用户名: 密码: 验证码:
染色体20q13扩增子中ADRM1基因在大肠癌发生发展中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠癌是全世界范围内都比较常见的恶性肿瘤。近10年来的遗传学的数据显示,人类20号染色体,特别是20q13区域的基因扩增与大肠癌的发生发展密切相关。为了进一步确认这一区段内引起上述异变的基因,我们利用我中心大肠癌病例组织库中肿瘤及正常组织的配对标本,对位于人类染色体20q13扩增子上的27个候选基因进行了半定量的RT-PCR检测。其中发现新报道的编码蛋白酶体亚基的基因ADRM1(GeneID:11047),在46.2%的临床大肠癌标本中较正常结肠壁组织表达升高,并且与大肠癌的淋巴结转移情况有统计学意义的关连(P=0.037)。
     在人类大肠癌细胞系RKO中用相应的shRNA对ADRM1基因进行敲除后我们发现,通过诱导凋亡和将细胞周期阻滞于G1期这两种机制,ADRM1的缺失明显抑制了RKO细胞的贴壁生长,迁移以及分化能力。同时,此类ADRM1沉默的RKO细胞对化疗药物氟尿嘧啶(5-Fu)的耐受性也较野生型RKO细胞出现下降。
     由于5-FU与ADRM1的基因干扰有协同作用,我们认为在对于ADRM1高表达的病例中,联合应用化疗药物和ADRM1靶向治疗可能可以成为一种有希望的新的治疗方法。同时,由于ADRM1与泛素-蛋白酶体系统关系密切,因此我们的发现也为蛋白酶体抑制剂的研究提供了新的位点,以期能对广谱的蛋白酶体抑制剂诱导的凋亡特异性较差这一现状有所帮助。
Colorectal cancer(CRC) is one of the most common causes of cancer-related deaths throughout the world.Karyotypic/cytogenetic data regarding CRC have been accumulated over the last 10 years,and a gain of 20q,especially the 20q13 region,was frequently reported as a common genetic aberration.The novel proteasome subunit ADRM1(GeneID:11047 ) located on the 20q13 amplicon was differentially expressed in colorectal cancer and paired normal bowel wall by semiquantitative RT-PCR based on the tissue bank generated in our center.ADRM1 mRNA were overexpressed in 46.2%colorectal cancer tissues compared to their matched normal mucosa and significantly correlated with lymph node metastasis of colorectal cancer.
     Knockdown of ADRM1 by shRNA in human colon carcinoma RKO cells inhibited their anchorage-independent growth,cell migration as well as cell proliferation through inducing apoptosis and cell cycle arrest at the G1 phase.In addition,stable RNA interference of ADRM1 gene synergistic with 5-Fu treatment suppressed RKO cell growth in vitro.Collectively,these data suggested that ADRM1 is potentially oncogenic and may play an important role in colon tumorigenesis.
     Regiment with combined application of ADRM1 RNA interference and chemotherapy may emerge as a novel therapeutic strategy for ADRM1 overexpressed colorectal cancer;in addition,given to the close relationship between ADRM1 and ubiquitin-proteasome system,our study provided a new target for proteasome inhibitor design.
引文
1.Garcia M,Jemal A,Ward EM,Center MM,Hao Y,Siegel RL,Thun MJ.Global Cancer Facts & Figures 2007.Atlanta,GA:American Cancer Society,2007.
    2.陈世耀,罗忠芬.大肠癌.见:陈灏珠主编,实用内科学(第12版).北京:人民卫生出版社;2006,1920-1926.
    3.Almoguera C,Shibata D,Forrester K et al.Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes.Cell 1988;53:549-554.
    4.Schrock E,du MS,Veldman T et al.Multicolor spectral karyotyping of human chromosomes.Science 1996;273:494-497.
    5.Gebhart E,Liehr T,Wolff E et al.Pattern of genomic imbalances in oral squamous cell carcinomas with and without an increased copy number of 11q13.Int.J.Oncol.1998;12:1151-1155.
