用户名: 密码: 验证码:
超薄磁头/磁盘气膜动态润滑特性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着日益增加的大量信息及数据的需要和科学技术的飞速发展,计算机硬盘不断地在更新换代,硬盘技术的发展一方面希望通过减小头盘间隙以提高磁盘记录密度,另一方面又要求磁头在整个磁盘工作区域内保持稳定的头盘间隙,以获得稳定的信号电压和较强的抗干扰能力。磁头在盘面上的飞浮特性,成为影响硬盘存储性能的重要因素。本文以带时间项的FK-Boltzmann修正模型的广义雷诺方程和三个自由度的动力学方程联立的动态控制方程为理论基础,用时域分析法和频域分析法分析了磁头的动态特性。最后,本文还进行了实际硬盘的动态实验研究。
     首先,对超薄气膜动态润滑控制方程求解方法进行了分析,本文在原有数值求解过程中采用的迎风格式以剪切流项为迭代主项解决大轴承数计算失稳问题的基础上加入迎风格式对时间项处理,较好地解决了动态润滑方程计算稳定性问题。并沿用在整个润滑区域引入调和流量因子改变大阶梯下流量变化,以减小计算偏差。通过将一维近似解析解、平均算法和本算法的计算结果进行对比表明:本算法与近似解析解更接近,并用本方法对现在正在使用的几种不对称磁头进行计算,每种都得到很好的收敛性,进一步说明了本方法的收敛性和准确性。
     然后,将动态润滑方程和动力学方程联立组成了超薄气膜动态特性控制方程组。通过采用有限差分法联立求解控制方程组对超薄气膜的动态时域特性和频域特性进行了分析,并编制了具有自主版权的分析软件。在时域分析中,通过求解方程得到在受到不同外界激励下,磁头的飞行姿态和气膜润滑性能随时间的变化规律。结果显示在受到外界微小扰动后,磁头会在一定时间内恢复到初始平衡状态。磁头在受到上下方向振动和俯仰方向的波动时,磁头的动态润滑特性影响比较大。另外对磁头的越障能力进行了分析,结果表明磁头能够顺利地飞越微小障碍物,之后以一定频率做衰减运动,最后回到初始平衡状态。在频域分析中,采用摄动法对气膜的刚度系数和阻尼系数进行了分析计算,得出了气膜刚度系数和阻尼系数随频率的变化的规律。气膜上下方向的厚度和俯仰方向的角度对气膜刚度的影响比较大,而侧翻角和磁盘转速对其也有一定的影响。
     最后,对磁头的动态润滑特性进行了实验研究。通过将激振器与实验硬盘连接,搭建了硬盘振动实验装置。利用硬盘生产厂家的动态飞高测试仪和动态电性能测试机测试了不同转速下磁头的飞高和电压信号输出值,从而获得电压差值与磁头飞高振动幅度的关系曲线图。然后,对生产厂家生产的同型号硬盘进行了不同频率振动下的测试。通过引线获取了硬盘磁信号的输出值,并通过分析讨论了振动频率对信号输出的影响。用前面电压差值和磁头飞高振动幅度的关系曲线,定量判断了磁头飞高的振动幅度。最后,对冲击实验结果和理论计算结果进行了分析比较,得出了两种结果趋势一致的结论。
With the development of computer technology and increase of the need for large amounts of information and data, hard drives are being upgraded continually. There are two important aspects to consider during the development process of the hard disk driver. One is that the reduction of clearance between head and disk can increase the recording density, and the other is that in order to obtain stable signal voltages and better capacities of resisting disturbance the clearance between the head and disk must keep stable. Flight characteristics of head become important factors that can affect memory property of the hard disk driver. This dissertation analyzes dynamic characteristics of the head by using time domain analysis and frequency domain analysis based on the time dependent FK-Boltzmann modified Reynolds equation and the three degree freedom dynamic equations.
     Firstly, the method of solving ultra-thin lubricating control equation was analyzed. In this dissertation, upwind scheme was adopted. The destabilization in calculating caused by a large bearing number was overcome by taking shear flow and time item as the principal iterative terms. Moreover, the harmonic flow factor was imported in the whole lubricating region to alter the variation of flow rate at the big steps in order to diminish calculated deviation. Compared the results of present scheme with the results of mean algorithm and one dimensional approximate analytic solution, it was showed that the results of the present scheme is more approximate to the analytic solution. Then this method was used to calculate the pressure distribution of several dissymmetry disk heads. All calculations have good convergence. The results confirmed the convergence and the accuracy of this scheme.
