用户名: 密码: 验证码:
n-HA/PVA凝胶关节软骨修复材料制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乙烯醇(PVA)凝胶复合材料是一种潜在的优良关节软骨修复材料。本文采用原位合成和冷冻-解冻相结合的方法制备了纳米羟基磷灰石增强聚乙烯醇(n-HA/PVA)凝胶复合材料。通过多种实验检测手段对凝胶复合材料进行了显微形貌观察和结构表征;系统研究了复合水凝胶材料的力学性能和生物摩擦学性能。主要内容包括:
     1.通过在PVA溶液中原位合成n-HA粒子和冷冻-解冻相结合的方法制备n-HA/PVA凝胶复合材料。结果表明,PVA溶液同时起到分散剂的作用,可有效阻止晶粒长大、降低粒子结晶度和提高n-HA的分散性。显微形貌显示随着n-HA含量的增加,复合材料中n-HA粒子趋于团聚。
     2.n-HA/PVA凝胶复合材料的应力-应变呈现出典型的非线性特性,是一种粘弹性材料。拉伸和压缩强度均随基体PVA溶液的浓度和冷冻-解冻循环次数的增加而增加,随n-HA含量的增加呈现出先上升后下降的趋势。复合材料的拉伸模量随应变的增加呈线性增加,压缩模量随应变的增加呈指数规律上升。凝胶复合材料的储能模量和损耗模量均随频率、PVA溶液浓度和冷冻-解冻循环次数的增加而增加,随n-HA含量的增加呈现出先上升后下降的变化趋势。当n-HA含量为6%时达最大值。
     3.凝胶复合材料的松弛速率随松弛时间的增加而快速下降,随n-HA含量的增加呈现出先上升而后下降的趋势,随初始应变量的增加而增加。归一化平衡松弛模量则随n-HA含量的增加表现为先下降后上升的变化趋势。建立了符合n-HA/PVA凝胶复合材料应力松弛行为的广义Maxwell模型。凝胶复合材料的松弛机理为:凝胶三维网络结构中大量自由水分在短时间内的挤出和聚乙烯醇高聚物键长和键角的瞬时变化导致其快速松弛;网络结构和高分子链段的运动导致中速和慢速松弛。
     4.利用Hertz接触理论和弹性流体润滑理论揭示了凝胶复合材料的摩擦系数随不同因素的变化规律。n-HA/PVA凝胶复合材料的摩擦系数随载荷的增加而上升,随摩擦配副不锈钢球半径和滑动速度的增加而下降,随n-HA含量的增加呈现出先下降而后上升的趋势。当n-HA含量为4.5%时,摩擦系数达到最小值0.0458。复合水凝胶在小牛血清润滑条件下的摩擦系数明显低于其在蒸馏水和生理盐水润滑下的摩擦系数。
     5.通过改变制备工艺可调控n-HA/PVA凝胶复合材料的力学性能和生物摩擦学性能。较佳制备工艺条件为:复合材料中n-HA含量为6%、基体PVA浓度为20%、冷冻-解冻循环次数为5次。制备的n-HA/PVA复合水凝胶材料具有与自然关节软骨相似结构、力学与摩擦学性能,是一种很有应用前景的关节软骨修复材料。
Poly vinyl alcohol(PVA)hydrogel composite is a promising articular cartilage repairing material.In this dissertation,n-HA/PVA gel composite was prepared by in situ synthesis of nano-HA from PVA solution and combined with freezing/thawing method. The micro-morphology and structure were characterized by many experimental techniques such as TEM,SEM,XRD and FTIR.The mechanical and biotribological properties of n-HA/PVA composite were systemic studied.The main contents and results are as follows:
     1.n-HA/PVA gel composite was prepared by in situ synthesis of nano-HA from PVA solution and combined with freezing/thawing method.PVA solution also acted as dispersant to inhibit grain growth,decrease crystallinity degree and improve dispersibility of nano-hydroxyapatite.The results of micro-morphology showed that the nano-hydroxyapatite tents to agglomeration with the increase of nano-hydroxyapatite content in the composite.
     2.The change behaviors of tensile and compressive stress of the gel composite with the strain are accorded with non-linear characteristics.Both tensile strength and compressive strength of the composite increase with the rise of PVA solution and freezing/thawing cycle times.The tensile and compressive strength firstly increase and then tend to reducing with the increase of n-HA content.The tensile modulus of the composite increases linearly and compressive modulus increase exponentially with the rise of strain.Both storage and loss modulus of the gel composites increase with test frequency,PVA content and freezing/thawing cycles.The change behavior of their modulus with the rise of HA content represent increase firstly and then decrease.The maximum value of the storage and loss modulus reached while n-HA content in the composites is 6%.
     3.The stress relaxation speed of the gel composites decreases rapidly with the rise of relaxation time and increases with the rise of initial strain.At the same initial strain, the stress relaxation speed of the gel composites increases firstly and then tent to decrease.However,the normalized equilibrium relaxation modulus decreases firstly and the increases with the improvement of HA content.The generalized Maxwell model is established to characterize the stress relaxation behavior of the n-HA/PVA gel composites.The stress relaxation mechanism of the composites are:(1)Water rapid extrusion of the composites and the instantaneous change of bond length and bond angle of PVA result in rapid stress relaxation;(2)The movements of network structure and polymeric chain segment cause moderate and slow speed stress relaxations.
     4.The change behavior of the gel composites friction coefficient with different influence factors is revealed by Hertz contact theory and elasto-hydrodynamic lubrication theory, The friction coefficient of the gel composites increases with the rise of load and decreases with rise of radium of stainless steel ball and sliding speed.The friction coefficient decreases firstly and then increases with the rise of n-HA content.The minimum value is 0.0458 while n-HA content is 4.5%.The friction coefficient of the gel composites is lower in bovine serum than that in distilled water and physiological saline.
     5.The mechanical and bio-triblogical properties of the gel composites can be controlled by varation of processing conditions.For the n-HA/PVA gel composites used as an articular cartilage,the optimum preparation process of n-HA/PVA gel composites is 6wt%HA in 20wt%PVA matrix by 5 freeze/thaw cycle times.n-HA/PVA gel composite is a promising articular cartilage repairing material which possesses similar mechanical and biotribological properties to that of natural articular cartilage.
