, et al. Direct-current nanogenerator driven by ultrasonic waves. Science, 2007, 316 (5821): 102~105.
    [76] Lu C H, Qi L M, Yang J H, et al. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications, 2006, 48 (33): 3551~3553.
    [77] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectricd nanobelts. Nano Letters, 2003, 3 (12): 1625~1631.
    [78] Li F, Ding Y, Gao P X, et al. Single-crystal hexagonal disks and rings of ZnO: Low-temperature,large-scale synthesis and growth mechanism. Angewandte Chemie International Edition, 2004, 43 (39): 5238~5242.
    [79] Yu H D, Zhang Z P, Han M Y, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. Journal of the American Chemical Society, 2005, 127 (8): 2378~2379.
    [80] Yang J H, Liu G M, Lu J, et al. Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate. Applied Physics Letters, 2007, 90 (10): 103109~103111.
    [81] Wang A, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 2004, 84 (18): 3654~3656.
    [82] Park W I, Kim J S, Yi G C, et al. ZnO nanorod logic circuits. Advanced Materials, 2005, 17 (11): 1393~1397.
    [83] Li Y B, Bando Y, Golberg D. ZnO nanoneedles with tip surface perturbations: Excellent field emitters. Applied Physics Letters, 2004, 84 (18): 3603~3605.
    [84] Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-catalytic vapor-phase epitaxy. Advanced Materials, 2002, 14 (24): 1841~1843.
    [85]王淼,尚学府,李振华,等.纳米碳管阵列场发射增强因子的计算.物理学报,2006,55(2):797~802.
    [86] Kim H J, Sung K, An K S, et al. ZnO nanowhiskers on ZnO nanoparticle-deposited Si (111) by MOCVD. Journal of Materials Chemistry, 2004, 14 (23): 3396~3397.
    [87] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 2003, 83 (1): 144~146.
    [88] Zhang Z X, Yuan H J, Zhou J J, et al. Growth mechanism, photoluminescence, and field-emission properties of ZnO nanoneedle arrays. Journal of Physical Chemistry B, 2006, 110 (17): 8566-8569.
    [89] Tseng Y K, Huang C J, Cheng H M, et al. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films. Advanced Functional Materials, 2003, 13 (10): 811~814.
    [90] Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chemical Physics Letters, 2002, 363 (1-2): 123~128.
    [91] Lyu S C, Zhang Y, Ruh H, et al. Low temperature growth and photoluminescence of well-aligned zind oxide nanowires. Chemical Physics Letters, 2002, 363 (1-2): 134~138.
    [92] Park W I, Kim D H, Jung S W, et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 2002, 80 (22): 4232~4234.
    [93] Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemie International Edition, 2003, 42 (26): 3031~3034.
    [94] Tang Q, Zhou W J, Shen J M, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property. Chemical Communications, 2004, 6: 712~713.
    [95] Zhang Z P, Yu H D, Shao X Q, et al. Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal. Chemistry- A European Journal, 2005, 11 (10): 3149~3154.
    [96] Yu H D, Zhang Z P, Han M Y, et al. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. Journal of the American Chemistry Society, 2005, 127 (8): 2378~2379.
    [97] Wang L S, Zhang X Z. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts for additives. Applied Physics Letters, 2005, 86 (2): 24108~24110.
    [98]王百齐,王鹏伟,张学进等. ZnO纳米棒阵列的同步法制备及其PL性能研究.无机化学学报,2007,23(8):1365~1368.
    [99]施尔畏,陈之战,元如林等.水热结晶学.北京:科学出版社,2004.
    [100] Laudise R A, Ballman A A. Hydrothermal synthesis of zinc oxide and zinc sulfide. The Journal of Physical Chemistry, 1960, 64 (5): 688~691.
    [101]李汶军,施尔畏,田明原等.水热法制备氧化锌纤维及纳米粉体.中国科学E辑:技术科学,1998,28(3):212~219.
    [102] Ahsanulhaq Q, Umar A, Hahn Y B. Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties. Nanotechnology, 2007, 18 (11): 115603~115609.
    [103] Kirkendall E, Thomassen L, Upthegrove C. Rates of diffusion of copper and zinc in alpha brass. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1939, 133: 186~203.
