用户名: 密码: 验证码:
红景天苷干预细胞衰老的分子机制及其防治骨质疏松活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红景天(Rhodiola)为景天科红景天属多年生草本或亚灌木植物,是珍稀药用植物之一,被誉为“高原人参”。大量实验研究和临床观察表明,红景天具有多种药理活性,包括增加机体免疫力、刺激神经系统、抗应激反应、抗疲劳、抗缺氧等,具有典型的“适应原样”作用。红景天苷是红景天的主要活性成分之一。本实验室先前的研究表明红景天苷能有效延长果蝇寿命,有效下调D-半乳糖诱导的衰老小鼠体内晚期糖基化产物(AGE)水平,并显著改善小鼠的神经系统和免疫系统,展现出良好的抗衰老效应。本研究中,我们采用氧化应激诱导的早熟性衰老模型、复制性衰老及DNA损伤诱导的细胞衰老模型,从细胞和分子水平进一步探讨了红景天苷干预衰老的效应机制。
     衰老的自由基学说是一个经典的衰老理论,研究表明红景天苷是一个抗氧化剂,但其抗氧化活性与其干预衰老的作用尚缺乏直接的实验依据。我们首先应用亚致死量的H202作用于年轻的2BS细胞(PD28)建立早熟性细胞衰老模型,同时采用红景天苷进行干预,结果表明红景天苷能显著逆转H202诱导的衰老样改变,包括细胞形态、SA-β-Gal染色阳性率、G1期阻滞以及衰老相关蛋白p53、p21和p16等的表达上调。红景天苷的这种保护作用具有一定的剂量依赖性,在5μM剂量下效果最佳。在该模型中,红景天苷的抗氧化活性也得到了证实,该化合物能显著下调模型细胞内ROS含量,5μM剂量下与2mM的NAC效果相当,同时下调MDA含量,对总SOD活力及蛋白表达也有一定的上调作用。与此同时,采用复制衰老性细胞衰老模型发现,红景天苷能显著延迟2BS细胞的复制性衰老,延长2BS细胞代龄8PD左右,对衰老表型的影响与其在H202模型中的相似。进一步的实验表明,在上述两个模型中采用NAC对比研究发现,红景天苷降调节p53、p21部分依赖于ROS水平的下降,尚有ROS非依赖机制。这可能的原因是红景天苷能直接调节DNA损伤修复的相关分子表达进而改变由此诱导的衰老样表型。为此,我们采用一种具有强烈DNA断裂活性的烯二炔类抗肿瘤抗生素——力达霉素(0.1nM)作用于年轻2BS细胞,在分子水平上,红景天苷能显著减少LDM诱导的DNA损伤程度——γ-H2AX水平,并且依然能逆转LDM引起的p53、p21表达上调;同时,对力达霉素诱导年轻2BS细胞产生的衰老样表型也有一定的逆转作用。此外,我们发现红景天苷能显著促进2BS细胞内线粒体的增殖,这可能是红景天苷发挥延缓衰老作用的新机制,并且其效果与相同剂量的白藜芦醇相当,但其机制可能不同于白藜芦醇,SIRT1抑制剂并不能抑制红景天苷的促线粒体增殖效应。这些研究表明红景天苷具有良好的延缓衰老的效应,该效应一方面与其抗氧化活性相关,一方面也与直接调节DNA损伤修复相关。
     此外,骨质疏松是一种常见的与增龄密切相关的代谢性骨病,通过改善骨质代谢、增强成骨细胞的作用,最终达到恢复患者骨量水平为目的的治疗方案日益受到人们的重视。骨形态形成因子2(bmp2)基因的表达对于成骨细胞活性及其分化有着关键作用。我们通过一种以bmp2为靶点的新型抗骨质疏松药物筛选模型发现,红景天苷能有效上调小鼠颅骨细胞MC3T3-E1中BMP2的表达效应,表明该化合物可能具有一定的促骨形成能力。为证实红景天苷的这一效应,我们首先采用大鼠成骨细胞(ROB)和人成骨样细胞MG63研究了红景天苷对成骨细胞的影响,测定了红景天苷对成骨细胞增殖以及成骨性标志物碱性磷酸酶(ALP)和胶原合成的影响;进而采用雌性大鼠去势模型,观察了红景天苷对绝经后骨质疏松症模型的作用。体外研究表明,红景天苷作用于ROB细胞后,能显著促进成骨性的骨形成:MTT试验表明红景天苷促进细胞增殖达30%左右,ALP活性测定表明经红景天苷作用后其活性上调30%,3H-脯氨酸掺入试验表明红景天苷作用成骨细胞后其胶原合成增加1倍左右。在MG63细胞中我们观察到了相似的结果。此外,real-time RTPCR检测发现,MG63细胞内bmp2的mRNA表达水平在1μM和5μM的红景天苷作用48h后上调接近1倍;Western blot结果表明红景天苷能剂量依赖和时间依赖地上调ROB和MG63细胞中的BMP2蛋白表达水平。体内实验结果表明红景天苷能剂量依赖地抑制去势大鼠的骨量减少,与阳性药物雷洛昔芬效果相当,但对于破骨细胞的活性则无显著的抑制作用,间接地说明了红景天苷增加骨量不是依赖于抑制骨吸收而是促进成骨性的骨形成。这些结果显示了该化合物具有良好的防治骨质疏松的应用前景。
     综上所述,本研究结果表明,红景天苷在细胞水平上具有显著的延缓衰老的作用,这一方面得益于红景天苷的抗氧化作用,能有效减少ROS引起的损伤,另一方面红景天苷本身可能具有促进DNA损伤修复的功能,从而抑制p53-p21衰老相关信号通路的活化。并且,红景天苷具有显著的促线粒体增殖的效应,这可能是其发挥延缓衰老作用的新机制。另外,红景天苷具有显著的上调bmp2的作用,能促进成骨性的骨生成,具有良好的抗骨质疏松病的应用前景。
Rhodiola rosea L, also known as "goden root", is a popular plant in traditional medicine in China and is reputable for improving depression, enhancing work performance, eliminating fatigue and treating symptoms of asthenia subsequent to intense physical and psychological stress. Due to these therapeutic properties, R. rosea L is considered to be one of the most active adaptogenic drugs. Salidroside and other salidroside-like compounds are considered to be most critical plant constitutes needed for the multiple therapeutic benefits of R. rosea L. Our previous study has shown that salidroside is able to extend the life span of drosophila and protect mouse against aging induced by D-galactose, showing considerable anti-aging effect. However, direct demonstration regarding the role of salidroside in anti-aging process in vitro and relevant molecular mechanisms is still deficient.