引文
[1]Paul Sung K L.Biocompatibility Material with Non-Biocompatibility response:Prosthesis[C].医学假体工程国际学术研讨会(2~(nd)),上海,2002,10
    [2]Hangody L,Rathonyi G K,Duska Z,et al.Autologous osteochondral mosaicplasty[J].Surgical technique,J.Bone Joint Surg(Am),2004,86(11):65-72
    [3]Cho H J,Wei W J,Kao H C.et al.Wear behavior of UHMWPE sliding on artificial hip arthroplasty materials[J].Materials chemistry and physics,2004,88:9-16
    [4]Hunziker E B.Articular cartilage repair:basic science and clinical progress:a review of the current status and prospects[J].Osteoarthritis cartilage,2002,10(6):432-463;
    [5]Mow V C,Wang C C,Huang C T.The extracellular matrix,intersititial fluid and ions as a mechanical signal transducer in articular cartilage[J].Osteoarthritis and Cartilage,1999,7:41-58
    [6]Mow V C,Lai W M.Structure and mechanical properties of articular cartilage[J].Materials Science Monographs,1986:39-73
    [7]孟维春,董启榕.关节软骨压缩特性的实验研究[J].医用生物力学,2003;18(1):28-33
    [8]Teshima R,Otsuka T,Takasu N,Yamagata N,et al.Structure of the most superficial layer of articular cartilage[J].J.Bone Joint Surg.(Br.),1995,3(77-B):460-464
    [9]孟广伟,程杰平,马洪顺.髌骨软骨拉伸应力松弛蠕变实验研究[J].医用生物力学,2003,18(4):239-243
    [10]翁习生,仉建国,张嘉,等.髌骨软骨粘弹特性的实验研究[J].中国医学科学院学报,1999,21(1):53-56
    [11]王野平,王成焘.天然关节及人工关节润滑机理的探讨[J].生物医学工程学杂志,2001,18(4):603-607
    [12]MacConaill M.A.Function of intra-articular fibrocartilages with special reference to the knee and inferior-radio-ulnar joints[J].Anat,1932,66:210-255
    [13]Ateshian G A.A theoretical formation for boundary friction in reticular cartilage[J].ASME Trans,J.Biomech.Eng.,1998,120:119-126
    [14]Dowson D.Modes of lubrication in human joints[J].Proc.Instn.Mech.Engrs,1966-67,181:45-54
    [15]Tanner R I.An alternative mechanism for the lubrication of synovial joints[J].Phys.Med.Biol.,1966,11:119-127
    [16]Dowson D,Wright V.An introduction to the bio-mechanics of joints and joint replacement[M].London:Mechanical Engineering Publication Ltd,1981:120-145
    [17]Fein R S.Are synovial joints squeeze film lubricated[J]? Proc.Instn Mech.Engrs. 1966-67,181:125-128
    [18]Maroudas A.Hyaluronic acid films[J].Proc.Instn Mech.Engrs.1966-67,181:122-124
    [19]Unsworth A.Recent developments in the tribology of artificial joints[J].Tribology International,1995,28(7):485-492
    [20]Kim H K,Moran M E,Salter R B.The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion.An experimental investigation in rabbits [J].J.Bone Joint Surg.(Am)1991,73(9):1301-1305
    [21]Convery F R,Akeson W H,Keown G H.The repair of large osteochondral defects.An experimental study in horses[J].Clin.Orthop.Relat.Res.,1972,82:253-262
    [22]Outerbridge H K.,Outerbridge A R,Outerbridge R E.The use of a lateral patellar autologous graft for the repair of a large osteochondral defect in the knee[J].Bone and Joint Surg.,1995,77-A:65-72
    [23]许永涛,尚平.关节镜下自体骨软骨移植修复软骨缺损[J].中国修复重建外科杂志,2006,20(6):620-622.
    [24]Ghazavi M T,Pritzker K P,Dans AM.Fresh osteochondral defects of the knee.J Bone Joint Surg(Br),1997,79(4):1008-1013
    [25]Gross A,Fresh E.Osteochondral allografts for post-traumatic knee defects:surgical technique[J].Op.Tech.Orthop.,1997,7(2):334-339
    [26]Aubin P P,Cheah H K,Davis A M,et al.Long-term follow-up of fresh femoral osteochondral autografts for post-traumatic knee defects[J].Clin.Orthop.Relat.Res,2001,391:S381-327
    [27]Breinan H.A,Minas T,Hsu H P,et al.Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model[J].J.Bone and Joint Surg.,1997,79-A:1439-1451
    [28]Bentley G.,Greer R B.Homo transplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits[J].Nature,1971,230:385-388
    [29]Grande D A,Pitman M I,Peterson I.,et al.The repair of experimentally produced defects in rabbit articular cartilage by autologous choadrocyte transplantation[J].Orthop.Res.,1989,7(2):208-218
    [30]Van G J,Van S W,Burger E H,et al.Chondrogenic potential of in vitro multiplied rabbit perichondrium cells cultured in alginate beads in defined medium[J].Tissue Eng.,2000,6:321-330
    [31]Dounchis J S,Coutts R D,Amiel D.Cartilage repair with autogenic perichondrium cell/polylactic acid grafts:A two-year study in rabbits[J].Orthopaedic Research,2000,18(3):512-515
    [32]Homminga G N,Bulstra S K.,Bouwmeester P S.,et al.Perichondral grafting for cartilage lesions of the knee[J].J.Bone Joint Surg.(Br.),1990,72-B(6):1003-1007