     Then the simultaneous control equations were built up. The dynamic characteristics of the ultra-thin gas film in time domain and frequency domain were analyzed by using finite difference method to solve the control equations. Based on the work, analysis software with the autonomous copyright was produced. In the time domain analysis, the rules for variation of flying pose of the magnetic head and lubricant performance of the gas-film with time was obtained through solving the equations. The results show that the magnetic head can recover to equilibrium in a certain time after undergoing a slight disturbance from outside and that the vibration in the height direction and fluctuation in the pitch direction have strong impact on dynamic lubricant property of the head. In addition, the obstacle-passing capacity of the head was analyzed. The results indicate that the head can surpass small obstacles successfully and then get back to equilibrium after a period of decaying oscillation at a certain frequency.
     In the frequency domain analysis, the calculated analysis on the stiffness coefficient and damping coefficient of the gas-film was conducted using perturbation method. Rules for variation of the stiffness coefficient and damping coefficient with frequency were gained. The rules show that the gas-film stiffness relies heavily upon the gas-film thickness along the height direction and the angle in pitch direction, and it is somewhat dependent on the rolling angle and the rotation velocity of the head
     At last, the dynamic experiments on real hard disks were carried out in the present dissertation. A vibration experiment table for the hard disk was set up by connecting the hard drive with a vibration exciter. The values of the flight height and the output voltage of signal on different rotate speeds were tested by using the dynamic flying height tester and dynamic electric tester provided by the disk manufactory. The relational curves between output voltage differences and vibration amplitudes of heads were gained. Then hard disks of same type were tested under different vibrating frequencies. Magnetic signals were acquired via the lead wires. The influence of vibrating frequency on signal was discussed in addition. Fluctuation ranges were quantitatively judged by utilizing the flight height curve varying with voltage. After comparing the results of impact experiment and simple harmonic vibration experiment with the theoretical results respectively, we may safely draw the conclusion that the experimental results are consistent with the theoretical results.
引文
[1]党根茂.气体润滑技术[M].南京:东南大学出版社,1990
    [2]靳兆文.气体润滑技术及其研究进展[J]. GM通用机械.2007.3:57-59
    [3] http://baike.baidu.com/view/9185.htm
    [4] http://diy.intozgc.com/182/182060.html
    [5] http://www2.ccw.com.cn/1995/48/138879.shtml
    [6] MR磁头和GMR磁头[J],电子产品世界,1998(1-2):117
    [7] Xiangshui M. Magnetic Recording Thermally Assisted Magnetic Recording or Hybrid Recording. in Data storage institute. 2005. Singapore
    [8] http://storage.doit.com.cn/article/2006/1222/1899234.shtml
    [9] http://baike.baidu.com/view/80000.htm
    [10] http://www.stor-age.com/stor-age/2006/0215/400549.shtml
    [11] K. Kogure, S. Fukui ,Y. Mitsuya et.al. Design of Negative Pressure Slider for Magnetic Recording Disk. ASME Journal of Lubrication Technology,1983,7:496-502
    [12] K. Kogure, S. Fukui ,Y. Mitsuya et.al. Design of negative pressure slider for magnetic recording disk[J]. ASME Journal of Lubrication Technology,1983,7:496-502
    [13] Dong-Hoon Choi, Tae-Sik Kang. An optimization method for design of subambient pressure shaped rail sliders[J]. Journal of Tribology, 1999, 121(3):575-579
    [14] http://www.stor-age.com/2006/0523/880384.shtml
    [15] Nayak A, Bogy DB. Air bearing sliders for densities greater than 100 Gb/sq-in[C]. Interface Tribology Toward 100 Gb/sq-in and Beyond, 2000: 1-10
    [16] http://www.eettaiwan.com/ART_8800316257__TA_4523dd74.HTM
