用户名: 密码: 验证码:
黄条金刚竹叶有效组分及其辐射防护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核辐射已广泛应用于军事、能源、医疗、农业等领域,在带给我们便利的同时也带来了安全隐患。安全高效的天然辐射防护剂的开发具有非常重要的现实和战略意义。竹叶富含次生代谢产物,具有优良的清除自由基、抗辐射、抗衰老、抗菌、抗病毒、提高免疫力等生物学功效。前期已有体外研究表明竹叶黄酮(毛金竹叶醇提物的正丁醇分极组分,代码为BLF-d24)试样浓度在20~160μg/mL时,对60Co-γ射线(O-20Gy)辐照剂量下的DNA损伤具有保护作用,但其在整体动物水平上的辐射损伤防护作用未见报道。迄今为止,对竹叶有效成分的研究和开发主要集中在以刚竹属毛金竹[Phyllostachys nigra (Lodd. ex Lindl.) Munro var. henonis (Mitford) Stapf ex Rendle]叶为代表的经济竹种上。刚竹属品种是我国最重要的经济竹种,占了资源量的70%以上,其秆型高大,叶片细小,主要以材用林、笋用林和笋材两用林为主,从竹叶的生物量大小和采集的便利程度看并无优势,亟须研发专用的叶用竹林。
     本课题正是基于这种产业背景,瞄准秆形矮小、叶子密集、生物量大、适于机械化采摘的地被竹(俗称竹草,Bamboo grass)种,选取鹅毛竹(Shibataea chinensis Nakai)、黄条金刚竹(Pleioblastus kongosanensis f. aureostriatus Muroi et Yuk. Tanaka)、阔叶箬竹[Indocalamus latifolius (Keng) McClure]、翠竹[Sasa pygmaea (Miq.) E. G.Camus]、铺地竹(Sasa argenteastriatus E.G.Camus)和隈笸[Sasa Veitchii (Carr.) Rehd.]六个品种,研究其竹叶中有效成分的含量及其抗氧化活性和对DNA损伤的防护能力;选取其中最具代表性和开发潜力的黄条金刚竹,分离制备其有效活性组分和特征性化学成分,进行结构解析;并对黄条金刚竹叶的活性组分进行辐射防护的动物试验研究,探索其防护作用的机制。主要结果归纳如下:
     (1)对六种地被竹叶的有效成分和生物学活性进行了比较。于2010年5月对位于临安市浙江农林大学翠竹园内的6种地被竹(鹅毛竹、黄条金刚竹、阔叶箬竹、翠竹、铺地竹、隈笹)叶进行同步采样,热风干燥后,用70%的乙醇热回流提取,制备竹叶提取物,用比色法测定其总黄酮、总酚和三萜含量,表明其均含有丰富的次生代谢产物,以叶干基计的有效成分含量变化在总酚4.15-9.12%、总黄酮1.62-4.00%、三萜1.54-2.28%之间。其中总酚含量最高的是鹅毛竹(9.12%),其次是黄条金刚竹(5.51%),二者的总黄酮含量分别为4.00%和3.16%,三萜含量分别为2.28%和1.89%;采用DPPH自由基清除能力和铁离子还原法(FRAP)两种抗氧化评价体系以及琼脂糖凝胶电泳法,对上述6种竹叶提取物进行抗氧化活性和DNA损伤防护能力评价,鹅毛竹和黄条金刚竹显著优于其他地被竹种(p<0.05)。综合考虑叶片生物量及片型大小、大面积栽培的推广潜力等因素,确定以黄条金刚竹作为进一步研究的对象。
     (2)对黄条金刚竹的生物量大小进行了研究。结果显示黄条金刚竹种群2010年8月的现存生物量为2428.18g/m2,其中地上部分(叶和秆)为1629.97g/m2,占总生物量的67.13%;地下部分(竹鞭)为798.21g/m2,占总生物量的32.87%。最有意义的是黄条金刚竹的叶生物量为746.53g/m2,为刚竹属竹种如毛竹叶生物量(350.5g/m2)的2.13倍,具有开发叶用竹林的潜力。
     (3)研究了季节变化和不同的前处理方法对黄条金刚竹叶有效成分含量及抗氧化活性的影响。结果显示,秋冬季节(9月-12月)采收的竹叶有效成分含量最高、抗氧化活性最强。2011年9月采收的黄条金刚竹叶样经100℃热风干燥,在料液比1:15、温度70℃、热回流提取1h的条件下,得到的70%醇提液(折算成竹叶干基计,下同)总酚含量为3.15%、总黄酮1.98%、三萜2.28%,清除DPPH自由基的IC50值为502.0μg/mL)。显著高于其他干燥方法(如阴干、晒干、微波处理干燥等)(p<0.05)。对黄条金刚竹叶的醇提工艺参数进行了优化,适宜的提取条件为:提取温度70℃,料液比1:25,乙醇浓度70%,提取时间80min;采用优化后的工艺参数组合得到的醇提液清除DPPH自由基的活性提高了19.46%(IC50值为404.32μg/mL)。此外,还探索了采用紫外线辐照处理鲜叶以增加次生代谢产物的含量,短波长(254nm)、低剂量(1kJ/m2)的紫外辐照处理能使竹叶总酚含量增加56.66%、总黄酮含量增加41.94%,清除DPPH自由基能力提高10.30%,表明紫外辐照处理是一种便捷、经济、有效、适合规模化生产的前处理方法。
     (4)从有效成分含量和生物学活性两方面筛选了黄条金刚竹叶的有效活性组分。70%乙醇提取物及其4个分极组分(石油醚相、乙酸乙酯相、正丁醇相及水分极相)均表现出对DPPH·、 ABTS·+、·OH、O·2-、H2O2显著的清除作用和较强的还原力,并对·OH和60Co-γ射线辐射造成DNA的损伤具有良好的防护能力。其中,正丁醇相的总黄酮含量(18.97%)和得率(占醇提物干基质量的7.49%)最高,乙酸乙酯相的总酚含量(32.42%)和三萜含量(7.37%)最高;这两相均表现出强于其他分极组分的抗氧化活性和DNA损伤防护能力(p<0.05)。鉴于此,在实际应用中,将这两个中等极性相(正丁相和乙酸乙酯相)合并,即黄条金刚竹叶的70%乙醇提取物经石油醚脱脂后,直接用正丁醇进行液-液萃取,得到黄条金刚竹叶的活性组分(PLE-EP).
