用户名: 密码: 验证码:
基于位错滑移的铝合金断裂行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料损伤破坏机理一直是材料科学与工程领域研究的热门课题。孔洞长大和聚合直接影响金属材料的断裂过程,以往的研究大多把金属当成各向同性的材料,未考虑晶体取向、晶内及晶间的不均匀塑性变形等因素。而事实上,这些因素决定了孔洞长大和聚合的过程。因此,有必要从细观的角度来研究晶体取向以及晶粒尺度上的不均匀塑性变形等对金属材料断裂行为的影响。
     本文结合晶体塑性力学,采用宏观和细观研究相结合及计算模型、理论分析、实验验证相结合的方法,开展孔洞在铝单晶和晶界上长大与聚合行为的研究工作。通过研究,提出了一种改善高强铝合金断裂韧性的热处理方法。本文主要创新点如下:
     (1)提出了把孔洞视为一种弹性模量和泊松比都非常小的材料来计算孔洞体积的方法。与积分法、给定位移法相比,该方法既避免了积分法的大量编程运算,又解决了给定位移法不能考虑晶体取向对孔洞长大速率影响的难题,且在计算中能直接求解单胞的有效应力和有效应变。
     (2)通过设计平面应变条件下含圆柱形孔洞的铝单晶压缩实验,探明了孔洞周围的晶体取向变化以及孔洞本身的变形规律。
     (3)采用3D晶体有限元探求了FCC晶体中晶体取向对球形孔洞长大和聚合过程的影响,揭示了晶体取向影响孔洞形状、孔洞长大方向、孔洞加速聚合以及裂纹形成的原因。
     (4)采用3D晶体有限元模型把晶体取向与孔洞长大速率以及材料的断裂直接联系在一起,为定量分析初始取向或织构对材料断裂性能的影响提供了一种有效的分析方法。
     (5)首次采用给定位移和多点约束的方法定量地研究了取向差影响孔洞长大和聚合的物理本质;建立了分析大角度晶界对孔洞长大和聚合影响的双晶模型,首次从位错滑移理论的角度揭示了再结晶组织易发生沿晶断裂的本质。
     (6)在研究了固溶制度对7A55和7050铝合金断裂韧性影响规律的基础上,建立了可溶性粒子与再结晶组织对合金断裂韧性的关系,提出了一种使合金既充分固溶又有效抑制再结晶的慢速升温固溶的热处理方法,使合金在具有高强度的同时,提高了合金的断裂韧性。
The damage mechanics of metallic materials is a hot topic in material science and engineering area. The fracture process of metallic materials is affected by void growth and coalescence directly, most of the researchers supposed that metal is isotropic, but they ignored the factors of crystallographic orientation, inter- and intra-granular inhomogeneous deformation. In fact, all the above factors determine the process of void growth and coalescence, so it is necessary to investigate the influence of crystallographic orientation and grain scale heterogeneous plastic deformation on the fractural behavior of metals.
     Integrating with crystal plasticity mechanics, the growth and coalescence behaviors of voids in aluminum single crystal and on the grain boundary were studied by microscopic and macroscopic analysis, through theoretic analysis, numerical calculation and experimental verification, one kind of heat treatment for improving the fracture toughness of high strength aluminum alloys was suggested. The main creative points are as follows:
     (i) To calculate the change of void volume during deformation, the void is regarded as one kind of material with very small Young's modulus and Poisson's ratio. Comparing with integral method and prescribed displacement method, it avoids compiling a long program, and it can solve the problem in prescribed displacement method, which can't consider the influence of crystallographic orientation on the growth rate of void. Besides it can calculate the effective stress and strain of the unit cell.
     (ii) A compression experiment of a cylindrical void in aluminum single crystal was designed. The rule of the change of crystallographic orientation around the voids and the change of void shape was determined.
     (iii) The influence of crystallographic orientation on void growth and coalescence in FCC single crystal was simulated with 3D crystal plasticity finite element theory, and the reasons for the change of void shape, void growth direction, void coalescence and crack formation were revealed.
     (iv) Using 3D crystal plasticity finite element theory and linking the crystallographic orientation directly with the rate of void growth and the fracture behavior of material, an effective method was offered to analyze the influence of the original crystallographic orientation in the material on its fracture properties.
     (v) The effect of misorientation on the void growth and coalescence was first investigated quantitatively by using the multi-point constraints method and prescribed displacement method. Based on the dislocation slip theory, a two-grain model was established to analyze the influence of high angle grain boundary on the void growth and coalescence, which firstly gives the reason why recrystallization structure is easy to fail by intergranular fracture.