    [17] Liu B, Zhang MS, Yu SK, et al. Femto slider: fabrication and evaluation[J]. IEEE Tansanctions on Magnetics. 2003, 39(2):909-914
    [18] Burgdorfer A. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings[J]. ASME Journal of Basic Engineering, 1959,81:94-100
    [19] Maxwell J. On stress in rarefied gases arising from inequalities of temperature[J]. Philos.Trans.R.Soc.London,1879,170:231-261
    [20] Hsia Y T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. ASME Journal of Tribology, 1983,105:120-130
    [21] Gans R F. Lubrication theory at arbitrary Kundsen number[J]. ASME Journal ofTribology,1985,107:431-433
    [22] Fukui S, Kaneko R. Analysis of ultrathin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow[J]. ASME J Tribol, 1988, 11: 253-262
    [23] Fukui S. A database interpolation of Poiseuille flow rates for high Knudsen number lubrication problems[J]. ASME Journal of Tribology,1990,112:78-83
    [24] Israelachvili J N, Tabor D. Proceedings of Royal Society in London A, 1972,331:19-38
    [25] Mitsuya Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient[J]. ASME Journal of Tribology, 1993,115:289-294
    [26] Mitsuya Y. Nano-technologies for Head-medium interface in magnetic disk storage[J]. International Symposium on MHS. 1997:27-32
    [27] Hwang C C, Fung R F, Yang R F, et al. A new modified equation for ultrathin film gas lubrication[J]. IEEE Transactions on Magnetics.1996,32(2):344-347
    [28] Eddie Y N, Liu N. Stress-density ratio slip corrected Reynolds equation for ultrathin film gas bearing lubrication[J]. Physics of Fluids, 2002,14(4): 1450-1457
    [29] Weidong huang, Bogy D B. The effect of the accommodation coeffeicent on slider air bearing simulation[J]. ASME Journal of Tribology, 2000, 122:427-435
    [30] Peng Y Q, Lu X C, Luo J B. Nanoscale effect on ultrathin gas film lubrication in hard disk drives[J]. ASME Journal of Tribology,2004, 126:347-352
    [31]彭永卿,路新春,雒建斌.纳米尺度下气体薄膜润滑理论研究[J].摩擦学学报,2004(1):56-60
    [32]张延瑞,孟永钢.气体平均自由度尺度效应的蒙特卡罗模拟[J].润滑与密封,2006,7(11) :5-7
    [33] White J W. Nigam A. A factored implicit scheme for the numerical solution of the Reynolds equation at very low spacing[J]. ASME Journal of Tribology, 1980, 102:80-85.
    [34] Cha Ellis, Bogy D B. A numerical scheme for static and dynamic simulation of subambient pressure shaped rail sliders[J]. ASME Journal of Tribology, 1995, 117:36-46.
    [35] Michael H.Wahl, Patrick R.Lee, Frank E.Talke. An efficient finite element-based air bearing simulator for pivoted slider bearings using Bi-Conjugate gradient algorithms[J]. Tribology Transactions, 1996, 39(1):130~138
    [36] Hu Y, Bogy D B. Solution of the rarefied gas lubrication equation using an additivecorrection based multigrid control volume method[J]. ASME Journal of Tribology, 1998,120(2):280-288
    [37] Lin Wu, Bogy D B. Unstructured triangular mesh generation techniques and a finite volume numerical scheme for slider air bearing simulation with complex shaped rails[J]. IEEE Transactions on Magnetics, 1999,35:2421-2423.
    [38] Lin Wu, Bogy D B. Numerical simulation of the slider air bearing problem of hard disk drives by two multidimensional upwind residual distribution schemes over unstructured triangular meshes[J]. Journal of Computational Physics. 2001,172:640-657.
    [39] Francis J.Alexander, Alejandro L.Garcia, Berni J.Alder. Direct Simulation Monte Carlo for Thin-Film Bearings[J]. Phys. Fluids, 1994, 6(12):3854~3860.
    [40]吴健康,陈海霞.计算机磁头磁盘超薄气体润滑压强的算子分裂法[J],摩擦学学报,20323(5):402-405
    [41]傅仙罗,张海英,轻负荷磁头气动力分析[J],计算机学报,1992,6:401-407.
    [42]黄平,许兰贵.求解磁头/磁盘超薄气膜润滑性能的一种有效有限差分算法[J].机械工程学报,2007,43(3):43-49
    [43] Kogue K, Fukui Y, Mitsuya Y, et al. Design of negative pressure slider for magnetic recording disks[J]. ASME Jounral of Lubrication Technology,1983,105: 496-502
    [44] White J W. Flying characteristics of the "zero-load" slider bearing[J]. ASME Jounral of Lubrication Technology,1983, 105:484-490.