    [33]马兴,胡蕴玉.关节软骨损伤修复研究新进展[J].中华创伤杂志,2005,21(10):789-791
    [34]Langer R,Vacanti J P.Tissue Engineering[J].Science,1993,260(5110):920-926
    [35]王瑞,赵建宁.关节软骨组织工程修复的种子细胞[J].中国骨与关节损伤杂志,2005,20(9):646-647
    [36]Perka C,Spitzer R S,Lindenhayn K.Matrix-mixed culture new methodology for chondrocyte culture and preparation of cartilage transplants[J].Biomed.Mater.Res.2000,49(3):305-311
    [37]Marcacci M,Zaffagnini S,Kon E,et al.Arthroscopic autologous chondrocyte transplantation:technical note[J].Knee Surg.Sports Traumatol Arthrosc,2002,10:154-159
    [38]Bartlett W,Flanagan A M,Gooding C R,et al.Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee:a prospective,randomized study[J].J.Bone Joint Surg.,2005,87:640-645
    [39]Yasushi M,Javad J,Jamcs S,et al.Brief exposure to high dose transforming growth factor-β1enhances periosteal chondrogenesis in vitro[J].The J.Bone Joint Surg.,2002,5:793-799
    [40]Chofild J N,Wdpert L.Effect of TGF-β1,TGF-β2 and b-FGF on chick cartilage and muscle cell differentiation[J].Exp Cell Res.,1990,191:144-149
    [41]Wu L N,Ishikawa Y,Genge B R,et al.Effect of osteogenic protein-1 on the development and mineraliation of primary cultures of avian growth plate chondrocytes:modulation by tetinoic acid [J].Cell Biochem.,1997,67(4):498-513
    [42]杨志明.组织工程基础与临床[M].成都:四川科学技术出版社,2000:50-51
    [43]Fujimoto E,Ochi V I,Kato Y,et al.Beneficial effect of basic fibroblast growth factor on the repair of full thickness defects in rabbit articular cartilage[J].Orthop Traumo Surg,1999,119:139-145
    [44]Martin I,Suetterlin R,Baschong W,et al.Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation[J].J.cell Biochem.,2001,83:121-122
    [45]朱立新,靳安民,李奇,等.多细胞生长因子联合作用软骨块修复关节软骨缺损的实验[J].中国临床康复,2006,10(33):78-80
    [46]方丽茹,翁文剑.骨组织工程支架及生物材料研究[J].生物医学工程杂志,2003,20(1):148-152
    [47]马朋高,游秀东,姚康德,等.骨组织工程及可吸收高分子支架的研究进展[J].化学通报,2001.7:407-410
    [48]Wambach B A,Cheung H,Josephson G D.Cartilage tissue engineering using thyroid chondrocytes on a type Ⅰ collagen matrix[J].Laryngoscope,2000,110(12):2008-2011
    [49]夏万尧,曹谊林,商庆新.壳聚糖作为组织工程软骨支架的实验研究[J].中华显微外科杂志,2002,25(1):34-37
    [50]宋红星,刘淼,李佛保.松质骨骨基质明胶负载软骨细胞体外培养的实验研究[J].骨与关节损伤杂志,2002,1(17):37-39
    [51]傅捷,祝云利,吴海山,等.兔关节软骨细胞在纤维蛋白胶中体外培养[J].第二军医大学学报,2000,21(7):670-672
    [52]Buma P,Pieper J S,Tienen T V,et al.Cross-linked type Ⅰ and type Ⅱ collagenous matrices for the repair of full-thickness articular cartilage defects-a study in rabbits[J].Biomaterials,2003,24:3255
    [53]Lee C,Grodz A,Hsu H,et al.Effects of cultured autologous chondrocyte-seeded type Ⅱ collagen scaffold on the healing ofa chondral defect in a canine model[J].Orthop.Res.,2003,21:272
    [54]王军,李新松,赵艳秋,等.壳聚糖多孔支架的制备与生物学性质[J].东南大学学报,2004,34(1):67-71
    [55]郭希民,王常勇,薄斌.骨髓间质干细胞复合生物陶瓷构建组织工程化人工软骨[J].中国修复重建外科杂志,2003,17(2):147-152
    [56]Liu Y,Chen F,Liu W,et al.Repairing large porcine full thickness defects of articular cartilage using autologous chondrocyte engineered cartilage[J].Tissue Eng,2002,8(4):709-721
    [57]Lohmann C H,Schwartz Z,Niederauer G G,et al.Pretreatment with platelet derived growth factor modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo[J].Biomaterials,2000,21(1):249-261
    [58]Chu C R,Coutts R D,Yoshioka M,et al.Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid(PLA):a tissue-engineering study[J].Biomed.Mater.Res,,1995,29(9):1147-1154
    [59]Breibart A S,Grande D A,Kessler R,et al.Tissue engineered bone repair of calvarial defects using cultured periosteal cells[J].Plast Reconstr.Surg.,1998,101,(3):567-574
    [60]王卫国,娄思权,郑多,等.利用PLGA细胞支架再生人关节软骨的实验研究[J].中国现代医学杂志,2003,13(11):1-5
    [61]赵峰,尹玉姬,姚康德,等.壳聚糖-明胶/羟基磷灰石复合支架材料-成骨细胞培养[J].中国修复重建外科杂志,2002,16(2):130-133
    [62]Ignjatovic N,Tomic M.Synthesis and properties of hydroxyapatite/poly-L-Lactide composite biomaterials[J].Biomaterials,1999,20(9):809-816
    [63]Bakos D,Soldan M,Hernandez F I.Hydroxyapatite-collagen-hyaluronic acid composite[J].Biomaterials,1999,20(2):191-195
    [64]周晓中,张文智,吕维佳,等.多聚乙醇酸-羟基磷灰石复合体为支架的骨髓基质细胞修复 兔关节软骨缺损[J].中华创伤杂志,2005,21(8):617-620
    [65]夏万尧,刘伟,崔磊,等.壳聚糖-明胶多孔复合支架构建自体组织工程化软骨组织的实验研究[J].中华医学杂志,2003,83(7):577-579
    [66]Kikuchi M,Itoh S,Ichinose S,et al.Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo[J].Biomaterials,2001,52(2):329-335