    [104] Smigelskas A, Kirkendall E. Zinc diffusion in alpha brass. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1947, 171: 130~142.
    [105] Yin Y D, Rioux R M, Erdonmez C K, et al. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science, 2004, 304 (5671): 711~714.
    [106] Jiang Z Y, Xie Z X, Zhang X H, et al. Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-Assisted growth with ethanol droplets as soft templates. Advanced Materials, 2004, 16 (11): 904~907.
    [107] Xu H L, Wang W Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angewandte Chemie International Edition, 46 (9):1489~1492.
    [108] Li X X, Xiong Y J, Li Z Q, et al. Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorganic Chemistry, 2006, 45 (9): 3493~3495.
    [109] Zhong Z, Yin Y, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays pf polystyrene beads. Advanced Materials, 2000, 12 (3): 206~209.
    [110] Tian Y, Lu H B, Liao L, et al. Synthesis and evolution of hollow ZnO microspheres assisted by Zn powder precursor. Solid State Communications, 2009, 149 (11-12): 456~460.
    [111] Liu B, Zeng H C. Fabrication of ZnO“Dandelions”via a modified Kirkendall process. Journal of the American Chemical Society, 126 (51): 16744~16746.
    [112] Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996, 79 (10): 7983~7990.
    [113]韩冬,任湘菱,陈冬,等.纳米ZnO的制备及其光催化性能研究.感光科学与光化学,2005,23(6): 414~419.
    [114] Bundesmann C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters, 83 (10): 1974~1976.
    [115] Cao B Q, Cai W P, Li Y, et al. Ultraviolet-light-emitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology, 2005, 16 (9): 1734~1738.
    [116] Calleja J M, Cardona M. Resonant Raman scattering in ZnO. Physical Review B, 1977, 16 (8): 3753~3761.
    [117] Jiang P, Zhou J J, Fang H F, et al. Hierarchical shelled ZnO structures made of bunched nanowire arrays. Advanced Functional Materials, 2007, 17 (8): 1303~1310.
    [118]张克良,范新会,于灵敏,等. ZnO纳米线的制备及结构表征.材料科学与工程学报,2007,25(3):411~414.
    [119] Zhang Y G, Lu F, Wang Z Y, et al. Aggregation of ZnO nanorods into films by oriented attachment. Journal of Physical Chemistry C, 2007, 111 (12): 4519~4523.
    [120]郁可.基于纳米结构的场致电子发射研究.上海:华东师范大学博士学位论文,2004.
    [121] Lee C J, Lee T J, Lyu S C, et al. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 81 (19): 3648~3650.
    [122]倪赛力,常永勤,龙毅,等.氧化锌纳米棒场发射性能研究.物理学报,2006,55(10):5409~5412.
    [123] Fowler R H, Nordheim L. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928, 119 (781): 173~181.
    [124] Minami T, Miyata T, Yamamoto T. Function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering. Surface and Coatings Technology, 1998, 108-109 (1-3): 583~587.
    [125]汤育欣,陶杰,陶海军,等.透明TiO2纳米管/FTO电极制备及表征.物理化学学报,2008,24(6):1120~1126.
    [126] Ahn K S, Shet S, Deutsch T, et al. Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. Journal of Power Sources, 2008, 176 (1): 387~392.
    [127] Vanheusden K, Seager C H. Correlation between photoluminescence and wxygen vancancies in ZnO phosphors. Applied Physics Letters, 68 (3): 403~305.
    [128]李江勇,李岚,徐建萍,等. ZnO纳米柱的可控生长及其光学性质.中国科学E辑:科学技术,2009,39(1):114~118.
    [129] Lee W, Jeong M C, Myoung J M. Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition and thermal evaporation. Acta Materialia, 2004, 52 (13): 3949~3957.
    [130]杨景景,方庆涛,王保明,等. Co掺杂对ZnO薄膜结构和性能的影响.物理学报,2007,57(2):1116~1120.
    [131] Damen T C, Porto S P S, Tell B. Raman effect in zinc oxide. Physical Review, 1966, 142 (2): 570~574.
    [132] Yang J H, Liu X Y, Yang L L, et al. Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles. Journal of Alloys and Compounds, 2009, 477 (1-2): 632~635.