    [45] Hsia Y -T, Domoto G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. ASME Journal of Lubrication Technology, 1983, 1 05:120-130.
    [46] Mitsuya Y, Ohkubo T. High Knudsen number molecular rarefaction effects in gas–lubricated slider bearing for computer flying head[J]. ASME Journal of Tribology,1 987,109:2 76-282.
    [47]Ruiz O J,Bogy D B. A numerical simulation of the head-disk assembly in magnetic hard disk files: part I–component models[J]. A SME Journal of Tri bology,1 990,112:593-602.
    [48]Ruiz O J,Bogy D B. A numerical simulation of the head-disk assembly in magnetic hard disk files: partⅡ-solution of the coupled system[J]. ASME Journal of Tribology,1990,112:6 03-613.
    [49] Peng J, Hardie C E. Characteristics of air bearing suction force in magnetic recording disks[J]. ASME Journal of Tribology,1 996,1 18:549-554.
    [50] Fukui S, Matsuda R, Kaneko R. On the physical meanings of and in molecular gas film lubrication problems[J]. ASME Journal of Tribology, 1996,1 18:364-369.
    [51] Hu Y. Flying characteristics of a slider over texture surface disks[J].IEEE Trans Magn, 1997,33(5):3196-3199.
    [52] Norio T. TAKEFUMI H. Effects of moving three-dimensional nano-textured disk surfaces on thin film gas lubrication characteristics for flying head slider bearings in magnetic disk storage[J].ASME J Trbol., 2001,123(1):151-158.
    [53] Hwang P, Khan P V. Application of optimization approach to static FE analysis of hard disk drive slider[J].ASME J Tribol., 2005,127:387-393.
    [54] Tang, T. Dynamics of air-lubricated slider bearings for noncontact magnetic recording[J]. ASME Journal of lubrication, 1971, Vol. 93, No. 2, pp.272-278
    [55] Ono K. Dynamic characteristics of air-lubricated slider bearing for non-contact magnetic recording[J]. ASME Journal of lubrication, 1975,Vol. 97, pp.250-260
    [56] Hayashi T., Fukui S. Dynamic characteristics of Gas-lubricated slider bearings under high Knudsen number conditions[J]. ASME Journal of Tribology, 1990,Vol. 112, pp.111-118
    [57] Miu D K, Bogy D B. Dynamics of gas-lubricated slider bearing in magnetic recording disk files-part I: experimental observation[J]. ASME Journal of Tribology, 1986,108:5 84-588
    [58] Min D K, Bogy D B. Dynamics of gas-lubricated slider bearing in magnetic recording disk files一partⅡ: numerical simulation[J]. ASME Journal of Tribolog y, 1986,1 08:5 89-593
    [59] Ellis Cha, Bogy D. B. A numerical scheme for static and dynamic simulation of subambient pressure shaped rail sliders[J]. ASME jounal of tribology, 1995 vol. 117, Jan. 1995, pp36-46
    [60] Mitsuya Yasunaga, Koumura Tetsushi. Transient response solution applying ADI scheme to Boltzmann flow-modified Reynolds equation averaged with respect to surface roughness[J]. ASME Journal of Tribology, 1995,117:430- 436
    [61] Wang-Long Li, Cheng-I Weng, Chi-Chuan Hwang. Roughness effects on the dynamic coefficients of ultra-thin gas film in magnetic recording[J]. ASME Journal of Tribology,1996,118:774-782
    [62] Yong Hu, Bogy D B. Dynamic stability and spacing modulation of sub-25nm fly height sliders[J]. ASME Journal of Tribology,1997,119:646-652
    [63] Fukui S., Mastsui H. et al., 2005, Dynamic characteristics of flying head slider with ultra thin spacing (CIP method and linearized method) [J]. Microsyst Technology, 11:812-818
    [64] Jeong T G, Bogy D B. Numerical simulation of dynamic loading in hard disk drives[J]. ASME Journal of Tribology,1993,1 15:3 70-375.