    [67]Laurencin C T,Lu H H.polymer-ceramic composites for bone-tissue engineering in bone engineering[M].Canada:Toronto,,Davies,J,E.em Squared Incorporated.2000,462-467
    [68]Breitbart A S,Grande D A,Kessler R,et al.Tissue engineeredbone repair of calvarial defects using cultured periosteal cells[J].Plast Reconstr.Surg,1998,101(3):567-576
    [69]刘彦春,王炜,曹谊林.包埋后的几丁质与软骨细胞体外培养的实验研究[J].中华外科杂志,1998,36(8):495-496
    [70]Yang X B,Roach H I,Clarke N M P,et al.Human osteo-progenitor growth and differentiation on synthetic biodegradable structures after surface modification[J].Bone,2001,29(6):523-533
    [71]Robin A Q,Weng,C Chan,Martyn C D.Poly(L-lysine)-GRGDS as a biomimetie surface modifier for poly(lactic acid)[J].Biomaterials,2001,22:865-872
    [72]Kobayashi M,Toguchida J,Oka M.Preliminary study of polyvinyl aleohol-hydrogel(PVA-H)artificial meniscus[J].Biomaterials,2003,24:639-647
    [73]Radice M,Brum P,Cortivo R,et al.Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenehymal progenitors[J].Biomed.Mater.Res,2000,50:101-109
    [74]Eyrich D,Brandl F,Appel B,et al.Long-term stable fibrin gels for cartilage engineering[J].Biomaterials,2007,28:55-65
    [75]刘文忠,夏亚一,汪玉良,等.水凝胶材料复合物修复软骨缺损的组织学评鉴[J].兰州大学学报,2006,32(4):26-29
    [76]吴李国,章悦庭,胡绍华.聚乙烯醇水凝胶的制备及应用进展[J].东华大学学报,2001,27(6):114-117
    [77]Kujawa M J,Caplan A I.Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures[J].Dev.Biol,1986,114:504-518
    [78]Knudson W,Casey B,Nishida Y,et al.Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis[J].Arthritis Rheum,2000,43:1165-1174
    [79]江磊,林宝风,梁兴泉,等.壳聚糖及其衍生物水凝胶的研究进展[J].化学通报,2007,1:47-51
    [80]Bensaid W,Triffitt J T,Blanchat C,et al.A biodegradable fibrin scaffold for mesenchymal stem cell transplantation[J].Biomaterials,2003,24:2497-2502
    [81]Ruszymah B H.Autologous human fibrin as the biomaterial for tissue engineering[J].Med.Mater.,2004,59:30-31
    [82]陈克明,葛宝丰,刘兴炎,等.骨髓间充质干细胞复合纤维蛋白凝胶修复大面积关节软骨缺损[J].中国矫形外科杂志,2004,12(6):444-446
    [83]Yasuda K,Gong J P,Katsuyama Y,et al.Biomechanical properities of high-toughness double network hydrogels[J].Biomaterials,2005,26:4468-4475
    [84]Nebahat D,Kalyon D M,Birinci E.Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)[J].Colloids and Surfaces B:Biointerfaces,2006,48:42-49
    [85]Jeon O,Song S J,Lee K J,et al.Mechanical properties and degradation behaviors ofhyaluronic acid hydrogels cross-linked at various cross-linking densities[J].Carbohydrate polymers,2007,70(3):251-257
    [86]Johnson B D,Beebe D J,Crone W C.Effects of swelling on the mechanical properties of a PH-sensitive hydrogel for use in microfluidic devices[J].Materials science and engineering C,2004,24:575-581
    [87]Stammen J A,Williams S,Ku D N,et al.Mechanical properites of a vovel PVA hydrogel in shear and unconfined compression[J].Biomaterials,2001,22:799-806
    [88]Choi J,Senturk H B,Kung H J,et al.Effects of solvent dehydration on creep resistance of poly(vinyl alcohol)hydrogel[J].Biomaterials,2007,28:772-780
    [89]Baccaro S,Pajewski,Scoccia G,et al.Mechanical properties of polyvinylpyrrolidone(PVP)hydrogels undergoing radiation[J].Nuclear instruments and methods in physics research B,1995,105:100-102
    [90].Kong H J,Lee K Y,Mooney D J.Decoupling the dependence of theological/mechanical properties of hydrogels from solids concentration[J].Polymer,2002,43:6239-6246
    [91]Hernandez R,Sarafian A,Lopez D,et al.Viscoelastic properties ofpoly(vinyl alcohol)hydrogels and ferrogels obtained through freezing-thawing cylces[J].Polymer,2004,46:5543-5549
    [92]王丽,高瑾,李久青.聚乙烯醇水凝胶人工关节软骨润滑体系研究[J].云南大学学报,2002,24(1A):305-308
    [93]Nakashima K,Murakami T,Sawae Y.Evaluation of wear property of PVA hydrogel as artifical cartilage and effect of protein film on wear-resistant property[J].JSME,Part C,2004,70(9):2780-2787
    [94]Nakashima K,Murakami T,Sawae Y.Effect of protein contained in lubricant for wear properties of PVA hydrogel as artificial cartilage[C].In:Transactions-7th World Biomaterials Congress,2004,1899.
    [95]Covert R J,Ku D N.Friction and wear testing of a new biomaterial for use as an articular cartilage substitute [C]. In: Proc. 2001 Bioeng. Conf., ASME, BED, 2001, 50: 355-356.
    [96] Murakami T, Higaki H, Sawae Y, et al. Adaptive multimode lubrication in natural synovial joints and artificial joints[J]. Proceedings of the institution of Mechanical Engineers, Part H, 1998,212: 23-35.