     In this study, we first selected the H2O2-induced premature senescence model in human fetal lung diploid fibroblasts (2BS cells) to investigate whether salidroside directly protects the cells against aging in vitro and to illustrate the associated molecular mechanisms. We found that salidroside considerably reverses the senescence-like phenotypes in the oxidant challenged model, which include morphological alterations, G1 phase arrest, positive SA-β-gal staining, as well as increase of senescence-associated molecules expression such as p53, p21 and p16. The protection occurs in a tightly dose-dependent manner, with 5μM offering best efficacy under most cases. The proposed antioxidant property of the compound was confirmed in this cellular system, evidenced by ROS scavenging, MDA decreasing as well as T-SOD increasing activity, and thus at least partially is accountable for the protection of the compound against cellular premature senescence. Meanwhile, similar protection of salidroside against replicative senescence model was observed as well and it was able to increase cumulative population doublings (CPDs) of 2BS by at least 8 PDs by the supplementation to the medium from early PD. Interestingly, the regulation of corresponding molecular markers by salidroside involves ROS-independent mechanisms when compared with NAC in above two models. One possibility for such phenomena could be that salidroside may directly regulate ROS-irrelevant DNA damage system that initiates the associated molecular changes resulting in senescence-like phenotypes. To confirm this, we used Lidamycin, a potent radiomimetic anti-tumor antibiotic and senescence inducer to induce DNA damaging response in 2BS cells and test the regulation of salidroside accordingly. Similarly, we observed the protection of salidroside against DNA damage response as evidenced by down-regulation of p53 protein and y-H2AX foci after Lidamycin exposure. As anticipated, the senescence-like phenotypes in young 2BS induced by Lidamycin are also partly reversed by the salidroside. Moreover, stimulation of mitochondria biogenesis is found to be another novel property of the compound. Notably, the stimulatory effect of salidroside on mitochondrial proliferation is comparable to that of resveratrol in late PD 2BS cells, while the mode of action for this compound may be different from that of resveratrol. These findings present salidroside as an attractive and bio-safe agent with the potential to retard aging process and more importantly, may attenuate age-related diseases in humans.
     In another part of work, we studied the protective role of salidroside against osteoporosis. Many observations clearly indicate the high potency of BMP2 as an inducer of osteogenesis which contributes to be a novel therapeutic target for diseases associated with bone loss, especially in menopausal and postmenopausal women. A considerable up-regulation of bmp2 expression by salidroside is observed in a high-throughput screening model in which a firefly luciferase reporter gene driven by the mouse bmp2 promoter has been transfected to clonal murine calvarial MC3T3-E1 cells, which indicates the possible stimulatory effect on bone formation of this compound. To confirm this effect, rat osteoblasts (ROB) and human osteoblast-like MG63 cells as well as an ovariectomized-osteoporosis (OVX-OP) rat model were used. Results in ROB indicate that salidroside increases the osteoblast viability, the alkaline phosphatase (ALP) activity and bone collagen synthesis by about 1.3,1.3 and 1.9 fold, respectively. Similar results were also observed in MG63 cells. Besides, the BMP2 expression at both mRNA and protein level is significantly elevated in response to salidroside in ROB and MG63 cells detected by real-time PCR as well as western blot analysis, repectively. Furthermore, our in vivo data demonstrates that salidroside significantly reverses the bone loss in ovariectomized rats, which is comparable to that of raloxifene, a clinical drug for prevention and therapy in menopausal and postmenopausal women. Interestingly, salidroside is observed to mildly inhibit the activity of osteoclasts at lower doses rather than higher doses, which was different from that of raloxifene. This finding indicates indirectly that salidroside elevated the bone mass in ovariectomized rats mainly due to its stimulatory effect on bone formation rather than the inhibition of bone resorption. In conclusion, salidroside is a potent BMP2 activator that stimulates bone formation and thus could be a potential anti-osteoporosis drug.
     Taken together, our work provide evidences supporting that salidroside, an active component of R. rosea L. extracts that has been generally recognized as bio-safe, exerts protective effects against cellular senescence in replicative and stess-induced models. The main mode of action for the anti-aging regulation of salidroside involves both ROS-dependent and ROS-independent mechanisms. The stimulatory effect of salidroside on mitochondria biogenesis, and on BMP2 expression as well, may be novel mechanisms for its benefit in delaying aging as well as age-related diseases such as osteoporosis.
引文
[1]童坦君,张宗玉.衰老机制及其学说[J].生理科学进展2007;38(1):14-18.
    [2]Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains[J]. Exp Cell Res,1965,37:614-636.
    [3]Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science,1998,279 (5349):349-352.
    [4]Ben-Porath I, Weinberg RA. When cells get stressed:an integrative view of cellular senescence[J]. J Clin Invest,2004,113 (1):8-13.
