用户名: 密码: 验证码:
连续时间广义预测控制及其实现方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预测控制是直接从工业过程控制中产生的一类基于模型的先进控制算法,它最大限度地结合了工业实际的要求,综合控制质量高,一直是工业控制界以及理论界的研究热点。控制技术通常都有离散时间版本和连续时间版本,控制工程师可以根据具体的情况选择需要的形式,预测控制也不例外。连续时间广义预测控制(CGPC)提出后,得到了很多学者的关注,它具有与离散时间广义预测控制类似的性能,而且在采样时间的选择上比较灵活,对非最小相位系统也无需控制加权。但是,对它的研究远不如离散时间广义预测控制成熟,仍然存在很多有待解决的问题。本文正是从这一观点出发,在前人研究的基础上,对在连续时间框架下设计的广义预测控制算法及其实现方法进行了研究。本文的主要研究内容有:
     第一,为消除余差,推导了带积分作用的CGPC控制律,在此基础上分析了CGPC闭环设定值响应和干扰响应性能,导出其内模结构,并与具有观测器的CGPC结构比较,说明观测多项式的存在增加了设计自由度,它的调节对系统鲁棒性能和抗干扰性能起着重要作用。为得到预测输出而引入的多项式恒等式方程,需要大量的多项式长除运算,为此提出了一种多项式参数的递推计算方法,简化计算,以利于在线实施。根据CGPC的设计参数对系统性能的影响,以带积分作用的设计模型为基础,提出新的参数整定规则,简化CGPC算法的设计和实现。
     第二,针对传统串级控制结构内外环性能互相耦合的问题,提出一种特殊的具有解耦内外环鲁棒性能的预测控制器。控制算法基于连续时间广义预测控制,将原来的预测输出用带有内环输出信息的预测输出代替,利用类似的性能指标求解控制律。使用一个控制器实现传统的串级控制功能,简化计算和实施。通过分析观测多项式对系统性能的影响,说明观测多项式的设计不影响系统的设定值响应,而且系统内外环的鲁棒性能可以通过各自的设计多项式独立调节。与几种串级控制器的比较仿真结果验证了所提出控制器的有效性能。
     第三,针对时滞对象推导了一种显式处理时滞的方法,通过恒等式运算将时滞补偿引入到控制律中,简化设计,减小计算量。分析了观测多项式对系统抗干扰性能和鲁棒性能的影响,提出在系统存在较大模型误差,尤其是时滞误差时,通过添加失配滤波器提高鲁棒性能的方案(F-SDCGPC)。该滤波器比观测多项式结构简单,同时具有观测多项式不影响系统标称设定值响应的类似性能,因此可以只针对模型失配进行设计,提高CGPC系统对模型失配的主动抑制能力。而且,滤波器的加入简化了参数整定,可以先根据无时滞模型设计参数得到标称设定值跟踪性能,然后再根据可能的模型误差设置滤波器参数。该方法适于控制高阶系统、尤其是有较大的时滞误差的系统。理论分析和数值仿真证明所提出控制结构的有效性。
     第四,针对多变量连续时间广义预测控制提出了一种新的时滞解决方案(MDCGPC)。对于物理可实现的多变量系统,将模型的与多项式矩阵构造成对角形式,将一个多输入多输出模型分解成多个多输入单输出模型进行考虑,在算法的推导过程中,显式考虑纯滞后项,通过参数恒等式的变换将时滞补偿项引入到控制律中,加入一个结构简单的反馈滤波器,调节剩余时滞误差的影响,简化控制器的设计。通过对预测时域和参考轨迹的调节,减小变量间的耦合作用,使系统具有一定的解耦能力。提出了一种恒等式多项式参数的递推计算方法,避免复杂的多项式矩阵除法运算,简化计算,利于在线实施。对Wood-berry模型和Shell模型的仿真验证了所提出方案的有效性。
     第五,使用基于随机数直接搜索的优化方法,辨识过程的连续时间传递函数模型,在此基础上设计连续时间广义预测控制器。基于通常使用的PC机平台,用VC开发了CGPC仿真软件,为推广其实际应用奠定基础。仿真过程中将CGPC控制律视为多个传递函数输出信号的组合,分成单个模块进行计算,为添加新的模块、修改控制律结构和参数提供方便。
Predictive control is a model based advanced control method which is originated directly from the industry process control.It combines the requirement of the practical industry processes and has good control performance.Generally the control techniques have both continuous-and discrete-time versions,and the control engineer,however,is free to choose the design approach according to the practical condition-either continuous or discrete.And predictive control is no exception.Since the continuous-time generalized predictive control(CGPC)is proposed it has attracted many attentions in control fields.It has properties similar to those of the discrete-time generalized predictive control.In addition the choice of sample interval is flexible and the control weighting is not essential for the control of non-minimum phase systems.However,there are still many open problems to be solved.Just from this view,the continuous-time generalized predictive control and its implementation methods are studied.