    6.Ried T,Heselmeyer-Haddad K,Blegen H,Schrock E,Auer G.Genomic changes defining the genesis,progression,and malignancy potential in solid human tumors:a phenotype/genotype correlation.Genes Chromosomes.Cancer 1999;25:195-204.
    7.bdel-Rahman WM,Katsura K,Rens W et al.Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.Proc.Natl.Acad.Sci.U.S.A 2001;98:2538-2543.
    8.Schlegel J,Stumm G,Scherthan H et al.Comparative genomic in situ hybridization of colon carcinomas with replication error.Cancer Res.1995;55:6002-6005.
    9.Albertson DG,Collins C,McCormick F,Gray JW.Chromosome aberrations in solid tumors.Nat.Genet.2003;34:369-376.
    10.Hyman E,Kauraniemi P,Hautaniemi S et al.Impact of DNA amplification on gene expression patterns in breast cancer.Cancer Res.2002;62:6240-6245.
    11.Iwabuchi H,Sakamoto M,Sakunaga H et al.Genetic analysis of benign,low-grade,and high-grade ovarian tumors.Cancer Res.1995;55:6172-6180.
    12.Kallioniemi A,Kallioniemi OP,Citro G et al.Identification of gains and losses of DNA sequences in primary bladder cancer by comparative genomic hybridization.Genes Chromosomes.Cancer 1995;12:213-219.
    13.Wong MP,Lam WK,Wang E et al.Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance.Cancer Res.2002;62:4464-4468.
    14.Fukushige S,Waldman FM,Kimura M et al.Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma.Genes Chromosomes.Cancer 1997;19:161-169.
    15.Kimura Y,Noguchi T,Kawahara K et al.Genetic alterations in 102 primary gastric cancers by comparative genomic hybridization:gain of 20q and loss of 18q are associated with tumor progression.Mod.Pathol.2004;17:1328-1337.
    16.Tsafrir D,Bacolod M,Selvanayagam Z et al.Relationship of gene expression and chromosomal abnormalities in colorectal cancer.Cancer Res.2006;66:2129-2137.
    17.Hidaka S,Yasutake T,Takeshita H et al.Differences in 20q13.2 copy number between colorectal cancers with and without liver metastasis.Clin.Cancer Res.2000;6:2712-2717.
    18.Collins C,Rommens JM,Kowbel D et al.Positional cloning of ZNF217 and NABC1:genes amplified at 20q13.2 and overexpressed in breast carcinoma.Proc.Natl.Acad.Sci.U.S.A 1998;95:8703-8708.
    19.Collins C,Volik S,Kowbel D et al.Comprehensive genome sequence analysis of a breast cancer amplicon.Genome Res.2001;11:1034-1042.
    20.Nonet GH,Stampfer MR,Chin K et al.The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells.Cancer Res.2001;61:1250-1254.
    21.Watanabe T,Imoto I,Katahira T et al.Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.Jpn.J.Cancer Res.2002;93:1114-1122.
    22.Tanner MM,Grenman S,Koul A et al.Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer.Clin.Cancer Res.2000;6:1833-1839.
    23.Hidaka S,Yasutake T,Takeshita H et al.Differences in 20ql3.2 copy number between colorectal cancers with and without liver metastasis.Clin.Cancer Res.2000;6:2712-2717.
    24.De Angelis PM,Stokke T,Beigi M,Mjaland O,Clausen OP.Prognostic significance of recurrent chromosomal aberrations detected by comparative genomic hybridization in sporadic colorectal cancer.Int.J.Colorectal Dis.2001;16:38-45.
    25.Rooney PH,Boonsong A,McFadyen MC et al.The candidate oncogene ZNF217 is frequently amplified in colon cancer.J.Pathol.2004;204:282-288.
    26.Watanabe T,Imoto I,Katahira T et al.Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers.Jpn.J.Cancer Res.2002;93:1114-1122.
    27.De Angelis PM,Stokke T,Beigi M,Mjaland O,Clausen OP.Prognostic significance of recurrent chromosomal aberrations detected by comparative genomic hybridization in sporadic colorectal cancer.Int.J.Colorectal Dis.2001;16:38-45.