    [97] Suciu A N, Iwatsubo T, Matsuda M. Wear characteristics of a novel bearing system for artificial knee joint [J]. JSME, Part C, 2004,47 (1):209-217
    [98] Oka M, Cha W I, Hyon S H, et al. Wear-resistant properties of PVA-Hydrogel[J]. Biomechanical Research, 1995,16:351-355
    [99] Oka M,-Ushio K, Kumar P, et al. Development of artificial articular cartilage[J]. Proceedings of the institution of Mechanical Engineers, Part H, 2000, 214 (1):59-68
    [100] Murakami T, Higaki H, Sawae Y, et al. Adaptive multimode lubrication in natural synovial joints and artificial joints[J]. Proceedings of the institution of Mechanical Engineers, Part H, 1998,212: 23-35
    [101] Kim S H, Opdahl A, Marmo C, et al. AFM and SFG stydies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friciton, and the presence of non-crosslinked polymer chains at the surface [J]. Biomaterials, 2002,23:1657-1666
    [102] Nanao H, Hosokawa S, Mori S. Relation between molecular structure of gels and friction properties under low load in water [J]. Jpn. Tribology. 2002,46 (6):393-402
    [103] Iwatsubo T, Suciu A N, Matsuda M, et al. Development of a poro-elasto squeeze film lubrication mechanism for the artificial knee joint[C]. Proc. 2001 Bioeng. Conf., ASME BED 2001, 50:447-448
    [104] Suciu A N, Iwatsubo T, Matsuda M. Theoretical investigation of an artificial joint with micro-pocket -covered component and biphasic cartilage on the opposite articulating surface[J]. ASME, Biomechanical Engineering, 2003, 125:425-433
    [105] Liu X J, Nanao H, Li T S, et al. A study on the friction properties of PAAc hydrogel under low loads in air and water. Wear, 2004,257:665-670
    [106] Katta J K, Marcolongo M S, Lowrnan A M. Friction and wear characteristics of PVA/PVP hydrogels as synthetic articular cartilage[J]. IEEE, 2004,4:142-143
    [1]Chang M C.,Ching C K.,Douglas W H.Preparation of hydroxyaptite-gelatin nanocomposite[J].Biomaterials,2003,24:2853-2862
    [2]Nebahat D,Kalyon D M,Birinci E.Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)[J].Colloids and Surfaces B:Biointerfaces,2006,48:42-49
    [3]Rhee S H.,Suetsugu Y.,Tanaka J.Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics[J].Biomaterials,2001,22:2843-2847
    [4]曹献英,李世谱,任卫,等.纳米羟基磷灰石的表征及其肝癌抑制作用的研究[J].硅酸盐通报,2003,22(4):21-24
    [5]Shih W J.,Wang M C.,Hon M H.Effect of NaOH(aq)treatment on the phase transformation and morphology of calcium phosphate deposited by an electrolytic method[J].Crystal Growth,2005,285(4):633-641
    [6]Suchanek W.,Yoshimura M.Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants[J].Materials Research,1998,13(I):94-117
    [7]Weng W J.,Han G R.,Du P Y.,et al.The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite[J].Materials Chemistry and Physics,2002,74:92-97
    [8]Saeri M R.,Afshar A.,Ghorbani M.,et al.The wet precipitation process of hydroxyapatite[J].Materials Letters,2003,57:4064-4069
    [9]Madhavi S.,Ferraris C.,White T J.Synthesis and crystallization of macroporous hydroxyapatite[J].Solid State Chemistry,2005,178:2838-2845
    [10]Rusu V M.,Ng C H.,Wilke M.,et al.Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials[J].Biomaterials,2005,26:5414-5426
    [11]Panda R N.,Hsieh M F.,Chung R.J.,et al.FTIR,XRD,SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique[J].Phys Chem Solids,2003,64:193-199
    [12]Chen F.,Wang Z C.,Lin C J.Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials[J].Material Letter,2002,57:858-861
    [13]Sahai N.,Tossell J A.Molecular orbital study of apatite(Ca_5(PO_4)_3OH)nucleation at silica bioceramic surfaces[J].Physical Chemistry B,2000,104(18):4322-4341
    [14]牛丽婷,刘敬肖,周靖,等.聚乙烯醇改性羟基磷灰石超细粉的制备及表征[J].大连轻工业学院学报,2004,23(4):239-241
    [15]Liu Y K.,Houm D D.,Wang G H.A simple wet chemical synthesis and characterization of hydroxyapatite nanorods[J].Materials chemistry and physics,2004,86:69-73
    [1]Darmawn D,Przemyslaw S,Mirzan T R,et al.Characterization ofpoly(vinyl alcohol)hydrogel for prosthetic intervertebral disc nucleus[J].Radiation physics and chemistry,2002,63:539-542
    [2]Rosiak J M,Ulanski P,Pajewski L A,et al.Radiation formation of hydrogel for biomedical purposes.Some remarks and comments[J].Radiation physics and chemistry,1995,47:161-168
    [3]Kobayashi M,Chang Y S,Oka M.A two year in vivo study ofpolyvinyl alcohol-hydrogel(PVA-H)artificial meniscus[J].Biomaterials,2005,26:3243-3248
    [4]Krystyna B,Elzbieta G,Agata,K.Long-term in vivo performance and biocompatibility of poly(vinyl alcohol)hydrogel macrocapsules for hybridtype artificial pancreas[J].Biomaterials,1996,17:2351-2356
    [5]孟舒献,温晓娜,冯亚青,顾汉卿.聚乙烯醇生物相容性的研究[J].天津大学学报,2003,36(4):473-477
    [6]Oka M.Biomechanics and repair of articular cartilage[J].Orthop.Sci.,2001,6:448-156
    [7]Stammen J A.,Williams S.,Ku D N.,et al.Mechanical properties of a novel PVA hydrogel in shear and unconfined compression[J].Biomaterials,2001,22:799-806
    [8]Allan S H.Hydrogels for biomedical applications[J].Advanced drug delivery review,2002,43:3-12
    [9]Murakami T,Sawae Y.Protective mechanism of articular cartilage to severe loading:roles of lubricants,cartilage surface layer,extracellular matrix and chondrocyte[J].JSME International Journal,series C,2003,46(2):594-602
    [10]Vladimir I L.,Alexandr L Z.,Elena F T.Swelling behavior of poly(vinyl alcohol)cryogels employed as matrics for cell immobilization[J].Enzyme and Microbial Technology, 1996,18:561-569
    [11]Tetsuya T.,Keiko Y.,Kazuo Y.,et al.Anomalous swelling of poly(vinyl alcohol)film in mixed solvents of dimethylsulfoxide and water[J].Polymer,1995,36(15):2941-1946
    [12]Bray J G,Merrill EW.Poly(vinyl alcohol)hydrogels for synthetic articular cartilage material[J].Biomed.Mater.Res.,1993,17:431-443
    [13]韩颂军,杨荣杰.聚乙烯醇水凝胶研究进展[J].材料导报,1997,11(2):43-45
    [14]Covert R J,Ott R D,Ku D N.Friction characteristics of a potential articular cartilage biomaterial[J].Wear,2003,255:1064-1068
    [15]Tatsuko H,Junko U,Chika Y,et al.Gel-sol transition of poly(vinyl alcohol)hydrogels formed by freezing and thawing[J].Thermochemieal Acta,2005,431:144-148
    [16]Mckenna G B,Horkay F.Effect of crosslinks on the thermodynamics of poly(vinyl alcohol)hydrogels[J].Polymer,1994,35:5737-5742
    [17]Christie M,Hassan N,Peppas A.Structure and morphology of Freeze/Thawed PVA hydrogels[J].Macromolecules,2000,33:2472-2479
    [18]Yang W P.,Shyu S S.,Lee E S.,et al.Effects of PVA content and calcinations temperature on the properties of PVA/boehmite composite film[J].Materials Chemistry and Physics,1996,45:108-113
    [19]Rosa R,Finizia A,Christine G,et al.Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol)hydrogels by different techniques[J].Macromoleeules,2004,37:9510-9516
    [20]柳明珠,程镕时,钱人元.聚乙烯醇水凝胶溶胀特性研究[J].高分子学报,1996,2:234-239
    [21]Tong Z.Swelling of ionic gels:quantitative performance of the donnan theory[J].Macromolecules,1993,26:4964-4972
    [22]Muta H.Chemical aspect of gel extraction[J].Mol Struct(Theochem),2001,536:219
    [23]高允彦.正交及回归试验设计方法[M].冶金工业出版社,1988,5:100-122
    [24]Masanori K,Jyunya T,Oka M.Preliminary study of polyvinyl alcohol-hydrogel(PVA-H)artificial menisus[J].Biomaterials,2003,24:639-647
    [25]Kristi S,Christopher N,Peppas B.Mechanical properties of hydrogels and their experimental determination[J].Biomaterials,1996,17:1647-1657.