     First,the CGPC law with integration is derived to eliminate the offset.The closed-loop set-point tracking performance and disturbance-rejection performance are analyzed.The internal model structure of CGPC with integration is derived,and compared with the observer structure of CGPC the important role of observer polynomial is analyzed.A recursive computation method of polynomial parameters which can avoid the complex division computation of polynomial is proposed.According to the effects of tuning parameters to the system performance,some tuning rules are given based on the design model with integration,and they can simplify the design and implementation of CGPC.
     Second,for the coupling performance of the traditional cascade control structure,a special controller with decoupling robustness is proposed.Based on the CGPC algorithm,the original output predictor is replaced by a special predictor with cascade function by using the parameters identities.Thus only one predictive controller can perform the cascade control task.The effects of observer polynomial to the system performance are analyzed.The results show that the robust performance of the inner loop and the outer loop can be tuned separately by the corresponding observer polynomial while the set-point tracking performance is not affected.The compared simulations with the traditional cascade structure verify the performance of the proposed controller.
     Third,a CGPC method explicitly considering time delay (F-SDCGPC)is proposed.By using modified predictive output signal the delay compensator is incorporated in the control law with observer structure.The effects of observer polynomial to the disturbance-rejection performance and robustness are analyzed.A filter is added to enhance the robustness when considering large model error especially time delay error. The tuning of filter can enhance the initiative tuning ability of robustness. The design of filter does not affect the nominal set-point response,and it is more flexible than the design of observer polynomial.This property allows the design of the controller in two steps:firstly the controller parameters are chosen to attempt the nominal set-point performance specifications and then the filter is tuned to increase the robustness.The analysis and simulation results show that the F-SDCGPC has better robustness than the observer structure without filter when large time-delay error is considered.
     Forth,a new delay predictive solution is proposed for the multivariable continuous-time generalized predictive control(MDCGPC). For most of the physical realizable processes,the model parameter matrices can always be diagonally constructed,so that we can transform the multiple inputs and multiple outputs system into a set of multiple inputs single output model.By using the computation of the identities,the delay compensator is introduced in the control law.A filter is added to adapt delay error.Moreover the decoupling performance can be obtained by tuning the predictive horizon and the reference trajectory.The recursive computation method of polynomial parameters reduces the computation load and complexity.Simulations of Wood-berry and Shell models verify the performance.
     Fifth,the continuous-time model is identified by the NLJ method, and then based on this model the continuous-time predictive controller is designed.The CGPC simulation software is developed using VC which is the base to practical application.The CGPC law is considered as combination with the outputs of multiple transfer function blocks,and then the output of the block can be computed separately.This method provides some conveniences to add new blocks.
引文
[1]孙优贤,褚健.工业过程控制技术(方法篇)[M].北京:化学工业出版社,2005
    [2]Rawlings J B.Tutorial overview of model predictive control[J].IEEE Control Systems Magazine,2000,20(3):38-52
    [3]席裕庚,耿晓军,陈虹.预测控制性能研究的新进展[J].控制理论与应用,2000,17(4):469-475
    [4]苏宏业,李林欢,褚健.预测控制的新进展[J].机电工程,2001,18(5):4-8
    [5]许超,陈治纲,邵惠鹤.预测控制技术及应用发展综述[J].化工自动化及仪表,2002,29(3):1-10
    [6]Qin S J,Badgwell T A.An overview of industrial model predictive control technology[J].Control Engineering Practice,2003,733-764
    [7]席裕庚.预测控制[M].北京:国防工业出版社,19913
    [8]舒迪前.预测控制系统及其应用[M].北京:国防工业出版社,1996
    [9]Camacho E F,Bordons C.Model predictive control[M].Berlin:Springer,1999
    [10]Rossiter J A.Model-based predictive control:A practical approach[M].Boca Raton:CRC Press,2003
    [11]Richalet J,Rault A,Testud L,et al.Model predictive heuristic control:application to industrial processes[J].Automatica,1978,14(5):413-428
    [12]Rouhani R,Mehra R K.Model algorithmic control(MAC),Basic theoretical properties[J].Automatica,1982,18(4):401-414
    [13]Cutler C R,Ramaker B L.Dynamic matrix control-a computer control algorithm[C].In:Proc JACC,San Francisco,1980
    [14]褚静.智能预测控制及其应用[M].杭州:浙江大学出版社,2000
    [15]Clarke D W,Mohtadi C,Tufts P S.Generalized predictive control-Part Ⅰ.The basic algorithm [J].Automatica,1987a,23(2),137-148
    [16]Clarke D W,Mohtadi C,Tufts P S.Generalized predictive control-Part Ⅱ Extensions and interpretations[J].Automatica,1987b,23(2),149-160
    [17]Clarke D W,Mohtadi C.Properties of generalized predictive control[J].Automatica,1989,25(6),859-876
    [18]王伟,杨建军.广义预测控制:理论、算法与应用[J].控制理论与控制工程,1997,14(6),777-786.