     (vi) The effects of solution treatment on the fracture toughness of 7A55 and 7050 aluminum alloys were investigated by experiments, and the relation of soluble particles and recrystallization with the fracture toughness was established. The temperature incremental solution heat treatment was suggested to promote the solutionization and reduce the recrystallization effectively, and the strength and fracture toughness of the alloys were improved.
引文
[1]Duga J J,Fisher W H,Baxbdum R W.Fracture Cost US $ 119 billion a year[J].Int.J.Fracture,1983,41:81-83.
    [2]石德珂.材料力学性能[M].西安:西安交通大学出版社,1998.
    [3]中国航空技术研究院.飞机结构损伤容限设计指南[M].北京:航空工业部科学技术情报研究出版社,1985.
    [4]航空航天工业部科学技术研究院译.美国空军损伤容限设计手册[M].北京:西北工业大学出版社,1989.
    [5]Dieter G E.Mechanical Metallurgy[M].New York:McGraw-Hill,1986
    [6]Dumont D,Deschamps A,Brechet Y.A model for predicting fracture mode and toughness in 7000 series aluminium alloys[J].Acta Mater,2004,52:2529-2540.
    [7]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1994.
    [8]杨卫.细观力学与细观损伤力学[J].力学进展,1992,22(1):1-9.
    [9]杨卫.细观损伤理论进展[M].北京:北京理工大学出版社,1995
    [10]Kachanov L M.On the time to failure under creep condition[J].Izv.Akad.Nauk.USSR.Otd.Tekhn.Nauk,1958,8:26-31.
    [11]Rabotnov Y N.On the equations of state for creep[A].In:Progress in Applied Mechanics-The Prager Anniversary Volume[C],The Macmillan Company,New York,NY,1963,307-315.
    [12]Lemaitre J.A continuous damage mechanics model for ductile fracture[J].J.Eng.Mater and Tech,1985,107:83-89.
    [13]Chaboche J L.Continuum damage mechanics:present state and future trends[J].Nucl.Eng.Design,1987,105:19-33.
    [14]Krajcinovic D.Damage Mechanics[J].Mech.Mater,1989,8:117-197.
    [15]杨卫,孙庆平,黄克智.固体的宏细观本构理论与断裂[J].自然科学进展,1993,3(6):515-524.
    [16]Gifkins R C.Mechanism for the formation of intergranular cracks when boundary sliding occurs[J].Acta Met,1956,4(11):98-99.
    [17]McClintock F A.A Criterion for Ductile Fracture by the Growth of Holes[J].J.Apple.Mech,1968,35:363-371.
    [18]Rice J R,Tracey D M.On the Ductile Enlargement of Voids in Triaxial Stress Fields[J].J.Mech.Phyvs.Solids,1969,17:201-217.
    [19]Gurson A L.Continuum theory of ductile rupture by void nucleation and growth.Part I-Yield Criteria and Flow Rules for Porous Ductile Media[J].J.Eng.Mat.Tech,1977,99:2-15.
    [20]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [21]Tvergaard V.Influence of Voids on Shear Band Instabilities under Plane Strain Condition[J].International Journal of Fracture Mechanics,1981,17:389-407.
    [22]Needleman A.A continuum model for void nucleation by inclusion debonding[J].J.Appl.Mech,1987,54:525-531.
    [23]郑长卿.韧性断裂细观力学的初步研究及其应用[M].西安:西北工业大学出版社,1988.
    [24]郑长卿.裂纹体与无裂纹体统一损伤断裂理论研究文集[M].西安:西北工业大学出版社,1991.
    [25]Sehluter N,Grimpe F.Modelling of the damage in ductile steels[J].Computational Materials Science,1996,7:27-33.
    [26]蒲吉斌.金属材料缺口拉伸试样的损伤和断裂行为[D].兰州:兰州理工大学,2005.
    [27]Agarwal H,Gokhale A M.Void growth in 6061-aluminum alloy under triaxial stress state[J].Materials Sciece and Engineering,2003,341:35-42.
    [28]Beeker R,Smelser R E,Richmond O.J.Mech.Phys.Solids,1989,37(1):111-129.
    [29]Qui Y P,Weng G J.Int.J.Plasticity,1991,9:271-290.
    [30]Needleman A.Void growth in an elastic-plastic medium[J].J.AppI.Mech,1972,39:964-970.