    [133]达文欣,吴世法,刘琨,等.掺杂和未掺杂氧化锌薄膜的拉曼光谱.光散射学报,2006,18(1):43~47.
    [134] Zhang R, Ying P G, Wang N, et al. Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sciences, 2009, 11 (4): 865~869.
    [135] Kuo T J, Lin C N, Kuo C L, et al. Growth of ultralong ZnO nanowires on silicon substrates byvapor transport and their use as recyclable photocatalysts. Chemistry of Materials, 2007, 19 (21): 5143~5147.
    [136] Sun T J, Qiu J S, Liang C H. Controllable fabrication and photocatalytic activity of nanobelt arrays. The Journal of Physical Chemistry C, 2008, 112 (3): 715~721.
    [137] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 1993, 93 (1): 267~300.
    [138] Xiao M W, Wang L S, Wu Y D, et al. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties. Nanotechnology, 2008, 19 (1): 015706~015712.
    [140]朱为宏,杨雪艳,李晶,等.有机波谱及性能分析法.北京:化学工业出版社,2007.
    [141] Lee J, Sung Y, Kim T, et al. TiO2-CdSe nanowire arrays showing visible-range light sbsorption. Applied Physics Letters, 2007, 91 (11): 113104~113106.
    [142] Tak Y, Kim H, Lee D, et al. Type-ⅡCdS nanoparticle-ZnO nanowire heterostructure arrays fabricated by a solution process: enhanced photocatalytic activity. Chemical Communications, 2008, 38: 4585~4587.
    [143] Sarma S D. Ferromagnetic semiconductors: A giant appears in spintronics. Nature Materials, 2003, 2 (5): 292~294.
    [144] Malajovich I, Berry J J, Samarth N, et al. Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature, 2001, 411: 770~772.
    [145] Dietl T, Ohno H, Matsukura F, et al. Zsener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287 (5455): 1019~1022.
    [146] Ueda K, Tabata H, Kawai T. Magnetic and electric properties of transition-metal-doped ZnO films. UApplied Physics LettersU, 2001, 79 (7): 988~990.
    [147] Lee H J, Jeong S Y , Cho C R , et al. Study of diluted magnetic semiconductor: Co-doped ZnO. Applied Physics Letters, 2002, 81 (21): 4020~4022.
    [148] Prellier W, Fouchet A, Mercey B, et al. Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates. Applied Physics Letters, 2003,82(20):3490~3482.
    [149] Norton D P, Overberg M E, Pearton S J, et al. Ferromagnetism in cobalt-implanted ZnO. Applied Physics Letters, 2003, 83 (26):5488~5490.
    [150] Wu J J, Liu S C, Yang M H, et al. Room-temperature ferromagnetism in well-aligned Zn1–xCoxO nanorods. Applied Physics Letters, 2004, 85 (6): 1027~1029.
    [151] Chen J J, Yu M H, Zhou W L, et al. Room-temperature ferromagnetic Co-doped ZnOnanoneedle array prepared by pulsed laser deposition. Applied Physics Letters, 2005, 87 (17):173119~173121.
    [152] Liu L Q, Xiang B , Zhang X Z , et al. Synthesis and room temperature ferromagnetism of FeCo-codoped ZnO nanowires. Applied Physics Letters, 2006, 88 (6):63104~63106.
    [153] Yang L W, Wu X L, Qiu T, et al. Synthesis and magnetic properties of Zn1-xCoxO nanorods. Journal of Applied Physics, 2006, 99 (7): 074303~074305.
    [154] Wang H, Wang H B, Yang E J, et al. Structural and magnetic properties of Zn1-xCoxO single crystalline nanorods synthesized by a wet chemical method. Nanotechnology, 2006, 17: 4312~4316.
    [155] Samanta K, Bhattacharya P, Katiyar R S. Optical properties of Zn1-xCoxO thin films grown on Al2O3 (0001) substrates. Applied Physics Letters, 2005, 87 (10): 101903~101905.
    [156] Yoo Y Z, Fukumura T, Jin Z W, et al. ZnO-CoO solid solution thin films. Journal of Applied Physics, 2001, 90 (8): 4246~4250.
    [157] Schubert E F, Goepfert I D, Grieshaber W, et al. Optical properties of Si-doped GaN. Applied Physics Letters, 1997, 71(7): 921~923.