     (5)对黄条金刚竹叶的特征性成分进行分离、制备、结构解析和活性比较。采用正相和反相硅胶柱、RP-C18. Sephadex LH-20柱层析和薄层色谱,从上述活性组分(PLE-EP)中分离制备得到了5个化合物单体,通过紫外光谱、质谱、核磁共振技术,鉴定其化学结构分别为对香豆酸、阿魏酸、kurilensin A[木犀草素6-C-a-阿拉伯呋喃糖基(1→2)-a-L-吡喃鼠李糖苷]、siparunoside[山奈酚-3,7-双甲氧基-4,-O-β-[α-鼠李糖(1→6)-葡萄糖苷]和苜蓿素,RP-HPLC去测得PLE-EP中上述化合物的含量分别为11.30、2.05、12.64、3.18和8.79mg/g。5个化合物单体均呈现出对DPPH·、ABTS+良好的清除活性和较强的还原力,其中,kurilensin A的抗氧化活性可与Vc相媲美,显著高于其他4个化合物(p<0.05);同时,kurilensin A具有显著的对γ-射线造成DNA辐射损伤的防护能力,当试样浓度为100μg/mL时,对质粒DNA辐照损伤的抑制率达到75.0%。表明kurilensin A是黄条金刚竹叶抗氧化和抗辐射的关键成分,可作为黄条金刚竹叶提取物的特征性成分。
     (6)黄条金刚竹叶活性组分防护辐射损伤的动物试验研究。采用60Co-γ射线辐射挣伤小鼠模型,比较了PLE-EP与目前市售的竹叶黄酮制剂(BLF-d24)对小鼠辐射损伤的防护能力。结果显示,两者在200mg/kg·d的给药剂量下均可提高7Gy辐照剂量小鼠的30d存活率,保护指数均为1.44。5Gy辐照剂量可导致小鼠外周血象不同程度的变化,灌胃不同剂量的PLE-EP (100,200.400mg/kg-d)和BLF-d24(200mg/kg·d)可浓度依赖地减缓辐照小鼠血液中白细胞、红细胞、血小板和血红蛋白的下降幅度,特别是给药3周后,表现出显著的升白作用(p<0.05);与辐照对照组比较,高剂量(400mg/kg-d) PLE-EP能使辐照小鼠的骨髓有核细胞数恢复至正常水平,骨髓嗜多染红细胞微核率显著下降(p<0.05)。同时,PLE-EP和BLF-d24均可显著提高辐照小鼠血清、肝脏、脾脏和胸腺组织中SOD、GSH-Px、CAT等抗氧化酶的活性,降低MDA、LPO、LF等氧化产物含量,具有增强小鼠抗氧化体系的功能,并对辐照引起的肝脏、胸腺和脾脏等脏器的损伤有不同程度的防护作用。综合评价,PLE-EP和BLF-d24的辐射防护效果相当。
     综上所述,黄条金刚竹叶提取物具有良好的抗氧化活性和DNA损伤防护能力,而且在动物体的辐射损伤防护上表现出良好的效果,其主要有效成分主要为酚酸和黄酮类化合物,与刚竹属的毛金竹叶提取物基本一致;香豆酸、阿魏酸、kurilensin A、siparunoside和苜蓿素是首次在黄条金刚竹叶中检出;kurilensin A仅在Sasa属的竹草中有过报道,迄今未见在刚竹属竹子中检出,而siparunoside则在竹亚科植物中未见报道。此外,黄条金刚竹生长速度快、叶生物量大,具有作为开发叶用竹林培育和开发的优势。
     本文研究结果为竹叶化学素和竹类资源的现代生物利用拓展了新的空间。
Nuclear radiation is widely used in the filed of military, energy, health, agriculture etc, however, it is also of tromendous concern in terms of public security. Developing safe and effective radiation protectant is of great importance. The bamboo leaves, with diversed secondary metabolites, have been shown to have significant biological effects such as free radical scavenging activity, anti-radiation, anti-aging, anti-bacterial, anti-viral, enhancing immunity and others. Recent studies showed that at concentration of20~160μg/mL, bamboo leaf flavone [butanol fraction from70%ethanol extract of Phyllostachys nigra var. hnonis (Bean) Stepf ex Rendle] could prevent DNA from60Co-y irradiation damage. However, this radioprotection effects have not been confirmed by in vivo studies. Till now, the utilization of bamboo leaves focus mainly on family Phyllostachys, which has tall stem and small leaves and is difficult to harvest. The present study is designed to analyze the radioprotection effects of several bamboos grasses, namely Shibataea chinensis Nakai, Pleioblastus kongosanensis f. aureostriatus Muroi et Yuk Tanaka, Indocalamus latifolius (Keng) McClure, Sasa pygmaea (Miq.) E. G. Camus, Sasa argenteastriatus E.G. Camus and Sasa veitchii (Carr.) Rehd. These bamboo grasses have abundant active compounds and high antioxidant activity, meanwhile, they have rapid growth rate, lush foliage and are easy to harvest. Therefore, they have the potential to be developed as a kind of leafy bamboo grove. Firstly, the content