    [19]Richalet J.,et al.Predictive Functional Control-application to Fast and Accurate Robots[M].IFAC 10~(th)World Congress,Munich,PRG,1987,251-258.
    [20]Qin S J,Badgwell T A.An overview of nonlinear model predictive control applications[M],In: Allg"ower E,Zheng A.(Eds.),Nonlinear model predictive control,Birkhauser Verlag,2000,369-392.
    [21]陈虹,刘志远,解小华.非线性模型预测控制的现状与问题[J].控制与决策,2001,16(4),385-391.
    [22]Genceli H,Nikolaou M.Design of robust constrained model-predictive controllers with Volterra series[J].AIChE J,1995,41(9):2098-2107.
    [23]Doyle F J,Ogunnaike B A,Pearson R K.Nonlinear model-based control using second-order Volterra models[J].Automatica,1995,31(5):697-714.
    [24]Zhu X F,Seborg D E.Nonlinear predictive control based on Hammerstein models[J].控制理论与应用,1994,11(5):564-575.
    [25]Wang W.Generalized predictive control of nonlinear systems of the Hammerstein forms[J].控制理论与应用,1994,11(6):672-680.
    [26]Anders E,Nordsj O.Cramer-Rao bounds for a class of systems described by Wiener and Hammerstein models[J].Int J Contr,1997,68(5):1067-1083.
    [27]Norquay S L.Palazogly A,Romagnoli J A.Nonlinear model predictive control of PH neutralization using Wiener models[A].Proc 13~(th)IFAC World Cong[C].San Fransisco,1996.31-36.
    [28]李少远,李柠.复杂系统的模糊预测控制及其应用[M].科学出版社,2003
    [29]Sharad B and James R W.Benefits of factorized RBF-based NMPC[J].Computers & Chemical Engineering,2002,26(9):1185-1199
    [30]林永君.基于复杂机理模型的过程预测控制研究[D].华北电力大学博士学位论文.2001
    [31]Garcia C E.Quadratic dynamic matrix control of nonlinear processes:an application to a batch reaction process[A].AIChE Annual Meeting[C].San Francisco,1984.
    [32]Gattu G,Zafirium E.Nonlinear quadratic dynamic matrix control with state estimation[J].Ind Eng Chem Res,1992,31(4):1096-1104.
    [33]Peterson T,Hernandez E,Arkun Yet al.A nonlinear DMC algorithm and its application to a semibach polymerization reactor[J].Chem Eng Sci,1992,47(4):737-753.
    [34]Chow C M,Kuznetsov A G,Clarke D W.Using multiple models in predictive control[A].Proc 3~(rd)Euro Contr Conf[C].Rome,1995.1732-1737.
    [35]Xi Y G,Wang F,Wu G H.Nonlinear multi-model predictive control[A].Proc 13~(th)IFAC World Cong[C].San Francisco,1996.485-490.
    [36]达飞鹏,宋文忠.基于模糊神经网络的大时滞系统的预测控制[J].东南大学学报(自然科学版),30(2),2000,67-70
    [37]Da Feipeng.Sliding mode predictive control for long delay time systems[J].Physics Letters A.2006,348,228-232.
    [38]杨马英,王树青,王骥程.大时滞过程的预测控制[J].控制理论与应用,17(1),2000,143-146.
    [39]胡品慧,闫峰.多重滞后系统的预测控制[J].控制与决策,2004,19(11):1294-1297
    [40]Kwon W H,Lee Y S,Han S H.General receding horizon control for linear time-delay systems[J].Automatica 2004,40,1603-1611.