    [158] Zhou X Y, Ge S H, Yao D S, et al. Preparation, magnetic and optical properties of ZnO and ZnO:Co rods prepared by wet chemical method. Journal of Alloys and Compounds, 2008, 463 (1-2): L9~L11.
    [159] Samanta K, Bhattacharya P, Katiyar R S. Temperature dependent E2 Raman modes in the ZnCoO ternary alloy. Physical Review B, 2007, 75 (3): 035208~035212.
    [160] Sato K, Katayama Y H. Stabilization of Ferromagnetic States by Electron Doping in Fe-, Co- or Ni-Doped ZnO. Japanese Journal of Applied Physics, 2001, 40: L334~L336.
    [161] Zhang S B, Wei S H, Alex Z. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B, 2001, 63 (7):075205~075211.
    [162] Denzler D , Olschwski M , Sattler K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. Journal of Applied Physics, 1998, 84 (5):2841~2845
    [163] Sugimoto T, Chen S, Muramatsu A. Synthesis of uniform particles of CdS, ZnS, PbS and CuS from concentrated solutions of the metal chelates. Colloids and Surface A :Physicochemical and Engineering Aspects, 1998, 135(1~3): 207~226.
    [164] Dai J, Jiang Z J, Li W, et al. Solvothermal preparation of inorganic–organic hybrid compound of [(ZnS)2(en)]∞and its application in photocatalytic degradation. Materials Letters, 2002, 55 (6): 383~387.
    [165] Yin H, Da Y, Kitamura T, et al. Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts. Environmental Science & Technology, 2001, 35 (1): 227~231.
    [166] Torres-Martinez C L, Kho R, Mian O I, et al. Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. Journal of Colloid and Interface Science, 2001, 240 (2):525~531.
    [167] Feng S A, Zhao J H, Zhu Z P. The manufacture of carbon nanotubes decorated with ZnS to enhance the ZnS photocatalytic activity. New Carbon Materials, 2008, 23 (3):228~234.
    [168] Stroyukl A L, Shvalagin1 V V, Kuchmii S Y. Photochemical synthesis, spectral-optical and electrophysical properties of composite nanoparticles of ZnO/Ag. Theoretical and Experimental Chemistry, 2004, 40 (2): 98~104.
    [169] Chen X J, Xu H F, Xu N S, et al. Kinetially controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorganic Chemistry, 2003, 42 (9): 3100~3106.
    [170] Wang Y W, Zhang L D, Liang C H, et al. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chemical Physics Letters, 2002, 357 (3-4): 314~316.
    [171] Li Q, Wang C R. Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation. Applied Physics Letters, 2003, 83 (2): 359~361.
    [172] Wang X D, Gao P , Li J, et al. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Advanced Materials, 2002, 14 (23):1732~1735.
    [173]李国平,罗运军.水热法制备ZnS纳米线.无机化学学报, 2007,11(23): 1864~1868.
    [174] Rozman M, Drofenik M. Hydrothermal synthesis of manganese zinc ferrites. Journal of the American Ceramic Society, 1995, 78 (9):2449~2455.
    [175] Jiang Y, Meng X M, Liu J, et al. Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale .Advanced Materials, 2003,15 (4):323~327.
    [176] Renjis T T, Sreekumaran N A, Navinder S, et al. HFreely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core?Shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting PropertiesH. Langmuir, 2003, 19 (8): 3439~3445.
    [177] He C, Yu Y, Hu X F, et al. HInfluence of silver doping on the photocatalytic activity of titania filmsH. Applied Surface Science, 2002, 200 (1-4): 239~247.
    [178] Zanella R, Giorgio T S, Henry C R, et al. Alternative methods for the preparation of goldnanoparticles supported on TiO2. The Journal of Physcial Chemistry B, 2002,106 (31): 7634~7642.
    [179] Yu S H, Yoshimur M, Maria J, et al. In Situ Fabrication and optical 0roperties of a novel polystyrene/semiconductor nanocomposite embedded with CdS nanowires by a soft solution processing route. Langmuir, 2001, 17 (5): 1700~1707.
    [180] Sch?fer H. Chemical transport reaction (translated by H.Frankfort). New York: Academic Press, 1994.