    [5]Collado M, Serrano M. The power and the promise of oncogene-induced senescence markers[J]. Nat Rev Cancer,2006,6 (6):472-476.
    [6]Toussaint 0, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes[J]. Exp Gerontol,2000,35 (8):927-945.
    [7]Harman D. Aging:a theory based on free radical and radiation chemistry[J]. J Gerontol,1956,11 (3):298-300.
    [8]Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev,1998,78 (2):547-581.
    [9]Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med,2002,33 (1):37-44.
    [10]Blander G, de Oliveira RM, Conboy CM, et al. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts[J]. J Biol Chem, 2003,278 (40):38966-38969.
    [11]Parkes TL, Elia AJ, Dickinson D, et al. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons[J]. Nat Genet,1998,19 (2):171-174.
    [12]Droge W. Free radicals in the physiological control of cell function[J]. Physiol Rev,2002,82(1):47-95.
    [13]Collins AR, Duthie SJ, Fillion L, et al. Oxidative DNA damage in human cells: the influence of antioxidants and DNA repair[J]. Biochem Soc Trans,1997, 25(1):326-331.
    [14]Chen Q, Fischer A, Reagan JD, et al. Oxidative DNA damage and senescence of human diploid fibroblast cells[J]. Proc Natl Acad Sci U S A, 1995,92(10):4337-4341.
    [15]Freeman BA, Crapo JD. Biology of disease:free radicals and tissue injury[J]. Lab Invest,1982,47 (5):412-426.
    [16]Capdevila J, Parkhill L, Chacos N, et al. The oxidative metabolism of arachidonic acid by purified cytochromes P-450[J]. Biochem Biophys Res Commun,1981,101 (4):1357-1363.
    [17]Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide[J]. Biochem J,1972,128 (3):617-630.
    [18]Nicholls DG. Mitochondrial membrane potential and aging[J]. Aging Cell, 2004,3(1):35-40.
    [19]Ames BN, Shigenaga MK, Hagen TM. Mitochondrial decay in aging[J]. Biochim Biophys Acta,1995,1271 (1):165-170.
    [20]St-Pierre J, Buckingham JA, Roebuck SJ, et al. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem,2002,277 (47):44784-44790.
    [21]Hansen JM, Go YM, Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling[J]. Annu Rev Pharmacol Toxicol, 2006,46:215-234.
    [22]Jones DP. Disruption of mitochondrial redox circuitry in oxidative stress[J]. Chem Biol Interact,2006,163 (1-2):38-53.
    [23]Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress[J]. Proc Natl Acad Sci U S A,1997,94 (2):514-519.
    [24]Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations[J]. Proc Natl Acad Sci U S A,2005,102 (52):18769-18770.
    [25]Herbig U, Sedivy JM. Regulation of growth arrest in senescence:telomere damage is not the end of the story[J]. Mech Ageing Dev,2006,127 (1):16-24.
    [26]Vidal A, Koff A. Cell-cycle inhibitors:three families united by a common cause. Gene,2000,247 (1-2):1-15.
    [27]Kulju KS, Lehman JM. Increased p53 protein associated with aging in human diploid fibroblasts[J]. Exp Cell Res,1995,217 (2):336-345.
    [28]Zheng QH, Ma LW, Zhu WG, et al. p21Waf1/Cip1 plays a critical role in modulating senescence through changes of DNA methylation. J Cell Biochem,2006,98 (5):1230-1248.
    [29]Narita M, Nunez S, Heard E, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence[J]. Cell,2003, 113(6):703-716.
    [30]Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression[J]. Oncogene,2005,24 (50):7410-7425.
    [31]Wang MC, Bohmann D, Jasper H. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila[J]. Dev Cell,2003,5 (5): 811-816.
    [32]Oh SW, Mukhopadhyay A, Svrzikapa N, et al. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16[J]. Proc Natl Acad Sci U S A,2005,102 (12):4494-4499.
    [33]Blander G, Guarente L. The Sir2 family of protein deacetylases[J]. Annu Rev Biochem,2004,73:417-435.
    [34]Guarente LP, Partridge L, C.wallace D, editors. Molecular Biology of Aging[M]. New York:Cold Spring Harbor Laboratory Press,2008:39-42
    [35]Guarente L. Mitochondria--a nexus for aging, calorie restriction, and sirtuins[J]. Cell,2008,132 (2):171-176.
    [36]毛根祥,王真,李电东.热量限制促进机体线粒体增殖的分子机制[J].中国新药杂志,2009,18(11):995-999.
    [37]Lagouge M, Argmann C, Gerhart-Hines Z, et alJ. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha[J]. Cell,2006,127 (6):1109-1122.
    [38]Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature,2006,444 (7117):337-342.
    [39]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress[J]. Cell,2001,107 (2):137-148.
    [40]Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity[J]. Nat Rev Mol Cell Biol,2005,6 (4):298-305.
    [41]Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein[J]. Science,2002,296 (5567):530-534.
    [42]Liszt G, Ford E, Kurtev M, et al. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase[J]. J Biol Chem,2005,280 (22):21313-21320.
    [43]Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6[J]. Cell,2006,124 (2):315-329.
    [44]Michishita E, McCord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J]. Nature,2008,452 (7186):492-496.
    [45]Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span[J]. Cell,2009,136(1):62-74.
    [46]Natoli G. When sirtuins and NF-kappaB collide[J]. Cell,2009,136 (1):19-21.
    [47]Kelly GS. Rhodiola rosea:a possible plant adaptogen[J]. Altern Med Rev, 2001,6(3):293-302.
    [48]Kucinskaite A, Briedis V, Savickas A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine[J]. Medicina,2004,40 (7):614-619.