    [31]Worswick M J,Pick R J.Void growth and constitutive softening in a periodically voided dolid[J].J.Mech.Phys.Solids,1990,38:601-625.
    [32]Kuna M,Sun D Z.Three-dimensional cell model analyses of void growth in ductile materials[J].Int.J.of Fracture,1996,81:235-258.
    [33]Thomason P F.Ductile fracture by the growth and coalescence of microvoids of non-Uniform size and spacing[J].Acta Metall.Mater,1993,41:2127-2134.
    [34]Pardoen T,Hutchinson J W.An extended model for void growth and coalescence[J].J.Mech.Phys.Solids,2000,48:2467-2512.
    [35]Horstemeyer M F,Matalanis M M,Sieber A M.Micromechanical finite element calcolations of temperature and void configuration effects on void growth and coalescence[J].Int.J.Plasticity,2000,16:979-1015.
    [36]Li G C,Ling X W,Shen H.On the mechanism of void growth and the effect of straining mode in ductile materials[J].Int.J.Plasticity,2000,16:39-57.
    [37]Pardoen T,Dumont D,Brechet Y,et al.Grain boundary versus transgranular ductile failure[J].J Mech Phys Solids,2003,51(4):637-665.
    [38]Kim J,Gao X S,Srivatsan T S.Modeling of void growth in ductile solids:effects of stress triaxiality and initial porosity[J].Engineering Fract Mech,2004,71:379-400.
    [39]李晓红,张克实.延性材料损伤孔洞尺寸效应探讨[J].机械科学与技术,2002,21(2):460-462.
    [40]李晓红,张克实.延性材料损伤演化及材料软化的孔洞尺寸效应[J].机械强度,2003,25(1):81-84.
    [41]Murakami S,Ohno N.A cotinuum theory of creep and creep damage[A].Proe.3rd IUTAM Symp.on in structures[C].A.R.S.Ponter and D.R.Hayhurst.Springer-Verlag 1980:422-443.
    [42]Chaboche J L.Anisotropie creep damage in the framework of continuum damage mechanics[J].Nucl.Eng.Design,1984,79:309-319.
    [43]Krajcinovic D,U F G.The continumous damage theory of brittle materials.Part 1:general theory[J].J.Appl.Mech,1981,48:809-815.
    [44]Sidoroff F.Description of anisotropic damage application to elasticity[A].Colloquium physical nonlinearities in structural analysis[C].Delft:IUTAM,237-244.
    [45]李振环.韧性材料损伤各向异性破坏机理及本构关系[D].西安:西北工业大学博士学位论文,1997
    [46]Shu J Y.Scale dependent deformation of porous single crystals[J].International Journal of Plasticity,1998,14(10-11):1085-1107.
    [47]Tvergaard V,Niordson C.Nonlocal plasticity effects on interaction of different size voids[J].Int.J.Plasticity,2004,20(1):107-120.
    [48]Wen J,Huang,Y1 Hwang K C,Liu C,et al.The modified Gurson model accounting for the void size effect[J].Int.J.Plasticity,2005,21(2):381-395.
    [49]Orsini V C,Zikry M A.Void growth and interaction in crystalline materials[J].Int.J.Plasticity,2001,17:1393-1417.
    [50]O'Regan T L,Quinn D F,Howe M A,et al.Void growth simulations in single crystals[J].Comput.Mech,1997,20:115-121.
    [51]Sehacht T,Untermann N,Steck E.The influence of crystallographic orientation on the deformation behaviour of single crystals containing microvoids[J].Int.J.Plasticity,2003,19(10):1605-1626.
    [52]Kysar J W,Gan Y X,Arauza M.Cylindrical void in a rigid-ideally plastic single crystal.Part Ⅰ:Anisotropie slip line theory solution for face-centered cubic crystals[J].Int.J.Plasticity,2005,21:1481-1520.
    [53]Gan Y X,Kysar J W,Morse T L.Cylindrical void in a rigid-ideally plastic single crystal Ⅱ:Experiments and simulations[J].Int.J.Plasticity,2006,22:39-72.
    [54]Potirniche G P,Hearndon J L,Horstemeyer M F,et al.Lattice orientation effects on void growth and coalescence in fcc single crystals[J].Int.J.Plasticity,2006,22:921-942.
    [55]潘志军,黎文献.高强铝合金断裂韧性的研究现状及展望[J].材料导报,2002,16(7):14-17.
    [56]潘志军,黎文献.高强铝合金的研究现状及展望[J].铝加工,2001,24(4):39-41.
    [57]哈宽富.断裂物理基础[M].北京:科学出版社,2000.