    [41]Kowalczuk Z,Suchomski P.Discrete-time predictive control with over-parameterized delay-plant models and an identified cancellation order[J].Int.J.Appl.Math.Comput.Sci.,2005,15(1):5-34.
    [42]Amparo N-R,Julio E N-,Carlos B,et al.A Smith predictive based MPC in a solar air conditioning plant[J].Journal of Process control 2005,150,1-10.
    [43]Skrjanc I,Blazic S,Oblak S.An approach to predictive control of multivariable time-delayed plant-Stability and design issues[J].ISA Transactions,2004,43:585-595.
    [44]Deepak S,Heinz S,Babu J.Time-stamped model predictive control- an algorithm for control of processes with random delays[J].Computers and Chemical Engineering.2004 28,1337-1346.
    [45]Lu Mei,Shao Huihe.Robust predictive control ofpolytopic uncertain systems with both state and input delays[J].Journal of Systems Engineering and Electronics.2007,18(3):616-621.
    [46]Zhang Qunliang,Xi Yugeng.Resilient predictive control for a class of uncertain time-delay systems[J].Journal of Systems Engineering and Electronics.2007,18(2):334-340.
    [47]李少远,王群仙,陈增强,袁著祉.非最小相位系统的加权预测控制[J].控制理论与应用.1998,15(2):295-298.
    [48]李少远,章春利,陈增强,袁著祉.非最小相位系统具有强鲁棒性的广义预测控制[J].控制与决策.1998,13(1):63-66.
    [49]华建兴,席裕庚.一类非最小相位对象的内模预测控制:MIMO情形[J].控制与决策,1999,14(6):684-688.
    [50]张卫东,何星,许晓鸣.非最小相位系统预测控制算法的频域设计[J].上海交通大学学报,2001,35(11):1628-1630.
    [51]Chow C M,Yoon T W,Clarke D W.An approach to multivariable predictive control with stability guarantees[C].Control '96,UKACC International Conference on(Conf.Publ.No.427).2(2),2-5 Sept.1996:1350-1355
    [52]Tsai C C,Lu C H.Multivariable self-tuning temperature control for plastic injection molding process[J].IEEE Transactions on Industry Applications.34(2),1998:310-318.
    [53]Garcia C E,Morari M.Internal model control.Ind.Engng Chem[J],Process Des.Dev.1982,21(2):308-332,472-494.
    [54]俞金寿,华向明.工业过程模型化及控制(第2版).上海:华东化工学院出版社.1989,124-131.
    [55]Cloud D J,Kouvaritakis B.Characteristic Cecomposition and the multivariable generalization of predictive self-tuning control[J].Proc.lEE,1998,135(3):165-181.
    [56]Kouvaritakis B,Rossiter J A.Multivariable Nyquist self-tuning:a general approach[J].IEE Proc.-D,1989,136(5):189-202.
    [57]Kouvaritakis B,Rossiter J A,Chang A O T.Singular-value-decomposition approach to multivariable generalised predictive control[J].IEE Proceedings D Control Theory and Applications,[see also IEE Proceedings-Control Theory and Applications].140(3),1993,145-154
    [58]Kouvaritakis B,Rossiter J A,Chang A O T.Gain/phase decomposition and generalized predictive control of scalar systems[J].IEE Proc.-D,1993,139(1):97-105.
    [59]Chai T,Mao K,Qiu X.Decoupling Design of Multivariable Generalized Predictive Control[J].IEE Proceedings- D,1994,141(3):197-201.
    [60]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社.2001.
    [61]Wang Zenghui,Chen Zengqiang,Sun Qinglin,et al.Multivariable decoupling predictive control based on QFT theory and application in CSTR chemical process[J].Chinese Journal of Chemical Engineering,2006,14(6):765-769
    [62]Rani K Y,Unbenanen H.Study of Predictive Controller Tuning Methods[J].Automatica,1997,33(2):2243-2248
    [63]Maurath P R,Seborg D E,Mellichamp D A.Predictive controller design by principal components analysis[C].In Proc.Am.Control Conf.,1985,2:1059-1065
    [64]Georgiou A,Georgakis C,Luyben W L.Nonlinear Dynamic Matrix Control for High-Purity Distillation Columns[J].AIChE,1988,34:1287-1298.