    [49]Udintsev SN, Shakhov VP. The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process[J]. Neoplasma,1991,38 (3):323-331.
    [50]Lee MW, Lee YA, Park HM, et al. Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor[J]. Arch Pharm Res,2000,23 (5):455-458.
    [51]Ming DS, Hillhouse BJ, Guns ES, et al. Bioactive compounds from Rhodiola rosea (Crassulaceae) [J]. Phytother Res,2005,19 (9):740-3.
    [52]Schriner SE, Abrahamyan A, Avanessian A, et al. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea[J]. Free Radic Res,2009, 43 (9):836-843.
    [53]Wu YL, Lian LH, Jiang YZ, et al. Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice[J]. J Pharm Pharmacol,2009,61 (10):1375-1382.
    [54]Zhang L, Yu H, Sun Y, Lin X, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells[J]. Eur J Pharmacol,2007,564 (1-3):18-25.
    [55]Yu S, Liu M, Gu X, et al. Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation[J]. Cell Mol Neurobiol,2008,28 (8):1067-1078.
    [56]Yu S, Shen Y, Liu J, et al. Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death[J]. J Mol Neurosci,2010,40(3):321-331
    [57]Mao GX, Deng HB, Yuan LG, et al. Protective effect of salidroside against aging in a mouse model induced by D-galactose[J]. Biomedical and Enviromental Sciences,2010,23 (2):161-166.
    [58]Tang Z, Zhang Z, Zheng Y, et al. Cell aging of human diploid fibroblasts is associated with changes in responsiveness to epidermal growth factor and changes in HER-2 expression[J]. Mech Ageing Dev,1994,73 (1):57-67.
    [59]Li J, Zhang Z, Tong T. The proliferative response and anti-oncogene expression in old 2BS cells after growth factor stimulation[J]. Mech Ageing Dev,1995,80(1):25-34.
    [60]Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. Proc Natl Acad Sci U S A,1995, 92 (20):9363-9367.
    [61]马宏,张宗玉,童坦君.衰老的生物学标志.生理科学进展2002;33(1):65-68.
    [62]Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase[J]. Aging Cell,2006,5 (2):187-195.
    [63]Cristofalo VJ, Lorenzini A, Allen RG, et al. Replicative senescence:a critical review[J]. Mech Ageing Dev,2004,125 (10-11):827-848.
    [64]史桂英,高飞,石学耕,等.流式细胞术检测细胞内活性氧的方法[J].上海第二医科大学学报,2001,21(1):122-124.
    [65]Kunz L, MacRobert AJ. Intracellular photobleaching of 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (Foscan) exhibits a complex dependence on oxygen level and fluence rate[J]. Photochem Photobiol,2002, 75(1):28-35.
    [66]Hempel SL, Buettner GR, O'Malley YQ, et al. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants:comparison with 2',7'-dichlorodihydrofluorescein diacetate,5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123[J]. Free Radic Biol Med,1999,27 (1-2):146-159.
    [67]Lopez-Lluch G, Hunt N, Jones B, et al. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency[J]. Proc Natl Acad Sci U S A,2006,103 (6):1768-1773.
    [68]Buege JA, Aust SD. Microsomal lipid peroxidation[J]. Methods Enzymol,
    1978,52:302-310.
    [69]Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells[J]. Proc Natl Acad Sci U S A, 1994,91 (10):4130-4134.
    [70]Chen QM. Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints[J]. Ann N Y Acad Sci,2000,908:111-125.
    [71]Schriner SE, Avanesian A, Liu Y, et al. Protection of human cultured cells against oxidative stress by Rhodiola rosea without activation of antioxidant defenses[J]. Free Radic Biol Med,2009,47 (5):577-584.
    [72]Chen QM, Bartholomew JC, Campisi J, et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts:p53 and Rb control G1 arrest but not cell replication[J]. Biochem J,1998;332 (Pt 1):43-50.
    [73]Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells[J]. Am J Physiol Heart Circ Physiol,2009,297 (1):H13-20.
    [74]Chen L, Jiang J, Cheng C, et al. P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells[J]. Cancer Biol Ther, 2007,6 (6):965-973.
    [75]He QY, Liang YY, Wang DS, Li DD. Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells[J]. Int J Oncol,2002,20 (2):261-266.
    [76]Rogakou EP, Boon C, Redon C, et al. Megabase chromatin domains involved in DNA double-strand breaks in vivo[J]. J Cell Biol,1999,146 (5):905-916.
    [77]Redon C, Pilch D, Rogakou E, et al. Histone H2A variants H2AX and H2AZ[J]. Curr Opin Genet Dev,2002,12 (2):162-169.
    [78]Celeste A, Petersen S, Romanienko PJ, et al. Genomic instability in mice lacking histone H2AX[J]. Science,2002,296 (5569):922-927.
    [79]d'Adda di Fagagna F, Teo SH, et al. Functional links between telomeres and proteins of the DNA-damage response[J]. Genes Dev,2004,18 (15):1781-1799.
    [80]Wiebusch L, Hagemeier C. p53-and p21-dependent premature APC/C-Cdh1 activation in G2 is part of the long-term response to genotoxic stress[J].
    Oncogene. [In press].
    [81]Ohtani N, Yamakoshi K, Takahashi A, et al. The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression[J] J Med Invest,2004,51 (3-4):146-153.
    [82]Alcorta DA, Xiong Y, Phelps D, et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts[J]. Proc Natl Acad Sci U S A,1996,93 (24):13742-13747.
    [83]Han XL, Wu FG, Zhang ZY, et al. Posttranscriptional induction of p21Waf1 mediated by ectopic p16INK4 in human diploid fibroblast[J]. Chin Med J (Engl),2007,120 (5):405-409.