    [58]高云震.铝合金断裂韧性[M].北京:冶金工业出版社,1980.
    [59]Srivatsan T S.Microstructure,tensile properties and fracture behavior of aluminum alloy 7150[J].J.Mater Sci,1997,32:2883-2894.
    [60]Mamabu N.New aspects of development of high strength alluminum alloys for aseospace applications[J].Mater Sci Eng,2000,A285:62-68.
    [61]Hahn G T,Rosenfield A R.Metallurgical factors affecting fracture toughness of aluminum alloys[J].Metallurgical Transaction A,1975,6A:653-668.
    [62]Garrett G G,Knott J F.Influence of compositional and micostructural variation on mechanism of static fracture in aluminum alloys[J].Metallurgical Transaction A,1978,9A:1187-1201.
    [63]张国君,刘刚,丁向东.含有不同尺度量级第二相的高强铝合金拉伸延性模型[J].中国有色金属学报,2002,12(S(1)):1-10.
    [64]刘刚,张国君,丁向东.含有不同尺度量级第二相的高强铝合金断裂韧性模型[J].中国有色金属学报,2002,12(4):706-713.
    [65]张宝昌.有色金属及热处理[M].北京:国防技术出版社,1981.
    [66]Wu Y,Froes F H.Microalloying of Sc,Ni and Ce in an advanced Al-Zn-Mg-Cu alloy[J].Metall Mater Trans A,1999,30:1017-1024.
    [67]洪永先,张君尧,王祝堂.国外近代变形铝合金专集[M].北京:冶金工业出版社,1987.
    [68]Taylor G I.The mechanism of plastic deformation of crystals,part Ⅰ-theoretical[J].Proc.Roy.Soc,1934,A145:362-387.
    [69]Schmid E,Boss W.Kristallplastizitat[M].Berlin:Springer,1935
    [70]Hill R.Generalized constitutive relations for incremental deformation of metals crystals by multislip[J].Mech.Phys.Solids,1966,14:95-102.
    [71]Hill R,Rice J R.Constitutive analysis of elastic-plastic crystal at arbitrary strain[J].Journal of the mechanics and physics of solids,1972,20:401-413.
    [72]Asaro R J,Rice R J.Strain localization in ductile single crystal[J].Journal of the mechanics and physics of solids,1977,25:309-338.
    [73]Hill R,Havner K.Perspectives in the mechanics of elastoplastic crystlas[J].J.Mech.Phys.solds,1982,30:5-16.
    [74]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995
    [75]Reid C.Deformation geometry for materials scientists[M].New York:Oxford Pergamon Press,1973
    [76]Ashok V K,Chulho Y.Study of working harding models for single crystals using three dimensional finite dement analysis[J].Ini.Journal of Plasticity,1999,15:737-754.
    [77]王自强,段祝平.塑性细观力学[M].北京:科学出版社,1995.
    [78]唐建国.FCC金属不均匀滑移变形的织构多晶体有限元模拟[D].长沙:中南大学,2006.
    [79]姚宗勇.3104铝合金板材深冲制耳的有限元模拟[D].长沙:中南大学,2004.
    [80]胡创国.材料中微孔洞与微裂演化及各向异性性质影响的初步研究[D].西安:西北工业大学.2001.
    [81]Koplik J,Needleman A.Void growth and coalescence in porous plastic solids[J].International Journal of Solids and Structures,1988,24:835-853.
    [82]Thompson C I A,Worswick M J,Pilkey A K,et al.Modeling void nucleation and growth within periodic clusters of particles[J].J.Mech.Phys.Solids,1999,47(1):1-26.
    [83]Nemat-nasser S,Okinaka T,Nesterenko V,et al.Dynamic void collapse in crystals:computational modelling and experiments[J].Philos.Mag.A,1998,78(5):1151-1174.
    [84]刘文辉.连续介质微观力学均匀化方法在粘弹性复合材料中的应用[D].湘潭:湘潭大学,2004.
    [85]Bunge H J.Mathematische Methoden der Texturanalyse[M].Berlin:Akademie-Verlag,1962.
    [86]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1993.
    [87]梁志德.织构材料的三维取向分析术:ODF分析[M].沈阳:东北工学院出版社,1986
    [88]Kooks U F.A symmetric set of Euler angles and oblique orientation space sections.Ed.By Kallend J.S.,Gottstein G.Warrendale:The Metallurgical Society,1988.31-36P.