    28.De Angelis PM,Clausen OP,Schjolberg A,Stokke T.Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy,genotypes and phenotypes.Br.J.Cancer 1999;80:526-535.
    29.Rooney PH,Boonsong A,McFadyen MC et al.The candidate oncogene ZNF217 is frequently amplified in colon cancer.J.Pathol.2004;204:282-288.
    30.Postma C,Hermsen MA,Coffa J et al.Chromosomal instability in flat adenomas and carcinomas of the colon.J.Pathol.2005;205:514-521.
    31.Hidaka S,Yasutake T,Takeshita H et al.Differences in 20q13.2 copy number between colorectal cancers with and without liver metastasis.Clin.Cancer Res.2000;6:2712-2717.
    32.Huang G,Krig S,Kowbel D et al.ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction.Hum.Mol.Genet.2005;14:3219-3225.
    33.Li P,Maines-Bandiera S,Kuo WL et al.Multiple roles of the candidate oncogene ZNF217 in ovarian epithelial neoplastic progression.Int.J.Cancer 2007;120:1863-1873.
    34.Krig SR,Jin VX,Bieda MC et al.Identification of genes directly regulated by the oncogene ZNF217 using chromatin immunoprecipitation(ChIP)-chip assays.J.Biol.Chem.2007;282:9703-9712.
    35.Miyamoto Y,Shinki T,Yamamoto K et al.lalpha,25-dihydroxyvitamin D3-24-hydroxylase(CYP24) hydroxylates the carbon at the end of the side chain(C-26) of the C-24-fluorinated analog of lalpha,25-dihydroxyvitamin D3.J.Biol.Chem.1997;272:14115-14119.
    36.Zhao X,Feldman D.Regulation of vitamin D receptor abundance and responsiveness during differentiation of HT-29 human colon cancer cells.Endocrinology 1993;132:1808-1814.
    37.Cross HS,Peterlik M,Reddy GS,Schuster Ⅰ.Vitamin D metabolism in human colon adenocarcinoma-derived Caco-2 cells:expression of 25-hydroxyvitamin D3-lalpha-hydroxylase activity and regulation of side-chain metabolism.J.Steroid Biochem.Mol.Biol.1997;62:21-28.
    38.Bareis P,Bises G,Bischof MG,Cross HS,Peterlik M.25-hydroxy-vitamin d metabolism in human colon cancer cells during tumor progression.Biochem.Biophys.Res.Commun.2001;285:1012-1017.
    39.Anderson MG,Nakane M,Ruan X,Kroeger PE,Wu-Wong JR.Expression of VDR and CYP24A1 mRNA in human tumors.Cancer Chemother.Pharmacol.2006;57:234-240.
    40.Bortman P,Folgueira MA,Katayama ML,Snitcovsky IM,Brentani MM.Antiproliferative effects of 1,25-dihydroxyvitamin D3 on breast cells:a mini review.Braz.J.Med.Biol.Res.2002;35:1-9.
    41.Albertson DG,Ylstra B,Segraves R et al.Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene.Nat.Genet.2000;25:144-146.
    42.Anderson MG,Nakane M,Ruan X,Kroeger PE,Wu-Wong JR.Expression of VDR and CYP24A1 mRNA in human tumors.Cancer Chemother.Pharmacol.2006;57:234-240.
    43.Mimori K,Tanaka Y,Yoshinaga K et al.Clinical significance of the overexpression of the candidate oncogene CYP24 in esophageal cancer.Ann.Oncol.2004;15:236-241.
    44.Lechner D,Kallay E,Cross HS.lalpha,25-dihydroxyvitamin D3 downregulates CYP27B1 and induces CYP24A1 in colon cells.Mol.Cell Endocrinol.2007;263:55-64.
    45.Bareis P,Bises G,Bischof MG,Cross HS,Peterlik M.25-hydroxy-vitamin d metabolism in human colon cancer cells during tumor progression.Biochem.Biophys.Res.Commun.2001;285:1012-1017.