    [65]Hinde J R F,Copper D J A.Pattern-based approach to excitating diagnostics for adaptive Process Control[J].Chemical Engineering Science,1994,49:1403-1415
    [66]Banerjee P,Shah S L.Tuning Guide-Lines for Robust Generalized Predictive Control[C].Proceedings of 31st IEEE Conference on Decision and Control,1992,4:3233-3234
    [67]McIntosh A R,Shah S L,Fisher D G.Selection of Tuning Parameters for Adaptive Generalized Predictive Control[C].Proceedings of AM Control Conference,1989,1846-1851
    [68]Mclntosh A R,Shah S L,Fisher D G.Analysis and tuning of adaptive generalized predictive control[J].Canadian Journal of Chemical Engineering,1991,69:97-110
    [69]Shridhar R,Cooper D J A.Tuning strategy for unconstrained SISO model predictive control[J].Ind.Eng.Chem.Res.,1997,36:729.
    [70]Shridhar R,Copper D J.A novel tuning strategy for multivariable model predictive control[J].ISA Transactions,1998,36(4):273-280.
    [71]罗刚,金炜东,李治.动态矩阵控制参数的满意优化[J].信息与控制.1999,28(1).
    [72]Al-Ghazzawi A,Ali E,Nouh A,et al.On-line tuning strategy for model predictive controllers[J]. Journal of Process Control,2001,11:265-284.
    [73]袁璞.单值预估控制[J].石油大学学报(自然科学版).1992,16(5):100-109.
    [74]李伟,刘育,金和平.双值DMC控制及在快速动态过程中的应用[J].计算技术与自动化,1993,112(1):20-23
    [75]李迎春,申东日,陈义俊.单值模型预测控制的应用研究[J].化工自动化及仪表,2002,129(1):35-37
    [76]金元郁,顾兴源.改进的广义预测控制算法[J].信息与控制,1990,19(3):8-14.
    [77]金元郁,顾兴源.改进的多变量广义预测控制算法[J].信息与控制,1990,19(6):20-22.
    [78]袁著祉.递推广义预测自校正控制器[J].自动化学报.1989,15(4):348-351.
    [79]徐立鸿,袁震东.ARMAX模型的递推广义预测控制算法[J].控制理论与应用.1990,7(3):102-107.
    [80]郭庆鼎,金元郁,古月耀华.求解GPC中逆矩阵的递推算法[J].控制与决策.1996,11(4):510-513.
    [81]王一晶,左志强.一种新型广义预测控制快速算法[J].模型识别与人工智能.2002,15(3):295-298.
    [82]李奇安.多变量广义预测控制简化实施[D].浙江大学博士学位论文.2005
    [83]慕德俊.基于输入输出模型广义预测模型的并行算法[J].控制理论与应用.1997,14(1):80-83
    [84]席裕庚.复杂工业过程的满意控制[J].信息与控制,1995,1
    [85]Wang Yuhong,Huang Dexian,Jin Yihui.A Hybrid Model Predictive Control for Handling Infeasibility and Constraint Prioritization[J].Chinese Journal of Chemical Engineering.2005,(2):211-217
    [86]G.P.Liu and S.Daley.Adaptive predictive control of combustor NOx emissions Control[J].Engineering Practice,2001,9(6):631-638
    [87]Wang S W,Yu D L,Gomm J B,et al.Douglas Adaptive neural network model based predictive control for air-fuel ratio of SI engines[J].Engineering Applications of Artificial Intelligence,2006,19(2):189-200
    [88]杨华.基于子空间方法的系统辨识及预测控制设计[D].上海交通大学,2007
    [89]Mayne D Q,Rawlings J B,Rao C V,et al.Constrained model predictive control:stability and optimality[J].Automatica,2000,36(4):789-814.
    [90]魏环,潘立登.简化稳定广义预测控制[J].系统仿真学报.2006
    [91]Alejandro H,Gonzalez,Darci O.A stable MPC with zone control[J].Journal of Process Control.2008,in press.
    [92]Campo P J,Morari M.Robust model predictive control.In Proc.Amer.Control Conf.,1987,2:1021-1026.
    [93]Kouvaritakis B,Rossiter J A,Chang A O T.Stable generalized predictive control:an algorithm with guaranteed stability[J].IEE Proceedings:Control Theory and Applications,1992,139(4):349-362.
    [94]Demircioglu H,Gawthrop P J.Continuous-time Generalized Predictive Control(CGPC)[J].Automatica,1991,22(1):55-74.
    [95]Huseyin Demircioglu,Ercan Karasu.Generalized predictive control:a practical application and comparison of discrete and continuous-time versions[J].IEEE control system magazine,2000,20(5):36-47.