    [89]Roe R J.Description of crystallite orientation in polycrystalline materials.Ⅲ.general solution to pole figure inversion[J].J Appl Phys,1965,36:2024-2031.
    [90]Hansen N,Leffers T,Kjems J K.Recrystallization kinetics in copper investigated by in situ texture measurements by neutron diffraction[J].Acta Metallurgica,1981,29(8):1523-1533.
    [91]Huachun Pi,Jingtao Han,Chuanguo Zhang,et al.Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM[J].Journal of University of Science and Technology Beijing,2008,15(1):43-47.
    [92]TexSEM Laboratories Inc.TexSEM OIM analysis user manual.1997.
    [93]Solanki K,Horstemeyer M F,Baskes M I,et al.Multiscale study of dynamic void collapse in single crystals[J].Mech.Mater,2005,37:317-330.
    [94]Horstemeyer M F,Ramaswamy S.On factors affecting localization and void growth in ductile metals:a parametric study[J].Int.J.plasticity,2000,9:5-28.
    [95]Horstemeyer M F,Baskes M I,Godfrey A,et al.A large deformation atomistic study examining crystal orientation effects on the stress- strain relationship[J].Int.J.Plasticity,2002,18:203-229.
    [96]李振环,匡震邦,张克实.三轴应力场中不同形状孔洞的长大及其新模型[J].计算力学学报,2000,17(4):447-455.
    [97]李振环,匡震邦.考虑三轴约束时孔洞的聚合机理及有效能量准则[J].力学学报,2000,32(4):428-438.
    [98]钱伟长.弹性力学[M].北京:科学出版社,1956.
    [99]吴建生,林栋梁.双晶Nb的拉伸和循环变形[J].金属学报,1996,32(5):527-531.
    [100]王明章,林实,肖纪美.纯铝双晶变形损伤断裂过程中晶界作用机制[J].金属学报,1996,32(10):1049-1056.
    [101]张哲峰,李广义,王中光,等.铜双晶体中晶界及组元晶界的疲劳寿命[J].金属学报,1998,34(1):51-56.
    [102]Yue Z F,Lu Z Z.Grain boundary-induced shielding of Ni-base single crystals:experimental and analytical study[J].Mater.Sci.Technol,1999,15(5):463-468.
    [103]Peralta P,Schober,Laird C.Elastic stresses in anisotropic bicrystals[J].Mater.Sci.Eng.1993,A169:43-51.
    [104]Tvergaard V,Hutchinson J W.The stress characters of tricrystals[J].J.AM.Ceram.Soc,1988,71(3):157-163.
    [105]王明章.铝及其自生复合材料界面交变形变断裂机制及晶体细观力学模拟的研究[D].北京:北京科技大学,1995.
    [106]Sachs G.Zur Ableitung einer Fliebedingung[J].Zeitschrift des Vereines Deutscher Ingenieure,1928,72:734-736.
    [107]Taylor G I.Plastic strain in metals[J].Journal of the Institute of Metals,1938,72:307-324.
    [108]Houtte P van.On the equivalence of relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals[J].Materials Science and Engineering 1982,55(1):69-77.
    [109]Hirsch J,LuckeK.Mechanism of deformation and development of rolling textures in polycrystalline F.C.C.metals-Ⅱ simulation and interpretation of experiments on the basis of Taylor type theories[J].Acta Metall.,1988,36:2883-2904.
    [110]Eshelby J D.The determination of the elastic field on an ellipsoidal inclusion,and related problems[J].Proc.R.Soc.Land A,1957,319:247-254.
    [111]Eshelby J D.Elastic inclusions and inhomogeneities[M].North Holland Amsterdam:Progress in Solid Mechanics Ⅱ,1961.89-139P.
    [112]Kalidindi S R.Anand L.Approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of fcc metals[J].International Journal of Mechanical Sciences,1992,34(4):309-329.
    [113]Li S,Van H P,Kalidindi S R.A quantitative evaluation of the deformation texture predictions for aluminium alloys from crystal plasticity finite element method[J].Modeling and Simulation in Materials Science and Engineering,2004,12(5):845-870.
    [114]Li S,Kalidindi S R,Beyerlein I J,et al.A crystal plasticity finite element analysis of texture evolution in equal channel angular extrusion[J].JOM,2004,56(11):221-222.
    [115]Frank F.Orientation mapping[J].Metallurgical Transactions A,1988,19:403-408.
    [116]Neumann P.Representation of orientations of symmetrical objects by Rodrigues vectors[J].Textures and Microstructures,1991,14-18:53-58.