    46.Lassmann S,Weis R,Makowiec F et al.Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal-and microsatellite-unstable sporadic colorectal carcinomas.J.Mol.Med.2007;85:293-304.
    47.Mitchell PJ,Barker KT,Martindale JE et al.Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase,brk,expressed in human breast tumours.Oncogene 1994;9:2383-2390.
    48.Barker KT,Jackson LE,Crompton MR.BRK tyrosine kinase expression in a high proportion of human breast carcinomas.Oncogene 1997;15:799-805.
    49.Llor X,Serfas MS,Bie W et al.BRK/Sik expression in the gastrointestinal tract and in colon tumors.Clin.Cancer Res.1999;5:1767-1777.
    50.Derry JJ,Prins GS,Ray V,Tyner AL.Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells.Oncogene 2003;22:4212-4220.
    51.Easty DJ,Mitchell PJ,Patel K et al.Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma.Int.J.Cancer 1997;71:1061-1065.
    52.Pennica D,Swanson TA,Welsh JW et al.WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors.Proc.Natl.Acad.Sci.U.S.A 1998;95:14717-14722.
    53.Maisonpierre PC,Goldfarb M,Yancopoulos GD,Gao G.Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family.Oncogene 1993;8:1631-1637.
    54.Bourdeau I,Antonini SR,Lacroix A et al.Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators.Oncogene 2004;23:1575-1585.
    55.Kouzu Y,Uzawa K,Kato M et al.WISP-2 expression in human salivary gland tumors.Int.J.Mol.Med.2006;17:567-573.
    56.Inadera H,Dong HY,Matsushima K.WISP-2 is a secreted protein and can be a marker of estrogen exposure in MCF-7 cells.Biochem.Biophys.Res.Commun.2002;294:602-608.
    57.Joaquin M,Watson RJ.Cell cycle regulation by the B-Myb transcription factor.Cell Mol.Life Sci.2003;60:2389-2401.
    58.Amatschek S,Koenig U,Auer H et al.Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes.Cancer Res.2004;64:844-856.
    59.Sala A,Calabretta B.Regulation of BALB/c 3T3 fibroblast proliferation by B-myb is accompanied by selective activation of cdc2 and cyclin D1 expression.Proc.Natl.Acad.Sci.U.S.A 1992;89:10415-10419.
    60.Zhu W,Giangrande PH,Nevins JR.E2Fs link the control of G1/S and G2/M transcription.EMBO J.2004;23:4615-4626.
    61.Sorlie T,Perou CM,Tibshirani R et al.Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc.Natl.Acad.Sci.U.S.A 2001;98:10869-10874.
    62.Nielsen TO,Hsu FD,Jensen K et al.Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma.Clin.Cancer Res.2004;10:5367-5374.
    63.Nomura N,Takahashi M,Matsui M et al.Isolation of human cDNA clones of myb-related genes,A-myb and B-myb.Nucleic Acids Res.1988;16:11075-11089.
    64.Sala A,Calabretta B.Regulation of BALB/c 3T3 fibroblast proliferation by B-myb is accompanied by selective activation of cdc2 and cyclin D1 expression.Proc.Natl.Acad.Sci.U.S.A 1992;89:10415-10419.
    65.Ginestier C,Cervera N,Finetti P et al.Prognosis and gene expression profiling of 20q13-amplified breast cancers.Clin.Cancer Res.2006;12:4533-4544.
    66.Lassmann S,Weis R,Makowiec F et al.Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal-and microsatellite-unstable sporadic colorectal carcinomas.J.Mol.Med.2007;85:293-304.
    67.Bryan BA,Dyson OF,Akula SM.Identifying cellular genes crucial for the reactivation of Kaposi's sarcoma-associated herpesvirus latency.J.Gen.Virol.2006;87:519-529.
    68.Israeli O,Goldring-Aviram A,Rienstein S et al.In silico chromosomal clustering of genes displaying altered expression patterns in ovarian cancer.Cancer Genet.Cytogenet.2005;160:35-42.