    [26]Gong J P.,Osada,Y.Gel friction:a model based on surface repulsion and adsorption[J].Chem.Phys.1998,109(18):8062-8068
    [27]Gong J P.,Higa M.,Iwasaki Y.,et al.Friction of gels[J].Phys.Chem.B 1997,101:5487-5489
    [1]宋洪强,元建洪.同种异体骨软骨移植修复关节软骨缺损的实验与应用[J].中国临床康复,2005,9(26):202-204
    [2]Wingenfeld C,Egli R J,Hempfing A.Cryopreservation of osteochondral allografts:dimethyl sulfoxide promotes angiogenesis and immune tolerance in mice[J].Bone Joint Surgery,2002,84-A(8):1420-1429
    [3]Xiong D S,Lin J M,Fan D L.Wear properties of nano-Al_2O_/UHM-WPE composites irradiated by gamma ray against a CoCrMo alloy[J],Biomedical Materials,2006,1(3):175-179
    [4]王永春,沈尊理.关节软骨缺损组织工程修复研究面临的问题[J].组织工程与重建外科杂志,2005,1,(4):237-239
    [5]Oka,M.,Ushio,K.,Kumar,P.,et al.Development of artificial articular cartilage[J].Proc.Instn.Mech.Engrs,.Part H:2000,214(1):59-68;
    [6]Noguchi,T.,Yamamuro,T.,Oka,M.,et al.Poly(vinyl alcohol)hydrogel as an artificial articular cartilage:evaluation of biocompatibility[J].Applied biomaterials,1991,2(2):101-107
    [7]Suciu,A.N.,Iwatsubo,T.,Matsuda,M.A study upon durability of the artificial knee joint with PVA hydrogel cartilage[J].JSME.Series,2004,47(1):199-208
    [8]顾正秋,肖久梅,娄思权.聚乙烯醇水凝胶人工软骨的连接试验[J].北京科技大学学报,2000, 22(2):163-165
    [9]Oka.Artificial bone connection prosthesis.US patent,No.5314478
    [10]Joschek S,Nies B,Krotz R,Gopferich A.Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone[J].Biomaterials,2000,21:1645-1658
    [11]Rosa R,Finizia A,Claudio D R,Francoise L.X-ray diffraction analysis of Poly(vinyl alcohol)hydrogels,obtained by freezing and thawing techniques[J].Macromolecules,2004,37:1921-1927
    [12]Rusu V M,Ng C H,Wilke M,Tiersch P F,et al.Size-controlled hydroxyapatite nanoparitcles as self-organized organic-inorganic composite materials[J].Biomaterials,2005,26:5414-5426.