    [84]Shigenaga MK, Ames BN. Assays for 8-hydroxy-2'-deoxyguanosine:a biomarker of in vivo oxidative DNA damage[J]. Free Radic Biol Med,1991, 10(3-4):211-216.
    [85]Wang Y, Meng A, Zhou D. Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts[J]. Exp Cell Res 2004,298 (1):188-196.
    [86]Chen QM, Liu J, Merrett JB. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts[J]. Biochem J,2000,347 (Pt 2):543-551.
    [87]Jarrett SG, Boulton ME. Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells[J]. Free Radic Biol Med,2005,38 (10):1382-1391.
    [88]Poswig A, Wenk J, Brenneisen P, et al. Adaptive antioxidant response of manganese-superoxide dismutase following repetitive UVA irradiation[J]. J Invest Dermatol,1999,112 (1):13-18.
    [89]Ruas M, Gregory F, Jones R, et al. CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms[J]. Mol Cell Biol, 2007,27(12):4273-4282.
    [90]Xu YJ, Zhen YS, Goldberg IH. C1027 chromophore, a potent new enediyne antitumor antibiotic, induces sequence-specific double-strand DNA cleavage[J]. Biochemistry,1994,33 (19):5947-5954.
    [91]Sugiura Y, Matsumoto T. Some characteristics of DNA strand scission by macromolecular antitumor antibiotic C-1027 containing a novel enediyne chromophore[J]. Biochemistry,1993,32 (21):5548-5553.
    [92]Liang YX, Zhang W, Li DD, et al. Mitotic cell death in BEL-7402 cells induced by enediyne antibiotic lidamycin is associated with centrosome overduplication[J]. World J Gastroenterol,2004,10 (18):2632-2636.
    [93]Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage[J]. Science,1998,282 (5393):1497-1501.
    [94]Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts[J]. Nature,1990,345 (6274):458-460.
    [95]Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells[J]. J Cell Sci,2004,117 (Pt 11):2417-2426.
    [96]von Zglinicki T. Role of oxidative stress in telomere length regulation and replicative senescence[J]. Ann N Y Acad Sci,2000,908:99-110.
    [97]Wang PC, Zhang J, Zhang ZY, et al. Aminoguanidine delays the replicative senescence of human diploid fibroblasts[J]. Chin Med J (Engl),2007,120 (22):2028-2035.
    [98]d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence[J]. Nature,2003,426 (6963):194-198.
    [99]Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a) [J]. Mol Cell,2004,14 (4):501-513.
    [100]Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16 (10):4623-4635.
    [101]McCord RA, Michishita E, Hong T, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair[J]. Aging (Albany NY),2009,1 (1):109-121.
    [102]Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell,1999, 96 (6):857-868.
    [103]Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell,2001,107 (2):149-159.
    [104]Abdelmohsen K, Pullmann R, Jr., Lal A, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression[J]. Mol Cell,2007,25 (4):543-557.
    [105]Koltai E, Szabo Z, Atalay M, et al. Exercise alters SIRT1, SIRT6, NAD and
    NAMPT levels in skeletal muscle of aged rats[J]. Mech Ageing Dev,2009, 131 (1):21-28.
    [106]Furukawa A, Tada-Oikawa S, Kawanishi S, et al. H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion[J]. Cell Physiol Biochem 2007;20 (1-4):45-54.
    [107]Rasbach KA, Schnellmann RG. PGC-1 alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury[J]. Biochem Biophys Res Commun,2007,355 (3):734-739.
    [108]Lambert AJ, Wang B, Yardley J, et al. The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption[J]. Exp Gerontol,2004,39 (3):289-295.
    [109]Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans[J]. PLoS Med,2007,4 (3):e76.
    [110]Ungvari Z, Labinskyy N, Mukhopadhyay P, et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells[J]. Am J Physiol Heart Circ Physiol,2009,297 (5):H1876-1881.
    [111]Huang J, Gan Q, Han L, et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts[J]. PLoS One 2008;3 (3):e1710.
    [112]Lin TK, Liou CW, Chen SD, et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson's disease[J]. Chang Gung Med J,2009,32 (6):589-599.
    [113]Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis[J]. J Pharmacol Exp Ther,2008,325 (2):536-543.
    [114]Zhu L, Liu Z, Feng Z, et al. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells[J]. J Nutr Biochem. [In Press].
    [115]Levine AJ. p53, the cellular gatekeeper for growth and division[J]. Cel,l 1997,88(3):323-331.
    [116]Vousden KH, Lu X. Live or let die:the cell's response to p53[J]. Nat Rev Cancer,2002,2 (8):594-604.
    [117]Hu X, Lin S, Yu D, et al. A preliminary study:the anti-proliferation effect of salidroside on different human cancer cell lines[J]. Cell Biol Toxicol.2010 Mar 23. [In press]
    [1]刘忠厚.骨质疏松诊断、治疗概论与进展[A].见:北京大学老龄问题研究中心.人口老龄化与当代社会发展学术研讨会论文集2009:201-206.
    [2]Raisz LG. Pathogenesis of osteoporosis:concepts, conflicts, and prospects[J]. J Clin Invest,2005,115 (12):3318-3325.
    [3]Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy:the Women's Health Initiative randomized controlled trial [J]. Jama,2004,291 (14):1701-1712.
    [4]Ott SM. Long-term safety of bisphosphonates[J]. J Clin Endocrinol Metab, 2005,90 (3):1897-1899.
    [5]Anderson HC, Hodges PT, Aguilera XM, et al. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage[J]. J Histochem Cytochem,2000,48 (11):1493-1502.
    [6]Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone:a novel cell-mediated gene therapy[J].J Gene Med,1999,1 (2):121-133.