    69.Bar-Shira A,Pinthus JH,Rozovsky U et al.Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft.Cancer Res.2002;62:6803-6807.
    70.Mao X,Orchard G,Lillington DM et al.Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas.Blood 2003;101:1513-1519.
    71.Bar-Shira A,Pinthus JH,Rozovsky U et al.Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft.Cancer Res.2002;62:6803-6807.
    72.Ginestier C,Cervera N,Finetti P et al.Prognosis and gene expression profiling of 20ql3-amplified breast cancers.Clin.Cancer Res.2006;12:4533-4544.
    73.Bischoff JR,Plowman GD.The Aurora/Ip11p kinase family:regulators of chromosome segregation and cytokinesis.Trends Cell Biol.1999;9:454-459.
    74.Bischoff JR,Anderson L,Zhu Y et al.A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers.EMBO J.1998;17:3052-3065.
    75.Zhou H,Kuang J,Zhong L et al.Tumour amplified kinase STK15/BTAK induces centrosome amplification,aneuploidy and transformation.Nat.Genet.1998;20:189-193.
    76.Bischoff JR,Anderson L,Zhu Y et al.A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers.EMBO J.1998;17:3052-3065.
    77.Gerlach U,Kayser G,Walch A et al.Centrosome-,chromosomal-passenger-and cell-cycle-associated mRNAs are differentially regulated in the development of sporadic colorectal cancer.J.Pathol.2006;208:462-472.
    78.Webb EL,Rudd MF,Houlston RS.Case-control,kin-cohort and meta-analyses provide no support for STK15 F31I as a low penetrance colorectal cancer allele.Br.J.Cancer 2006;95:1047-1049.
    79.Zhang WJ,Miao XP,Sun T et al.[Association between genetic polymorphism in STK15 and risk of colorectal cancer in a Chinese population].Zhonghua Zhong.Liu Za Zhi.2006;28:43-46.
    80.Sen S,Zhou H,Zhang RD et al.Amplification/overexpression of a mitotic kinase gene in human bladder cancer.J.Natl.Cancer Inst.2002;94:1320-1329.
    81.Larsen AK,Gobert C.DNA topoisomerase Ⅰ in oncology:Dr Jekyll or Mr Hyde?Pathol.Oncol.Res.1999;5:171-178.
    82.Holden JA,Rahn MP,Jolles CJ,Vorobyev SV,Bronstein IB.Immunohistochemical detection of DNA topoisomerase Ⅰ in formalin fixed,paraffin wax embedded normal tissues and in ovarian carcinomas.Mol.Pathol.1997;50:247-253.
    83.Beraey DM,Shamash J,Gaffney J,Jordan S,Oliver RT.DNA topoisomerase Ⅰ and Ⅱ expression in drug resistant germ cell tumours.Br.J.Cancer 2002;87:624-629.
    84.Coleman LW,Perkins SL,Bronstein IB,Holden JA.Expression of DNA toposiomerase Ⅰ and DNA topoisomerase Ⅱ-alpha in testicular seminomas.Hum.Pathol.2000;31:728-733.
    85.Monnin KA,Bronstein IB,Gaffney DK,Holden JA.Elevations of DNA topoisomerase Ⅰ in transitional cell carcinoma of the urinary bladder:correlation with DNA topoisomerase Ⅱ-alpha and p53 expression.Hum.Pathol.1999;30:384-391.
    86.Gupta D,Bronstein IB,Holden JA.Expression of DNA topoisomerase Ⅰ in neoplasms of the kidney:correlation with histological grade,proliferation,and patient survival.Hum.Pathol.2000;31:214-219.
    87.Lynch BJ,Komaromy-Hiller G,Bronstein IB,Holden JA.Expression of DNA topoisomerase Ⅰ,DNA topoisomerase Ⅱ-alpha,and p53 in metastatic malignant melanoma.Hum.Pathol.1998;29:1240-1245.