    [13]Nebahat D,Dilhan M K,Elvan B.Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)[J].Colloids and surfaces B:Biointerfaces,2006,48:42-49
    [14]Xu FL,Li YB,Wang X J,et al.Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol)hydrogel biocomposite[J].Materials science,2004,39:5669-5672
    [15]Suprabha N,Arvind S.Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite[J].Colloids and surfaces B:Biointerfaces,2004,35:29-32
    [16]Chang M C,Tanaka J.FT-IR study for hydroxyapatite/collagen nanocomposites cross-linked by glutaraldehyde[J].Biomaterials,2002,23:4811-4818
    [17]郭玉明,张秀英,蒋凯,等.有机基质在仿生材料合成中的应用[J].化学学报,2001,59(5):755-762
    [18]牛丽婷,刘敬肖,周靖,王继红.聚乙烯醇改性羟基磷灰石超细粉的制备及表征[J].大连轻工业学院学报,2004,23(4):239-241
    [1]冯元桢.生物力学[M].北京:科学出版社,1983:176
    [2]Quinn,T M,Grodzinsky A J,Buschmam M D,et al.Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants[J].Cell Scinece,1998,3:573-583
    [3]杨桂通,吴文周.骨力学[M].北京:科学出版社,1989:95
    [4]Roberts S.Mechanical and biochemical properties of human articular cartilage in osteoarthritic femoral heads and in autopsy speeimens[J].Bone Joint Surg,1956,68B(2):278-295
    [5]Nakamura E.Leg lengthening and glycosaminoglycans in the rabbit knce.Acta Orthop Scand,1995,66(1):33-37
    [6]Qian S H,Ge S R,Wang Q L.The frictional coefficient of bovine knce articular cartilage[J].Bionic Engineering,2006,3:79-85
    [7]唐六丁,赵为民,李秉哲.股骨-人工假体之间的界面生物力学分析[J].医用生物力学,2004,19(2):112-116
    [8]Mann K A,Ayers D C,Damron T A.Effects of stem length on mechanics of the femoral hip component after cemented revision[J].Orthop Res.1997,15(1):62
    [9]Geesink R G T.Six-year results ofhydroxyapatite-eoated total hip replacement[J].Bone Joint Surg.(Br),1995,77(4):534-547
    [10]Rosa R,Finizia A,Christine G,et al.Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol)hydrogels by different techniques[J].Macromolecules,2004,37:9510-9516
    [11]Hassan C M,Peppas N A.Structure and morphology of freeze/thawed PVA hydrogels[J].Macromolecules,2003,33:2472-2479
    [12]Liu Q,Joost R W,Clemens A B.Nano-apatite/polymer composites:mechanical and physicochemical characteristics[J].Biomaterials,1997,18:1263-1270
    [13]Srinath G,Gnanamoorthy R.Effect of nanoclay reinforcement on tensile and tribo-behaviour of Nylon 6[J].Materials Science,2005,40(11):2897-2901
    [14]Kim T W,Hyun K D,Soo P S,et al.Preparation and characterization of nano-sized Ni powders inside a nonionic polymer network[J].Key Engineering Materials,2007,336-338:2111-2114
    [15]Xu F L,Li Y B,Wang X J.Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol)hydrogel biocomposites[J].Mater.Sci.,2004,39:5669-5672
    [16]Muta H.Chemical aspect of gel extraction[J].Mol Struct(Theochem),2001,536:219
    [17]Rosa R,Finizia A,Claudio D R.X-ray diffraction analysis of poly(vinyl alcohol)hydrogels,obtained by freezing and thawing techniques[J].Macromolecules,2004,37:1921-1927
    [18]韩纪梅,李玉宝,莫利蓉,等.γ-甲基丙烯酸丙酯基三甲氧基硅烷与n-HA的界面作用研究[J].功能材料,2005,36(4):629-632
    [19]Guang J X,Luo B,Xiang W,et al.Influence of silane coupling agent on quality of interracial transition zone between concrete substrate and repair materials[J].Cement and concrete composites,2006,28(1):97-101
    [20]Wu H F,Dwight D W,Huff N T.Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites[J].Composites Science and Technology,1997,975-983
    [21]冯元桢著,戴克刚 鞠烽帜译.生物力学-活组织的力学特性.湖南科技出版社.1986:248
    [1]Claes L.The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity[J].Orthop RES,1989,7:170-177
    [2]王开友,戴克戎,薛文东.应力松弛接骨板对骨应力遮挡率影响的实验研究[J].医用生物力学,1995,10(4):224-228
    [3]张先龙,戴克戎,汤亭亭.应力松弛接骨板固定兔胫骨截骨后骨折的形态学观察[J].中华实验外科杂志,2000,17(6):587
    [4]张先龙,戴克戎,汤亭亭.应力松弛接骨板对骨折愈合影响的生物力学研究[J].骨与关节损伤杂志,2000,15(1)30-32
    [5]戴闽,戴克戎.应力松弛接骨板对板下皮质骨微循环影响的实验研究[J].中华骨科杂志,1998,18(8):484-487
    [6]孟广伟,程杰平,马洪顺.髌骨软骨拉伸应力松弛蠕变实验研究[J].医用生物力学,2003,18(4):239-243
    [7]冯元桢.生物力学-活组织的生物力学特性[M].湖南科技出版社,1986,1:254-268
    [8]初日德,程永春,马洪顺,等.人体关节软骨应力松弛研究[J].中国生物医学工程学报,1994,13(2):188-190
    [9]Mow V C,Kuei S C,Lai W M,et al.Biphasic creep and stress relaxation of articular cartilage in compression:theory and experiments[J].Biomech.Engin,1980,102:73-84
    [10]Garcia J J,Cortes D H.A nonlinear biphasic viseohyperelastic model for articular cartilage[J].Biomechanics,2006,39(16):2991-2998
    [11]Soltz M A,Ateshian G A.Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage[J].Biomed.Eng,2000,28(2):150-159
    [12]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996:10-23
    [13]Berglund J D,Nerem R M,Sambanis A.Viscoelastic testing methodologies for tissue engineered blood vessels[J].Transanctions of the ASME,2005,127:1176-1184
    [14]Filali M,Michel E,Mora S.et al.Viscoelastic stress relaxation in film/substrate systems-Kelvin model[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,183-185:203-212
    [15]翁习生,仉建国,张嘉,等.髌骨软骨粘弹特性的实验研究.中国医学科学院学报[J].1999,21(1):53-56
    [16]Wayne J S.Stress relaxation behavior of repaired articular surfaces:A finite element analysis[J]..ASME,Advances in Bioengineering,1992,22:585-58g
    [17]Wang C B,Hung C T,Mow V C.An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression[J].Biomechanics,2001,34(1):75-84
    [18]Maw V C,Kuei S C,Ixi M M,et al.Biphasic crcep and stress relaxation of articulur cartilage in compression:theory and experiments.J Biochem Eng,1980,(102):73-81
    [19]Hayes W C,Moclaos C F.Viscoelastic pmpezties of human articular cartilage[J].Applied physiology,1997,(31):562-568
    [20]江学良,蒋涛,程时远.动态硫化EPDMPP热塑性弹性体应力松弛的研究[J]..高分子材料科学与工程,2001,17(4):116-119
    [21]焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003,1:357-358
    [22]冀冰,高瑾,马远征,等.髓核假体的制备及应力松弛特性的影响分析[J].北京科技大学学报,2005,27(5):589-592