    [65] Leo H L, ChapmanS R , Crone R M .Slider/disk interaction during the landing pro cess[J]. ASME Jounral of Tribology, 1995, 117:119-123
    [66] Suzuki Shiji, Nishihira Henry. Study of slider dynamics over very smooth magnetic disks[J]. ASME Journal of Tribology, 1996, 118:382-387
    [67] Khurshudov A G, Talke F E. A study of subambient pressure Tri-pad sliders using acoustic emission[J]. ASME Journal of Tribology, 1998, 120:54-59
    [68] Joshua C Harrison, Michael D Mundt. Flying height response to mechanical shock during operation of a magnetic hard disk drive[J]. ASME Journal of Tribology,2000, 122: 260-263.
    [69] THORNTON B H, BOGY D B. Nonlinear aspects of air-bearing modeling and dynamic spacing modulation in sub-5-nm air bearings for hard disk drives[J].IEEE Trans Magn,2003,39(2):722-728.
    [70] GUPTA V, BOGY D B. Dynamics of sub-5-nm air-bearing sliders in the presence of electrostatic and intermolecular forces at the head-disk interface [J].IEEE Trans Magn, 2005,41(2): 610-615.
    [71] Jianhua Li, Junguo Xu, Yuki Shimizu. Performance of sliders flying over discrete-track media[J]. ASME Journal of Tribology, 2007,129:712-719
    [72] Mcmillan T C, Talke F E. An investigation of the take-off behavior of proximity recording slider using acoustic emission and phase demodulated interferometery[J]. ASME Journal of Tribology, 1999, 121:581-594
    [73] Hua Wei, Bo Liu, Gang Sheng and Yao long Zhu. Investigations of disk surface roughness on the dynamic performance of proximity recording slider[J]. Journal of Magnetism and Magnetic Materials. 2000,209: 163-165.
    [74] Run-Han Wang, Nayak Vasant, Fu-Ying Huang, et al. Head-disk dynamics in the flying, near contact, and contact regimes[J]. ASME Journal of Tribology, 2001,123:561-565
    [75] Kato Takahisa, Watanabe Souta and Matsuoka Hiroshige. Dynamic characteristics of an in-contact head slider considering meniscus force: partⅡ-application to the disk with random undulation and design conditions[J]. ASME Journal of Tribology, 2001, 123: 168-174.
    [76] Hiroshige Matsuoka, Shigehisa Fukui, and Takahisa Kato. Influence of the MeniscusForce for Contact Recording Head Dynamics Over a Randomly Undulating Disk Surface[J]. IEEE Transactions on Magnetics, 2003VOL. 39, NO. 2: 864-869
    [77] Matthew A. O'Hara, Yong Hu, David B. Bogy. Optimization of Proximity Recording Air Bearing Sliders in Magnetic Hard Disk Drives[J]. ASME Journal of Tribology, 2000,122:257-259
    [78] Norio Tagawa,Takefumi Hayashi,Atsunobu Mori. Effects of Moving Three-Dimensional Nano-Textured Disk Surfaces on Thin Film Gas Lubrication Characteristics for Flying Head Slider Bearings in Magnetic Disk Storage[J]. ASME Journal of Tribology, 2001,123:151-159
    [79]傅仙罗,杨少薄,磁头浮动块动态浮动分析[J],计算机学报,1994(17):59-68.
    [80]傅仙罗,孙征.轻负荷磁头的动态频率响应[J].应用力学学报, 1994(3):1-7
    [81]庄苹,王玉娟,陈云飞。超薄气体润滑磁盘/磁头系统动力学分析[J].中国机械工程,2001,12(10),1191-1195
    [82]吴健康,陈海霞.计算机磁头磁盘超薄气体润滑压强的算子分裂法[J].摩擦学学报,20323(5):402-405
    [83]白少先,孟永钢.范德华力对磁头/磁盘系统气体润滑特性的影响[J].摩擦学学报, 2007, 27(3):264-267
    [84]唐薇薇,孟永钢.范德华力对计算机磁头/磁盘超薄气膜承载性能的影响[J].摩擦学学报, 2007, 27(1):6-10
    [85]刘蕴络.计算机硬盘驱动器的振动安全性分析[J].中国安全科学学报,2001.2, 11(1):49-53
    [86] KATA T, KOGURE K, MISUYA Y, et al. New method of detecting contact between floating head and disk[J].IEEE Trans Magn, 1980,16(5): 873-875.