    88.Coleman LW,Bronstein IB,Holden JA.Immunohistochemical staining for DNA topoisomerase Ⅰ,DNA topoisomerase Ⅱ-alpha and p53 in gastric carcinomas.Anticancer Res.2001;21:1167-1172.
    89.Coleman LW,Rohr LR,Bronstein IB,Holden JA.Human DNA topoisomerase Ⅰ:An anticancer drug target present in human sarcomas.Hum.Pathol.2002;33:599-607.
    90.Lynch BJ,Bronstein IB,Holden JA.Elevations of DNA topoisomerase Ⅰ in invasive carcinoma of the breast.Breast J.2001;7:176-180.
    91.Hafian H,Venteo L,Sukhanova A et al.Immunohistochemical study of DNA topoisomerase Ⅰ,DNA topoisomerase Ⅱ alpha,p53,and Ki-67 in oral preneoplastic lesions and oral squamous cell carcinomas.Hum.Pathol. 2004;35:745-751.
    92.Boonsong A,Curran S,McKay JA et al.Topoisomerase I protein expression in primary colorectal cancer and lymph node metastases.Hum.Pathol.2002;33:1114-1119.
    93.Paradiso A,Xu J,Mangia A et al.Topoisomerase-Ⅰ,thymidylate synthase primary tumour expression and clinical efficacy of 5-FU/CPT-11 chemotherapy in advanced colorectal cancer patients.Int.J.Cancer 2004;111:252-258.
    94.Staley BE,Samowitz WS,Bronstein IB,Holden JA.Expression of DNA topoisomerase Ⅰ and DNA topoisomerase Ⅱ-alpha in carcinoma of the colon.Mod.Pathol.1999;12:356-361.
    95.McLeod HL,Douglas F,Oates M et al.Topoisomerase Ⅰ and Ⅱ activity in human breast,cervix,lung and colon cancer.Int.J.Cancer 1994;59:607-611.
    96.Husain I,Mohler JL,Seigler HF,Besterman JM.Elevation of topoisomerase Ⅰ messenger RNA,protein,and catalytic activity in human tumors:demonstration of tumor-type specificity and implications for cancer chemotherapy.Cancer Res.1994;54:539-546.
    97.Boonsong A,Marsh S,Rooney PH et al.Characterization of the topoisomerase Ⅰ locus in human colorectal cancer.Cancer Genet.Cytogenet.2000;121:56-60.
    98.Lassmann S,Weis R,Makowiec F et al.Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal-and microsatellite-unstable sporadic colorectal carcinomas.J.Mol.Med.2007;85:293-304.
    99.Postma C,Hermsen MA,Coffa J et al.Chromosomal instability in flat adenomas and carcinomas of the colon.J.Pathol.2005;205:514-521.
    100.Penuelas S,Noe V,Ciudad CJ.Modulation of IMPDH2,survivin,topoisomerase Ⅰ and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells.FEBS J.2005;272:696-710.
    101.McLeod HL,Keith WN.Variation in topoisomerase Ⅰ gene copy number as a mechanism for intrinsic drug sensitivity.Br.J.Cancer 1996;74:508-512.
    102.Desai SD,Li TK,Rodriguez-Bauman A,Rubin EH,Liu LF.Ubiquitin/26S proteasome-mediated degradation of topoisomerase Ⅰ as a resistance mechanism to camptothecin in tumor cells.Cancer Res.2001;61:5926-5932.
    103.Gouveris P,Lazaris AC,Papathomas TG et al.Topoisomerase Ⅰ protein expression in primary colorectal cancer and recurrences after 5-FU-based adjuvant chemotherapy.J.Cancer Res.Clin.Oncol.2007;133:1011-1015.
    104.Murnane JP.Telomeres and chromosome instability.DNA Repair(Amst) 2006;5:1082-1092.
    105.Huang G,Krig S,Kowbel D et al.ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction.Hum.Mol.Genet.2005;14:3219-3225.
    106.Li P,Maines-Bandiera S,Kuo WL et al.Multiple roles of the candidate oncogene ZNF217 in ovarian epithelial neoplastic progression.Int.J.Cancer 2007;120:1863-1873.