    [117]Sutton A,Balluffi R.Interfaces in crystalline materials[M].Oxford:Oxford Press,1996.
    [118]Altmann S.Rotations,quaternions and double groups[M].Oxford:Oxford University Press,1998
    [119]Morawiec A.Orientations and rotations[M].Berlin:Springer-Verlag,2003
    [120]Bollmann W.Crystal defects and crystalline interfaces[M].Berlin:Springer-Verlag,1970
    [121]吴希俊.晶界结构及其对力学性质的影响[J].力学进展,1989,19(4):433-441.
    [122]Alarcon O E,Nazar A M M,Monteiro W A.The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T76 aluminum alloy[J].Material Science and Engineering,1991,138:275-285.
    [123]Dorward R C,Beerntsen D J.Grain structure and quench-rate effects on strength and tougness of AA 7050 Al-Zn-Mg-Cu-Zr alloy plate[J].Metallurgical and Materials Transactions A,1995,26:2481-2484.
    [124]Deshpande N U,Gokhale A M,Denzer D K,et al.Relationship between fracture toughness,fracture path,and microstructure of 7050 aluminum alloy:part Ⅰ:quantitative characterization[J].Metallurgical and Materials Transactions A,1998,29:1191-1201.
    [125]Gokhale A M,Deshpande N U,Denzer D K,et al.Relationship between fracture toughness,fracture path,and microstrueture of 7050 aluminum alloy:,part Ⅱ:multiple micromechanisms-based fracture toughness model[J].Metallurgical and Materials Transactions A,1998,29:1203-1210.
    [126]Morere B,Ehrstrom J C,Gregson P J,et al.Mierostruetural effects on fracture toughness in AA7010 plate[J].Metallurgical and Materials Transactions A,2000,31:2503-2515.
    [127]潘志军.热处理对7804高强铝合金强韧性的影响[D].长沙:中南大学,2003.
    [128]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005.
    [129]Kim W H,Laird C.Crack Nucleation and Stage I propagation in High Strain[J].Acta Metall,1978,26:777-789.
    [130]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,2000.
    [131]Grosskrentz J C,Shaw G C.Fracture 1969[M].:Pergamon,1969
    [132]Li Z H,Guo W L.The influence of plasticity mismatch on the growth and coalescence of spheroidal voids on the bimaterial interface[J].International Journal of Plasticity,2002,18:249-279.
    [133]Alarcon O E,Nazar A M M,Monteiro W A.The effect of microstructure on the mechanical behavior and fracture mechanism in a 7050-T 76 aluminum alloy[J].Material Science and Engineering,1991,138:275-285.
    [134]Chabanet O,Steglich D,Besson J,et al.Predicting crack growth resistance of aluminium sheets[J].Computational Materials Science,2003,26:1-12.
    [135]Ronson J D.Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate[J].Materials Science and Technology,2002,18(6):607-614.
    [136]Robson J D.Microstructural evolution in aluminium alloy 7050 during processing[J].Materials Science and Engineering A,2004,382:112-121.
    [137]Takeshi,Kawabata,Osamu I.Ductile fracture in the interior of precipitate free zone in an Al-6.0%Zn-2.6%Mg alloy[J].Acta metall,1976,24:817-825.
    [138]曾苏民.影响铝合金固溶保温时间的多因素相关规律[J].中国有色金属学报, 1999,9(1):79-88.
    [139]陈康华,刘红卫,刘允中.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响[J].中南工业大学学报,2000,31(4):339-341.
    [140]陈康华,刘红卫,刘允中.强化固溶对Al-Zn-Mg-Cu合金力学性能和断裂行为的影响[J].金属学报,2001,37(1):29-33.
    [141]陈康华,刘红卫,刘允中.强化固溶对7055铝合金力学性能和断裂行为的影响[J].中南工业大学学报,2000,31(6):528-531.
    [142]张新明,黄振宝,刘胜胆,等.双级固溶处理对7A55铝合金组织与力学性能的影响[J].中国有色金属学报,2006,16(9):1527-1533.
    [143]黄振宝,张新明,刘胜胆,等.固溶处理对7A55铝合金组织与力学性能的影响[J].材料热处理学报,2007,28(1):87-91.
    [144]宁爱林,刘志义,郑青春,等.分级固溶对7A04铝合金组织与性能的影响[J].中国有色金属学报,2004,14(7):1211-1216.
    [145]张勤,崔建忠.7075铝合金CREM铸锭的微观组织[J].材料导报,2002,16(1):61-63.
    [146]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700