    [7]Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins[J]. Science,1999,286 (5446):1946-1949.
    [8]Alekel DL, Germain AS, Peterson CT, et al. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women[J]. Am J Clin Nutr,2000,72 (3):844-852.
    [9]Jia TL, Wang HZ, Xie LP, et al. Daidzein enhances osteoblast growth that may be mediated by increased bone morphogenetic protein (BMP) production[J]. Biochem Pharmacol,2003,65 (5):709-715.
    [10]Zhou S, Turgeman G, Harris SE, et al. Estrogens activate bone morphogenetic protein-2 gene transcription in mouse mesenchymal stem cells[J]. Mol Endocrinol,2003,17 (1):56-66.
    [11]Li X, Yang J, He X, Yang Z, et al. Identification of upregulators of BMP2 expression via high-throughput screening of a synthetic and natural compound library[J]. J Biomol Screen,2009,14 (10):1251-1256.
    [12]李靖,黄鲁豫,王全平,等.改良组织块混合酶消化法成骨样细胞培养[J].中国骨伤,2003,16(11):661-664.
    [13]Ling S, Luo R, Dai A, et al. A pharmaceutical preparation of Salvia miltiorrhiza protects cardiac myocytes from tumor necrosis factor-induced apoptosis and reduces angiotensin Ⅱ-stimulated collagen synthesis in fibroblasts[J]. Phytomedicine,2009,16 (1):56-64.
    [14]谢文,冯坤,陈宝龙.中药对实验性骨质疏松大鼠骨骼影响的形态计量学研究[J].中医正骨,2007,19(3):7-8.
    [15]Eliseev RA, Schwarz EM, Zuscik MJ, et al. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NFkappaB[J]. Exp Cell Res, 2006,312(1):40-50.
    [16]Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer[J]. Cancer Lett,2004,206 (2):193-199.
    [17]张月峰,韩景献.骨质疏松动物模型研究进展.动物医学进展,2005,26(3):8-11.
    [18]Garrett IR, Chen D, Gutierrez G, et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro[J]. J Clin Invest, 2003,111 (11):1771-1782.
    [19]Chen S, Guttridge DC, Tang E, et al. Suppression of tumor necrosis factor-mediated apoptosis by nuclear factor kappaB-independent bone morphogenetic protein/Smad signaling[J]. J Biol Chem,2001,276 (42):39259-39263.
    [20]Vaes BL, Dechering KJ, Feijen A, et al. Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development[J]. J Bone Miner Res,2002,17(12):2106-21018.
    [21]Liu Z, Shi W, Ji X, et al. Molecules mimicking Smad1 interacting with Hox stimulate bone formation[J]. J Biol Chem,2004,279 (12):11313-11319.
    [22]Mathieu E, Merregaert J. Characterization of the stromal osteogenic cell line MN7:mRNA steady-state level of selected osteogenic markers depends on cell density and is influenced by 17 beta-estradiol[J]. J Bone Miner Res,1994, 9(2):183-192.
    [23]An J, Tzagarakis-Foster C, Scharschmidt TC, et al. Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens[J]. J Biol Chem,2001,276 (21):17808-17814.
    [24]Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis[J]. J Pharmacol Exp Ther 2008;325 (2):536-43.
    [25]Su JL, Yang CY, Zhao M, et al. Forkhead proteins are critical for bone morphogenetic protein-2 regulation and anti-tumor activity of resveratrol[J]. J Biol Chem,2007,282 (27):19385-19398.
    [26]Zhou H, Shang L, Li X, Zhang X, et al. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells[J]. Exp Cell Res,2009,315 (17):2953-2962.
    [27]Andela VB, Sheu TJ, Puzas EJ, et al. Malignant reversion of a human osteosarcoma cell line, Saos-2, by inhibition of NFkappaB[J]. Biochem Biophys Res Commun,2002,297 (2):237-241.
    [28]章晓霜,高顺生,屈菊兰,等.不同强度运动与雌激素联合作用对去卵巢大鼠腰椎超微结构影响的扫描电镜观察[J].中国运动医学杂志,2003,22(2):156-158.
    [29]Arnett TR, Gibbons DC, Utting JC, et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption[J]. J Cell Physiol,2003,196 (1):2-8.
    [30]Yamasaki N, Tsuboi H, Hirao M, et al. High oxygen tension prolongs the survival of osteoclast precursors via macrophage colony-stimulating factor[J]. Bone,2009,44(1):71-79.
    [31]Pederson L, Kremer M, Foged NT, et al. Evidence of a correlation of estrogen receptor level and avian osteoclast estrogen responsiveness[J]. J Bone Miner Res,1997,12 (5):742-752.
    [32]Matsushita M, Tsuboyama T, Kasai R, et al. Age-related changes in bone mass in the senescence-accelerated mouse (SAM). SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis[J]. Am J Pathol,1986,125 (2):276-283.
    [1]Ming DS, Hillhouse BJ, Guns ES, et al. Bioactive compounds from Rhodiola rosea (Crassulaceae)[J]. Phytother Res,2005,19 (9):740-743.
    [2]徐宝军,郑毅男,李向高,等.红景天属植物研究新进展[J].中药材,2000,23(9):580-584.
    [3]张晓丹,余自云,张茹.红景天属植物的化学成分研究进展[J].航空航天医药,2006,17(1):61-63.
    [4]Lee MW, Lee YA, Park HM, et al. Antioxidative phenolic compounds from the roots of Rhodiola sachalinensis A. Bor[J]. Arch Pharm Res,2000,23 (5):455-458.
    [5]Ohsugi M, Fan W, Hase K, et al. Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra[J]. J Ethnopharmacol,1999,67 (1):111-119.