    [181] Chen W, Wang Z G, Lin Z J, et al. Absorption and luminescence of the surface states in ZnS nanoparticles. Journal of Applied Physics,1977, 82 (6): 3111~3114.
    [182]石建稳,郑经堂,胡燕,等. Ho掺杂纳米TiO2光催化性能研究.太阳能学报,2007,28(10):1120~1124.
    [183] Sopyan I, Watanabe M, Murasawa S, et al. An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98(1-2): 79~86.
    [184]刘祥志,徐明霞,李顺,等.掺杂TiO2纳米线及其可见光催化性能.武汉理工大学学报, 2007,10: 173~177.
    [185] Tada H, Teranishi K, Ichihashi Y, et al. HAg nanocluster loading effect on TiO2 photocatalytic reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine by H2OH. Langmuir, 2000, 16 (7): 3304~3309.
    [186] Xu Z Q, Deng H, Xie J, et al. Photoconductive UV detectors based on ZnO films prepared by sol-gel method. Journal of Sol-Gel Science and Technology, 2005, 36(2): 223~226.
    [187] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors. Journal of Applied Physics, 1996, 79(10): 7433~7473.
    [188] Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO. Superlattices and Microstructures, 2003, 34(1-2):3~32.
    [189] Liu Y, Gorla C R, Liang S, et al. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. Journal of Electronic Materials, 2000, 29(1):69~74.
    [190] Li Q H, Gao T, Wang Y G, et al. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Applied Physics Letters, 85 (12): 123117~123119.
    [191] Keem K, Kim H, Kim GT, et al. Photocurrent in ZnO nanowires grown from Au electrodes. Applied Physics Letters, 2004, 84 (22): 4376~4378.
    [192] Fan Z Y, Chang P C, Lu J G, et al. Photoluminescence and polarized photodetection of single ZnO nanowires. Applied Physics Letters, 2004, 85 (25): 6128~6130.
    [193] Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high performance ZnO nanorod field-effect transistors. Applied Physics Letters, 2004, 85 (21): 5052~5054.
    [194] Johnson J C, Knutsen K P, Yan H, et al. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Letters, 2004 (2), 4: 197~204.
    [195] Gao P X, Liu J, Buchine B A, et al. Bridged ZnO nanowires across trenched electrodes. Applied Physics Letters, 2007, 91 (14): 142108~142110.
    [196] Lee J S, Islam M S, Kim S. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sensors Actuators B: Chemical, 2007, 126 (1): 73~77.
    [197] Greene L E, Law M., Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5 (7): 1231~1236.
    [198] Gao P X, Lee J L, Wang Z L. Multi-colored ZnO nanowire architectures on trenched silicon substrates. Journal of Physical Chemistry C, 2007, 111 (37): 13763~13769.
    [199] Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Physical Review B, 2000, 61 (22): 15019~15027.
    [200] Pike G E, Seager C H. The dc voltage dependence of semiconductor grain boundary resistance. Journal of Applied Physics, 1979, 50 (5): 3414~3422.
    [201] Pike G E, Kurtz S R., Gourley P L, et al. Electroluminescence in ZnO varistors: Evidence for hole contributions to the breakdown mechanism. Journal of Applied Physics, 1985, 57 (12): 5512~5518.
    [202] Sato Y, Oba F, Yamamoto T, et al. Current-voltage characteristics across [0001] twists boundaries in zinc oxide bicrystals. Journal of American Ceramic Society, 2002, 85 (8): 2142~2444.
    [203] Minne S C, Manalis S R, Quate C F. Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actutors. Applied Physics Letters, 1995, 67 (26): 3918-3920.
    [204] Dev A, Panda S K, Kar S, et al. Surface-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films. The Journal of Physical Chemistry B, 2006, 110 (29): 14266~14272.
    [205] Peterson R B, Fields C L, Gregg B A. Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions. Langmuir, 2004, 20 (12): 5114~5118.
    [206] Takahashi Y, Kanamori M, Kondoh A, et al. Photoconductivity of ultrathin zinc oxide films, Japanese Journal of Applied Physics, 1994, 33 (12A): 6611~6615.
    [207] Zhang D H. Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering. Journal of Physics D: Applied Physics, 1995, 28 (6): 1273~1277.