    [96]Wang L,Smith Stephen,Chessari Charlie.Continuous-time model predictive control of food extruder[J].Control Engineering Practice.in press.
    [97]Demircioglu H,Clark D W.CGPC with guaranteed stability properties[J].IEE proceedings-D,1992,139(4):371-380.
    [98]Wang Z H,Chen Z Q,Yuan Z Z.Robustly Stable Control of Continuous-time Generalized Predictive Control Combined with QFT Based on GIMC Structure[J].Acta Automatica Sinica.2007,33(6):649-652.
    [99]Kouvaritakis B,Cannon M,Rossiter J A.Recent developments in generalized predictive control for continuous-time systems[J].INT.J.Control.1999,72(2):164-173.
    [100]Demircioglu H,Yavuzyilmaz C.Constrained predictive control in continuous-time[J].IEEE Control Systems Magazine.2002,57-67.
    [101]Deng M C,Inoue A,Yanou A,et al.Continuous-time anti-windup generalized predictive control of non-minimum phase processes with input constraints[J].Proceedings of the 42~(nd)IEEE conference on Decision and Control.Maui,Hawaii USA,2003.4457-4461.
    [102]袁天保,刘新建,秦子增.混合加权连续预测控制研究[J].电机与控制学报.2005,9(6):593-599.
    [103]刘兵,冯纯伯.多指标的连续预测控制系统设计[J].控制理论与应用.1999,16(1):117-119.
    [104]Wang Z H,Chen Z Q,Sun Q L,et al.Robust Stability Analysis of CGPC.The 6th World Congress on Intelligent Control and Automation,Dalian,China,2006:324-328
    [105]Demircioglu H,Gawthrop P J.Multivafiable continuous-time generalized predictive control[J].Automatica,1991,22(1):55-74.
    [106]吕剑虹,陈米九.一种多变量连续时间预测控制方法[J].自动化学报.1995,21(2):203-208
    [107]Gawthrop P J,Demircioglu H,Siller-Aicala I I.Multivariable continuous-time generalized predictive control:a state-space approach to linear and nonlinear systems[J].IEE Proc.-Control Theory Appl.,1998,145(3):241-250
    [108]刘兵,徐立鸿,冯纯伯.多变量连续预测控制的动态补偿[J].控制理论与应用.1997,14(4):570-573.
    [109]Yamaguchi A,Deng M C,Inoue A,et al.Application of an anti-windup multivariable continuous-time generalized predictive control to a temperature control of an aluminum plate[A].In:Proceedings of the 5~(th)Asian Control Conference[C].Australia:Melbourne,2004.1685-1691.
    [110]Kefsi L,Chrifi L,Mahieddine S M,et al.Multivariable CGPC based internal model control:application to induction motor control[A].In:Proceedings of 2004 IEEE International Conference on Industrial Technology[C].Tunisia:Hammamet,2004.444-448.
    [111]金以慧,方崇智.过程控制[M].清华大学出版社.1993
    [112]李全善,潘立登,王文新,甄新平.催化裂化装置PID控制回路的优化[J].石油炼制与化工,2004,35(9):46-50
    [113]Song SH,Cai WJ and Wang YG,Auto-tuning of Cascade Control Systems[C],ISA transactions,2003,42(1):63-72
    [114]K.K.Tan,T.H.Lee,R.Ferdous,Simultaneous online automatic tuning of cascade control for open loop stable processes[C],ISA Transactions.2000,39:233-242.
    [115]T.F.Edgar,B.S.Ko,Performance assessment of cascade control loops[J],AIChE Journal.2000,46(2):281-291.
    [116]Min Xu,Shaoyuan Li,Wenjian Cai.Cascade generalized predictive control strategy for boiler drum level[J].ISA Transactions,2005,44,399-411.
    [117]Kamel Barra,Khier Benmahammed.A new extended cascaded predictive control ECGPC of an induction motor drive with energy saving[C].IEEE MELECON 2006,May 16-19,Benalmadena (Malaga),Spain
    [118]李奇安,李平,于海斌,王树青.串联系统的多前馈-反馈广义预测控制[J].控制与决策,2002,17(4),402-406.
    [119]Kaya I,Improving performance of cascade control and a Smith predictor[J],ISA Transactions,40(3),223-234(2001).
    [120]Liu T,Gu D and Zhang W,Decoupling two-degree-of-freedom control strategy for cascade control systems[J],Journal of Process Control,2005,15(2):159-167.
    [121]王树青,工业过程控制工程[M].化学工业出版社.2003
    [122]潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2003.170-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700