    [6]Linh PT, Kim YH, Hong SP, et al. Quantitative determination of salidroside and tyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography[J]. Arch Pharm Res,2000,23 (4):349-352.
    [7]Wu S, Zu Y, Wu M. High yield production of salidroside in the suspension culture of Rhodiola sachalinensis[J]. J Biotechnol,2003,106 (1):33-43.
    [8]Meng J, Wang SF, Han F, et al. Determination of salidroside and p-tyrosol in Hongjingtian for injection(freezing-dry) by SPE-HPLC[J]. Zhongguo Zhong Yao Za Zhi,2006,31 (2):119-121.
    [9]陈志英,陈玉婷,王丹红.HPLC测定不同品种红景天中红景天苷的含量[J1.中国中药杂志[J],2006,31(11):939-941.
    [10]全国中草药编著.全国中草药汇编[M1.北京:人民卫生出版社.1996:273-4.
    [11]Wiegant FA, Surinova S, Ytsma E, et al. Plant adaptogens increase lifespan and stress resistance in C. elegans[J]. Biogerontology,2009,10 (1):27-42.
    [12]Panossian A, Wagner H. Stimulating effect of adaptogens:an overview with particular reference to their efficacy following single dose administration[J]. Phytother Res,2005,19 (10):819-838.
    [13]Kelly GS. Rhodiola rosea:a possible plant adaptogen[J]. Altern Med Rev, 2001,6(3):293-302.
    [14]Boon-Niermeijer EK, van den Berg A, Wikman G, et al. Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis[J]. Phytomedicine,2000,7 (5):389-399.
    [15]Schriner SE, Abrahamyan A, Avanessian A, et al. Decreased mitochondrial superoxide levels and enhanced protection against paraquat in Drosophila melanogaster supplemented with Rhodiola rosea[J]. Free Radic Res,2009, 43 (9):836-843.
    [16]Tezuka Y, Fan W, Kasimu R, et al. Screening of crude drug extracts for prolyl endopeptidase inhibitory activity[J]. Phytomedicine,1999,6 (3):197-203.
    [17]Mao GX, Deng HB, Yuan LG, et al. Protective effect of salidroside against aging in a mouse model induced by D-galactose[J]. Biomedical and Environmental Sciences,2010,23 (2):161-166.
    [18]Cao LL, Du GH, Wang MW. The effect of salidroside on cell damage induced by glutamate and intracellular free calcium in PC12 cells[J]. J Asian Nat Prod Res,2006,8 (1-2):159-165.
    [19]Cai L, Wang H, Li Q, et al. Salidroside inhibits H2O2-induced apoptosis in PC12 cells by preventing cytochrome c release and inactivating of caspase cascade[J]. Acta Biochim Biophys Sin (Shanghai),2008,40 (9):796-802.
    [20]Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells[J]. Eur J Pharmacol,2007,564 (1-3):18-25.
    [21]Yu S, Shen Y, Liu J, et al.Involvement of ERK1/2 Pathway in Neuroprotection by Salidroside Against Hydrogen Peroxide-Induced Apoptotic Cell Death[J]. J Mol Neurosci,2010,40(3):321-31
    [22]Maslov LN, Lishmanov Iu B, Naumova AV, et al. Do endogenous ligands of peripheral mu-and delta-opiate receptors mediate anti-arrhythmic and cardioprotective effects of Rhodiola rosea extract[J]. Biull Eksp Biol Med, 1997,124 (8):151-153.
    [23]Maslov LN, Lishmanov Iu B, Maimeskulova LA, et al. Mechanism of the
    anti-arrhythmic effect of Rhodiola rosea extract[J]. Biull Eksp Biol Med, 1998,125 (4):424-426.
    [24]邹琛,吴翔,姜敏辉,等.红景天苷对乳鼠心肌细胞过氧化损伤的保护[J].南通医学院学报,2003,23(4):391-393.
    [25]宋斌,黄山杉,刘庆国,等.红景天苷对大鼠心肌缺血再灌注损伤的保护作用[J].辽宁中医杂志,2005,32(3):256-269.
    [26]Wu T, Zhou H, Jin Z, et al. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins[J]. Eur J Pharmacol,2009,613 (1-3):93-99.
    [27]黄颖,张莲芝.高山红景天苷对大鼠心钠素基因表达的影响[J].中国药学杂志,2000,35(9):589-591.
    [28]甄志军,李志华,李剑.红景天苷对大鼠血管平滑肌细胞ACE基因表达的影响[J].西北药学杂志,2002,17(4):163-166.
    [29]赵贺玲,林树新,贾斌,等.红景天甙抑制兔缺氧性肺动脉平滑肌细胞增殖的作用[J].第四军医大学学报,2000,21(2):186-189.
    [30]赵贺玲,林书新,贾斌,等.红景天苷对缺氧状态下兔肺动脉平滑肌细胞增殖和c-fos、c-myc原癌基因表达的影响[J].中国病理生理杂志,1999,15(7):656-659.
    [31]甄志军,李志华,李剑.红景天苷对大鼠血管平滑肌细胞增殖和TGF-p表达的影响[J].心脏杂志,2002,14(5):458-451.
    [32]Li HB, Ge YK, Zheng XX, et al. Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP-activated protein kinase[J]. Eur J Pharmacol,2008,588 (2-3):165-169.
    [33]王树海,王文健,汪雪锋,等.红景天苷对3T3-L1脂肪细胞糖代谢及细胞分化的影响.中西医结合学报,2004,2(3):193-195.
    [34]Kim SH, Hyun SH, Choung SY. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice[J]. Biofactors,2006,26 (3):209-219.