    [1]Hernandez R,Sarafian A,Lopez D,et al.Viscoelastic properties of poly(vinyl alcohol)hydrogels and ferrogels obtained through freezing-thawing cycles[J].Polymer,2004,46:5543-5549
    [2]Zainuddin,Cooper W,Hill D.Viscoelasticity of radiation-formed PVA/PVP hydrogel[J].Biomaterials Science,Polymer Edition,2002,13(9):1007-1020
    [3]Michailova V,Titeva S,Kotsilkova R,et al.Influence of aqueous medium on viscoelastic properties of carboxymethykellulose sodium,hydroxypropylmethyl cellulose,and thermally pre-gelatinized starch gels[J].Colloids Surfaces A.1999,149:515-520
    [4]Buechner P M,Lakes R S,Swan C,et al.A broadband viscoelastic spectroscopic study of bovine bone:implications for fluid flow[J].Annals of Biomedical Engineering,2001,29(8):719-728
    [5]Nebahat D,Dilhan M K,Elvan B.Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol)[J].Colloids and surfaces B:Biointerfaces,2006,48:42-49
    [6]Moresi M,Bruno M,Parente E.Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests[J].Food Engineering,2004,64(2):179-186
    [7]Zhang P,Ling X K,Si D L.Dynamic mechanical analysis of polyvinylacohol/silica nanocomposites[J].Synthetic Metals,2005,152:25-28
    [8]Liu Q,Joost R W,Clemens A B.Nano-apatite/polymer composites:mechanical and physicochemical characteristics[J].Biomaterials,1997,18:1263-1270
    [9]Xu FL,Li YB,Wang X J,et al.Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol)hydrogel biocomposite[J].Materials science,2004,39:5669-5672
    [10]Mondragon M,Mendoza M,Bello L A P,et al.Viscoelastic behavior of nixtamalized maize starch gels[J].Carbohydrate Polymers,2006,65(3):314-320
    [11]Kong L X,Peng Z,Li S D.Dynamic mechanical analysis of polyvinylalcohol/silica nanocomposites[J].Synthetic Metals,2005,152(1-3):25-28
    [12]Joao F M.Viscoelastic properties of bone:Mechanical spectroscopy studies on a chicken model[J].Materials Science and Engineering C,2005,25:145-152
    [13]Hernandez R,Lopez D,Mijangos C,Guenet J M.A reappraisal of the 'thermoreversible' gelation of aqueous poly(vinyl alcohol)solutions through freezing-thawing cycles[J].Polymer,2002,43(21):5661-5663
    [14]Rebeca H,Aurelie S,Daniel L,Carmen M.Viscoelastic properties of poly(vinyl alcohol)hydrogels and ferrogels obtained through freezing-thawing cycles[J].Polymer,2004,46:5543-5549
    [15]Rosa R,Christine G,Guylaine D,Francoise L,et al.Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol)hydrogels[J].Polymer,2003,44:3375-3380
    [1]Scott C,Athanasiou K A.Mechanical impact and articular cartilage[J].Critical Reviews in Biomedical Engineering,2006,34(5):347-378
    [2]Carsten E,Johann F,Glasser V,et al.Mechanical characteristics of articular cartilage bonds[J].Clinical Biomechanics,2007,22(7):849-855
    [3]Ramik K,Petro J,Reijo L,et al.Collagen network of articular cartilage modulates fluid flow and mechanical stresses in chondrocyte[J].Biomechanics and Modeling in Mechanobiology,2006,5(2-3):150-159
    [4]Ateshian,G A.Theoretical formulation for boundary friction in articular cartilage[J].ASME,Biomechanical Engineering,1997,119:81-86
    [5]Allan S H.Hydrogels for biomedical applications[J].Advance Drug Delivery Reviews,2002,43:3-12
    [6]Murakami T,Higaki H,Sawae Y,et al.Adaptive multimode lubrication in natural synovial joints and artificial joints[J].Proceedings of the institution of Mechanical Engineers,Part H,1998,212:23-35
    [7]Kim S H,Opdahl A,Marmo C,et al.AFM and SFG stydies of pHEMA-based hydrogel contact lens surfaces in saline solution:adhesion,friciton,and the presence of non-crosslinked polymer chains at the surface[J].Biomaterials,2002,23:1657-1666
    [8]Murakami T,Higaki H,Sawae Y,et al.Adaptive multimode lubrication in natural synovial joints and artificial joints[J].Proceedings of the institution of Mechanical Engineers,Part H,1998,212:23-35
    [9]Nakashima K,Murakami T,Sawae Y.Evaluation of wear property of PVA hydrogel as artifical cartilage and effect of protein film on wear-resistant property[J].JSME,Part C,2004,70(9):2780-2787
    [10]Nakashima K,Murakami T,Sawae Y.Effect of protein contained in lubricant for wear properties of PVA hydrogel as artificial cartilage[C].In:Transactions-7th World Biomaterials Congress,2004,1899
    [11]Katta J K,Marcolongo M S,Lowman A M,et al.Friction and wear characteristics of PVA/PVP hydrogels as synthetic articular cartilage[J].IEEE,Bioengineering,2004,30:142-143
    [12]Freeman M E,Furey M J,Love B J,et al.Frietion,wear,and lubrication of hydrogels as synthetic articular cartilage[J].Wear,2000,241(2):129-135
    [13]Kobayashi M C,Chang Y S,Oka M.A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H)artificial meniscus[J].Biomaterials,2005,26(16):3243-3248
    [14]温诗铸,黄平著.摩擦学原理[M].北京:清华大学出版社,2002:31-36
    [15]姚康德,尹玉姬,编著.组织工程相关生物材料[M].化学工业出版社,2003:250-251
    [16]Gong J P.,Osada,Y.Gel friction:a model based on surface repulsion and adsorption[J].Chem.Phys.1998,109(18):8062-8068
    [17]Gong J P,Osada Y.Surface friciton of polymer gels[J].Progress in Polymer Science,2002,27:3-38
    [18]Dowson D.Models of lubrication of human joints,in:lubrication and wear in living and artificial human joints[J].Proc Instn Mech.Engrs,1967,81:45-54
    [19]Dowson D,Jin Z M.Micro-elastohydrodynamic lubrication of synovial joints[J].Engineering in Medicine,1986,15:63-65
    [20]Jalali D V,Jagatia M,Jin Z M,et al.Prediction of lubricating film thickness in UHMWPE hip joint replacements[J].Biomechanics.2001,34:261-266
    [21]Kristi A S,Christopher B N,Peppas B L.Mechanical properties of hydrogels and their experimental determination[J].Biomaterials,1996,17:1647-1657

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700