    [87] BENSON R C, TALKE C E. Transition between sliding and flying of a magnetic recording slider[J]. IEEE Trans Magn, 1987,23(5):3441-3443.
    [88] KUMAR S, KHANNA V, SRI-JAYNTHA M. A study of the head disk interface shock failure mecha-nism[J].IEEE Trans Magn, 1994,30(6):4155-4157.
    [89] ALLEN A M, BOGY D B. Effect of shock on the head-disk interface[J]. IEEE Trans Magn, 1996,32(5):3717-3719.
    [90] ISHIMARU N. Experimental studies of a head/diskinterface subjected to impulsive excitation during nonoperation[J].ASME J Tribol, 1996,118(6):807-812.
    [91] EDWARDS J R. Finite element analysis of the shock response and head slap behavior ofa hard disk drive[J].IEEE Trans Magn, 1999,35(2): 863-867.
    [92] ARISTEGUI J L, GEERS T L. Shock analysis of a disk-drive assembly [J]. Inform Storage and Process Syst, 2000,2:25-31.
    [93] JAYSON E M, MURPHY J, SMITH P W, et al. Head slap simulation for linear and rotary shock im-pulses[J].Tribol Int, 2003,36(4-6): 311-316.
    [94] JAYSON E M, MURPHY J, SMITH P W, et al. Effects of air bearing stiffness on a hard disk drive subject to shock and vibration[J].ASME J Tribol,2003,125(2):343-349.
    [95] SHI B J, WANG S, SHU D W, et al. Power spec-trum analysis of the excitation pulse effects in drop test simulation of hard disk drives [C]. Proc Asia-Pacific Magn Record Conf 2004, Seoul, Korea, Aug, 16-19, 2004.
    [96] SHI B J, WANG S, SHU D W, et al. Excitation pulse shape effects in drop test simulation of the actuator arm of a hard disk drive[J].Microsystem Technologies, 2006,12(4):299-305.
    [97] SHI B J, SHU D W, WANG S, et al. Drop test simulation and power spectrum analysis of a head actuator assembly in a hard disk drive[J]. Int J ImpactEngng, 2007,34(1):120-133.
    [98] SHU D W, SHI B J, MENG H, et al. Shock analysis of a head actuator assembly subjected to half-sine acceleration pulses[J].Int J Impact Engng, 2007,34(2): 253-263.
    [99] SHI B J, SHU D W, LUO J, GU B, et al. Operational shock simulation of the head disk assembly of a small-form factor drive [J].IEEE Trans Magn,2007,43(11):4042-4047.
    [100] BHARGAVA P, BOGY D B. Numerical simulationof operational-shock in small form factor hard disk drives[J].ASME J Tribol, 2007,129:153-160.
    [101]徐光弘,王宏民.小型硬盘驱动器头盘系统冲击特性研究综述[J].电子计算机与外部设备,1998,22(3):61-63
    [102]贾建援,赵钟磊,康春霞,等.微型硬盘抗冲击振动主动控制系统的研究[J].西安电子科技大学学报,2002,29(3 ): 296-299
    [103]曾胜,徐利梅.调谐质量阻尼器用于改善硬盘驱动器读写头动臂的动力特性[J].振动工程学报, 2003,16(4):449-452.