    107.Nonet GH,Stampfer MR,Chin K et al.The ZNF217 gene amplified in breast cancers promotes immortalization of human mammary epithelial cells.Cancer Res.2001;61:1250-1254.
    108.Lukas J,Bartek J.Cell division:the heart of the cycle.Nature 2004;432:564-567.
    109.Rape M,Kirschner MW.Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry.Nature 2004;432:588-595.
    110.LaTulippe E,Satagopan J,Smith A et al.Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease.Cancer Res.2002;62:4499-4506.
    111.Pallante P,Berlingieri MT,Troncone G et al.UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas.Br.J.Cancer 2005;93:464-471.
    112.Welsh JB,Zarrinkar PP,Sapinoso LM et al.Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer.Proc.Natl.Acad.Sci.U.S.A 2001;98:1176-1181.
    113.Okamoto Y,Ozaki T,Miyazaki K et al.UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme.Cancer Res.2003;63:4167-4173.
    114.Wagner KW,Sapinoso LM,El-Rifai W et al.Overexpression,genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin.Oncogene 2004;23:6621-6629.
    115.Ieta K,Ojima E,Tanaka F et al.Identification of overexpressed genes in hepatocellular carcinoma,with special reference to ubiquitin-conjugating enzyme E2C gene expression.Int.J.Cancer 2007;121:33-38.
    116.Takahashi Y,Ishii Y,Nishida Y et al.Detection of aberrations of ubiquitin-conjugating enzyme E2C gene(UBE2C) in advanced colon cancer with liver metastases by DNA microarray and two-color FISH.Cancer Genet.Cytogenet.2006;168:30-35.
    117.Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell 2004;116:281-297.
    118.Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell 1993;75:843-854.
    119.Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function.Cell 2004;116:281-297.
    120.Lu J,Getz G,Miska EA et al.MicroRNA expression profiles classify human cancers.Nature 2005;435:834-838.
    121.Volinia S,Calin GA,Liu CG et al.A microRNA expression signature of human solid tumors defines cancer gene targets.Proc.Natl.Acad.Sci.U.S.A 2006;103:2257-2261.
    122.Calin GA,Sevignani C,Dumitru CD et al.Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc.Natl.Acad.Sci.U.S.A 2004;101:2999-3004.
    123.Lu J,Getz G,Miska EA et al.MicroRNA expression profiles classify human cancers.Nature 2005;435:834-838.
    124.Lamy P,Andersen CL,Dyrskjot L et al.Are microRNAs located in genomic regions associated with cancer?Br.J.Cancer 2006;95:1415-1418.
    125.Volinia S,Calin GA,Liu CG et al.A microRNA expression signature of human solid tumors defines cancer gene targets.Proc.Natl.Acad.Sci.U.S.A 2006;103:2257-2261.
    126.Calin GA,Sevignani C,Dumitru CD et al.Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc.Natl.Acad.Sci.U.S.A 2004;101:2999-3004.
    127.Aboobaker AA,Tomancak P,Patel N,Rubin GM,Lai EC.Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development.Proc.Natl.Acad.Sci.U.S.A 2005;102:18017-18022.
    128.Lamy P,Andersen CL,Dyrskjot L et al.Are microRNAs located in genomic regions associated with cancer?Br.J.Cancer 2006;95:1415-1418.
    129.Bandres E,Cubedo E,Agirre X et al.Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.Mol.Cancer 2006;5:29.
    130.Simins AB,Weighardt H,Weidner KM,Weidle UH,Holzmann B.Functional cloning of ARM-1,an adhesion-regulating molecule upregulated in metastatic tumor cells.Clin.Exp.Metastasis 1999;17:641-648.
    131.Pilarsky C,Wenzig M,Specht T,Saeger HD,Grutzmann R.Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data.Neoplasia.2004;6:744-750.
    132.Fejzo MS,Dering J,Ginther C et al.Comprehensive analysis of 20q13 genes in ovarian cancer identifies ADRM1 as amplification target.Genes Chromosomes.Cancer 2008;47:873-883.