    [208] Joshi N V. Photoconductivity: Art, Science, and Technology. Dekker, New York, 1990.
    [209] Ahn S E, Ji H J, Kim K, et al. Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Applied Physics Letters, 2007, 90 (15): 153106~153108.
    [210] Zheng X G, Li Q S, Zhao J P, et al. Photoconductive ultraviolet detectors based on ZnO films. Applied Surface Science, 2006, 253 (4): 2264~2267.
    [211] Ghosh R, Dutta M, Basak D. Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire arrays. Applied Physics Letters, 2007, 91 (7): 73108~73110.
    [212] Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on sol-gel synthesized ZnO films. Journal of Crystal Growth, 2003, 256 (1-2): 73~77.
    [213] Rahn R O. Chemical dosimetry using an iodide/iodate aqueous solution: application to the gamma irradiation of blood. Applied Radiation Isotopes, 2003, 58 (1): 79~84.
    [214] Mclaughlin W L, Boyd A W, Chadwick K H, et al. Dosimetry for Radiation Processing. Taylor&Francis, London, 1989.
    [215] Fernández F, Bakali M, Amgarou K,et al. Personal neutron dosimetry in nuclear power plants using etched track and albedo thermoluminescence dosemeters. Radiation Protection Dosimetry, 2004, 110 (1-4): 701~704.
    [216] Fricke H, Morse S. The chemical action of roentgen rays on dilute ferrosulfate solutions as a measure of dose. American Journal of Roentgenology, Radium Therapy, and Nuclear Medicing, 1727, 18: 426-430.
    [217] Gupta B L. Low level dosimetry stuies with the FeSO4-benzoic acid-xylenol orange system. Dosimetry in Agriculture, Industry, Biology and Medicine. IAEA, Vienna, 1972, pp. 421.
    [218] Arshak K, Korostynska O, Harris J. Gamma radiation dosimetry using screen printed nickel oxide thick films. Proceeding of MIEL 2002, 23rd International conference on Microelectronics, 2002, 1: 357-360.
    [219] Atanassova E, Paskaleva A, Konakova R, et al. Influence ofγ-radiation on thin Ta2O5-Si structures. Microelectronics Journal, 2001, 32 (7): 553~562.
    [220] Mucka V, Podlaha J, Silber R. NiO-ThO2 mixed catalysts in hydrogen peroxide decomposoition and influence of ionizing radiation. Radiation Physics and Chemistry, 2000, 59(5-6): 467-475.
    [221] Jasinski P, Suzuki T, Anderson H U. Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical, 2003, 95 (1-3): 73~77.
    [222] Fu X Q, Wang C, Feng P, et al. Anomalous photoconductivity of CeO2 nanowires in air. Appied Physics Letters, 2007, 91 (7): 073104~073106.
    [223] Arshak K, Korostynska O. Response of metal oxide thin film structures to radiation. Materials Science and Engineering B, 2006, 133 (1-3): 1~7.
    [224] Huang P X, Wu F, Zhu B L, et al. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. The Journal of Physical Chemistry B, 2005, 109 (41): 19169~19174.
    [225] Ranga R H, Ranjan S H. XRD and UV diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. Proceedings of the Indian Academy of Sciences. Chemical Sciences, 2001, 113 (5-6): 651~658.
    [226] Afanas’ev V V, Shamuilia S, Stesmans A, et al. Electron energy band alignment at interfaces of (100) Ge with rare-earth oxide insulators. Applied Physics Letters, 2006, 88 (13): 132111~132113.
    [227] Ni L, Zheng Z, Li S, et al. 2, 4-D Degradation by electron beam irradiation: Influence of oxygen concentration. Bulletin of Environmental Contamination and Toxicology, 2003, 71 (1): 176 ~181.
    [228] Garvie L A J, Buseck P R. Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of Solids, 1999, 60 (12): 1943~1947.
    [229] Matthews R W, Mahlman H A, Sworski T J. Elementary processes in the radiolysis of aqueous sulfuric acid solutions. Determinations of both GOH and GSO4. The Journal of Physical Chemistry, 1972, 76 (9):1265~1272.
    [230] Liao X H, Zhu J M, Xu J Z, et al. Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation. Chemical Communications, 2001, 10: 937~938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700