    [35]陈秋丽,邓伟国,王毅.红景天皂甙对雌性大鼠蛋白质和脂肪代谢的影响[J]吉林大学学报:医学版,2003,29(4):411-413.
    [36]Kong WJ, Zhang H, Song DQ, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression[J]. Metabolism,2009,58 (1):109-119.
    [37]Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004,10 (12):1344-1351.
    [38]Lau CW, Yao XQ, Chen ZY, et al.Cardiovascular actions of berberine[J]. Cardiovasc Drug Rev,2001,19 (3):234-244.
    [39]Hsieh YS, Kuo WH, Lin TW, et al. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells[J]. J Agric Food Chem,2007,55 (25):10437-10445.
    [40]Brusq JM, Ancellin N, Grondin P, et al. Inhibition of lipid synthesis through activation of AMP kinase:an additional mechanism for the hypolipidemic effects of berberine[J]. J Lipid Res,2006,47 (6):1281-1288.
    [41]谢乐斯,刘艳丽,董丹,等.红景天甙对小鼠免疫功能的影响及杀瘤效应[J].大连医科大学学报.2003;25(1):22-24.
    [42]Hu X, Lin S, Yu D, et al. A preliminary study:the anti-proliferation effect of salidroside on different human cancer cell lines[J]. Cell Biol Toxicol.2010 Mar 23. [In press]
    [43]Udintsev SN, Shakhov VP. The role of humoral factors of regenerating liver in the development of experimental tumors and the effect of Rhodiola rosea extract on this process. Neoplasma,1991,38 (3):323-331.
    [44]Udintsev SN, Schakhov VP. Decrease of cyclophosphamide haematotoxicity by Rhodiola rosea root extract in mice with Ehrlich and Lewis transplantable tumors[J]. Eur J Cancer,1991,27 (9):1182.
    [45]Udintsev SN, Krylova SG, Fomina TI. The enhancement of the efficacy of adriamycin by using hepatoprotectors of plant origin in metastases of Ehrlich's adenocarcinoma to the liver in mice. Vopr Onkol,1992,38 (10):1217-1222.
    [46]Wang H, Ding Y, Zhou J, et al. The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3[J]. Phytomedicine,2009,16 (2-3):146-155.
    [47]白孟海,葛宝丰,王琦.红景天预防高原去势大鼠骨质疏松症的实验研究[J].中国骨质疏松杂志,2006,12(1):70-72.
    [48]张胜昌,王淑秋,赵爽.红景天苷对糖尿病并发骨质疏松大鼠瘦素表达的影响[J].中国病理生理杂志,2009,25(4):787-788.
    [49]李恩,孔德娟,蔡辉,等.氨基胍作为治疗骨质疏松症药物的应用[P].中国2001.12.12;申请号/专利号:01118732.
    [50]王真,李电东,毛根祥,等.红景天苷防治骨质疏松的新用途[P].中国2009.9.30;申请号/专利号:200910136168.
    [51]Diaz Lanza AM, Abad Martinez MJ, Fernandez Matellano L, et al. Lignan and phenylpropanoid glycosides from Phillyrea latifolia and their in vitro anti-inflammatory activity[J]. Planta Med,2001,67 (3):219-223.
    [52]周丽君,张振,苏丽,等.高山红景天抗伤害感受作用初探[J]大连医科大学学报,2003,25(3):181-182.
    [53]赵文.藏产红景天混合提取物对BALB/c小鼠免疫功能的影[J].实验动物科学与管理,1988,12(2):25-26.
    [54]金永日.高山红景天茎叶提取物的初步药理研究[J].人参研究,2000,12(2):25-28.
    [55]刘雅娟,郭英,甘振威,等.红景天制剂对老年小鼠脾淋巴细胞转化反应及脂质过氧化作用的影响[J].中国公共卫生,2001,17(3):441.
    [56]Seo WG, Pae HO, Oh GS, et al. The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J Ethnopharmacol,2001,76 (1):119-123.
    [57]蒋明德,甘新宇,解方为,等.红景天苷对乙醛刺激的大鼠肝星状细胞增殖及胶原基因表达的影响[J].药学学报,2002,37(11):841-844.
    [58]吴晓玲,曾维政,蒋明德,等.红景天甙对肝纤维化大鼠Samds基因表达的影响[J]第四军医大学学报,2005,26(10):923-926.
    [59]曾维政,吴晓玲,蒋明德,等.复方红景天干预大鼠肝纤维化作用的实验研究[J].胃肠病学和肝病学杂志,2003,12(1):24-29.
    [60]Salikhova RA, Aleksandrova IV, Mazurik VK, er al. Effect of Rhodiola rosea on the yield of mutation alterations and DNA repair in bone marrow cells[J].Patol Fiziol Eksp Ter,1997,(4):22-24.
    [61]骆传环,高月,王作华,等.红景天多糖的抗放实验的研究[J].中华放射医学与防护杂志,1999,14(18):340-341.
    [62]Darbinyan V, Kteyan A, Panossian A, et al. Rhodiola rosea in stress induced fatigue--a double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty[J]. Phytomedicine,2000,7 (5):365-371.
    [63]姜平,黄立成,寇星灿,等.藏药狭叶红景天的急性毒性与蓄积毒性试验[J].辽宁中医杂志,1995,22(10):475-477.
    [64]李瑾翡,林飞.狭叶红景天的毒理学研究[J].中药新药与临床药理,1994,5(2):28-29.
    [65]曹第勇,周春阳,刘毅,等.圣地红景天长期毒性实验[J].川北医学院学报,1998,13(1):10.
    [66]Zhu J, Wan X, Zhu Y, et al. Evaluation of salidroside in vitro and in vivo genotoxicity[J]. Drug Chem Toxicol,2010,33 (2):220-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700