    133.Fire A,Xu S,Montgomery MK et al.Potent and specific genetic interference by double-stranded RNAin Caenorhabditis elegans.Nature 1998;391:806-811.
    134.Guo S,Kemphues KJ.par-1,a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell 1995;81:611-620.
    135.Wall NR,Shi Y Small RNA:can RNA interference be exploited for therapy?Lancet 2003;362:1401-1403.
    136.Kunath T,Gish G,Lickert H et al.Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype.Nat.Biotechnol.2003;21:559-561.
    137.Lewis DL,Hagstrom JE,Loomis AG,Wolff JA,Herweijer H.Efficient delivery of siRNA for inhibition of gene expression in postnatal mice.Nat.Genet.2002;32:107-108.
    138.Shimada S,Ogawa M,Takahashi M,Schlom J,Greiner JW.Molecular cloning and characterization of the complementary DNA of an M(r) 110,000 antigen expressed by human gastric carcinoma cells and upregulated by gamma-interferon.Cancer Res.1994;54:3831-3836.
    139.Verma R,Chen S,Feldman R et al.Proteasomal proteomics:identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes.Mol.Biol.Cell 2000;11:3425-3439.
    140.Hamazaki J,Iemura S,Natsume T et al.A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes.EMBO J.2006;25:4524-4536.
    141.Jorgensen JP,Lauridsen AM,Kristensen P et al.Adrml,a putative cell adhesion regulating protein,is a novel proteasome-associated factor.J.Mol.Biol.2006;360:1043-1052.
    142.Qiu XB,Ouyang SY,Li CJ et al.hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme,UCH37.EMBO J.2006;25:5742-5753.
    143.Yao T,Song L,Xu W et al.Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrml.Nat.Cell Biol.2006;8:994-1002.
    144.Peters JM,Franke WW,Kleinschmidt JA.Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm.J.Biol.Chem.1994;269:7709-7718.
    145.Lodish HBAMPKCKMSMZSDJ.Molecular Cell Biology.New York:WH Freeman;2004:66-72.
    146.Whitby FG,Masters EI,Kramer L et al.Structural basis for the activation of 20S proteasomes by 11S regulators.Nature 2000;408:115-120.
    147.Haas AL,Warms JV,Hershko A,Rose IA.Ubiquitin-activating enzyme.Mechanism and role in protein-ubiquitin conjugation.J.Biol.Chem.1982;257:2543-2548.
    148.Thrower JS,Hoffman L,Rechsteiner M,Pickart CM.Recognition of the polyubiquitin proteolytic signal.EMBO J.2000;19:94-102.
    149.Risseeuw EP,Daskalchuk TE,Banks TW et al.Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis.Plant J.2003;34:753-767.
    150.Liu CW,Li X,Thompson D et al.ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome.Mol.Cell 2006;24:39-50.
    151.Liu CW,Li X,Thompson D et al.ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome.Mol.Cell 2006;24:39-50.
    152.Hougardy BM,Maduro JH,van der Zee AG et al.Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis.Int.J.Cancer 2006;118:1892-1900.
    153.Zhu Q,Wani G,Wang QE et al.Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo.Exp.Cell Res.2005;307:436-451.
    154.Husnjak K,Elsasser S,Zhang N et al.Proteasome subunit Rpn13 is a novel ubiquitin receptor.Nature 2008;453:481-488.
    155.Schreiner P,Chen X,Husnjak K et al.Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.Nature 2008;453:548-552.
    156.Yao T,Song L,Xu W et al.Proteasome recruitment and activation of the Uch37deubiquitinating enzyme by Adrml.Nat.Cell Biol.2006;8:994-1002.
    157.King RW,Deshaies RJ,Peters JM,Kirschner MW.How proteolysis drives the cell cycle.Science 1996;274:1652-1659.
    158.Spataro V,Norbury C,Harris AL.The ubiquitin-proteasome pathway in cancer.Br.J.Cancer 1998;77:448-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700