    [104]史宝军,孙亚,舒东伟等.硬盘抗冲击振动特性的研究进展[J].计算力学学报, 2009,26(3):324-328
    [105] Tanaka K, Takeuchi Y, Terashima S, et al. Measurement of transient motion of magnetic disk slider[J]. IEEE Tansanctions on Magnetics. 1984, 20(5):924-926
    [106] Henze D, Mui P, Clifford G, et al. Multi-channel interferometric measurements of sliderflying height and pitch[J]. IEEE Tansanctions on Magnetics. 1989, 25(5):3710-3712
    [107] Lacey C, Adams J, Ross E, et al. A new method for measuring flying height dynamically[C]. Phase Metrics communication, 1992:
    [108] Li YF, Menon A. Flying Height Measurement metrology for ultra-Low spacing in rigid magnetic recording[J]. IEEE Transanctions on Magnetics. 1996, 32(1):129-134
    [109] Zhou J, Liu B. Flying height measurment considering the effects of the slider-disk interaction[J]. IEEE Transactions on Magnetics. 2000, 36(5):2677-2679
    [110] Liu B, Zhu Y. Optical characterization of slider-disk interaction[C]. Proceedings of the International Tribology Conference, Nagasaki, 2000: 2129-2133
    [111] Liu XQ, Clegg W, Liu B. Ultra low head disk spacing measurement using dual beam polarisation interferometry[J]. Optics & Laser Technology. 2000, 32:287-291
    [112] Deng YP, Tsai HC, Nixon BJ. Drive-level flying height measurements and altitude effects[J]. IEEE Tansanctions on Magnetics. 1994, 30(6):4191-4193
    [113] Smith GJ. Dynamic In-Situ Measurements of head-to-disk spacing[J]. IEEE Tansanctions on Magnetics. 1999, 35(5):2346-2351
    [114] Yuan ZM, Liu B, Zhang W, et al. Engineering study of triple-harmonic method for in situ characterization of head–disk spacing[J]. Journal of Magnetism and Magnetic Materials. 2002, (239):367-370
    [115] Zhu J, Liu B. In situ FH analysis at disk drive level[J]. Journal of Magnetism and Magnetic Materials. 2006, (303):97-100
    [116]宋云峰.激光双焦点多功能磁头飞行姿态测量系统的研究[D].北京:清华大学精仪系, 1990.
    [117]杨明楚,雒建斌,温诗铸.磁记录微观摩擦学性能测试仪的研制[J].清华大学学报(自然科学版). 2000, 40(8):36-40
    [118] Yamamoto SY, Shi RF. Fly height measurement technology below 10nm[C]. 2002: 01-02
    [119] Ye HY, Jiang Y, Liu B, et al. Consideration and compensation of calibration falloff for optical flying height measurement[J]. Journal of Magnetism and Magnetic Materials. 2006, 303:91-96
    [120] Zhou J, Ma Y, Liu B, et al. Flying height-attitude observation and investigation of sliders in load/unload process[J]. IEEE Transactions on Magnetics. 2002, 38(5):2123-2125
    [121]岳兆阳,宋南海,林德教, et al.对称共路双频外差干涉法测量商品硬盘磁头飞高瞬态调制[J].中国激光. 2007, 34(5):841-845
    [122]白少先,孟永钢,温诗铸, et al.安装误差对纳米间隙磁头飞行姿态的影响研究[J].润滑与密封. 2007, 32(11):8-10
    [123]林晶,孟永钢.磁头磁盘界面碰撞声发射信号特性研究[J].润滑与密封. 2009, 34(4):10-13
    [124] Huang Ping, Niu RongJun, Howard H HU, 2008, A new numerical method to solve modified Reynolds equation for magnetic head/disk working in ultra-thin gas films[J], Science in China Series E: Technological sience, Vol. 51, pp.424-434
    [125]牛荣军,黄平,孟永纲,温诗铸.磁头/磁盘系统气体稀薄效应的影响和数值分析[J]润滑与密封. 2006, 31(4):25-27
    [126]王红志硬盘驱动器磁头飞行特性的实验与理论研究[D],华南理工大学博士学位论文; 2008.
    [127]李斌,陶皎蛟,赵雷.桥梁结构的阻尼理论及其在ANSYS中的实现[J].工程结构. 2007, 27(4):117-118
    [128] Grandall, S. H., The Role of Damping in Vibration Theory [J], ASME Journal of Applied Mechanics, VOL. 11:3-18
    [129] Gaughey, T. K., Classical Normal Modes in damped Linear Systems [J], ASME Journal of Applied Mechanics. 1960, VOL. 27:269-271
    [130] Qing-Hua Zeng, Liang-sheng Chen and David B. Bogy. A Modal Analysis Method for Slider-Air Bearings in Hard disk Drivers[J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, VOL. 33(5): 3124-3126
    [131] Zener, C., Elasticity and Anelasticity of Metals [M], University of Chicago Press.
    [132] Baker, W. E., Woolam, W. E., and Young, D., Air and Internal Damping of Thin Cantilever Beams [J], Int. J. Mech. Sciences, VOL. 9:743-767
    [133]牛荣军.稀薄气体动压润滑数值模拟和实验分析[D],华南理工大学博士学位论文; 2007.
    [134]吴彦华.磁头静态飞行特性及实验分析[D],华南理工大学硕士学位论文; 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700