of active components, antioxidant activities and DNA damage prevention abiligy of the above six bamboo grasses leaf were investigated. Then, the most reprensative and potential P. kongosanensis f. aureostriatus was selected. Its effective parts of the selected bamboo grass were screened by detecting the active components content and relalated chemical compounds. And finally, the study of radioprotection ability of the effective parts was carried out and its protective functions were also determined. The main conclusions are as follows:
     (1) The content of active components, antioxidant activities and DNA damage prevention ability of the above six bamboo grasses leaves were compared. S. chinensis and P. kongosanensis f. aureostriatus contains higher total phenolic (9.12% and5.51%, respectively), total flavonoids (4.00%and3.16%, respectively) and titerpenoids (2.28%and1.89%, respectively) content than the others. The antioxidant activity and DNA damage prevention ability of those two species were also stronger than others (p<0.05). Taking into account factors such as leaf size, collection and cultivation, P. kongosanensis f. aureostriatus with the advantage of larger leaf, easier picking and wider range of cultivation, was selected as the further research object.
     (2) The biomass of P. kongosanensis f. aureostriaus was observed. Results show that the leaf biomass of P. kongosanensis f. aureostriaus was746.53g/m2, which is of2.13times of that of Phyllostachys pubescens Mazel ex H. de Lehaie (350.5g/m2). It means P. kongosanensis f. aureostriaus have the advantage to be developed as a kind of leafy bamboo grove.
     (3) Changes of the antioxidant activity and active compounds content from P. kongosanensis f. aureostriatus affected by different harvest season and pre-treatment were investigated. Results showed that bamboo grasses leaf have the highest level of total active components and antioxidant activity in autumn-winter. Different drying methods also affected the active compounds. The bamboo leaf which is collected from September and treated by hot air drying contained significant higher total phenolic (3.15%), total flavonoids (1.98%), titerpenoids (2.28%) and stronger DPPH radical scavenging ability (IC50502.00μg/mL, DW) than other drying methods, i.e. shade drying, sunny drying and microwave drying (p<0.05). The DPPH radical scavenging IC50reached404.32μg/mL by using an extraction temperature70℃, material/liquid ratio1:25, extraction duration80min and the ethanol concentration70%. Additionally, UV treatment of low dosage (1kJ/m2) which can effectively enhance the content of total phenolic56.66%, total flavonoids41.94%, DPPH radical scavenging ability10.30%, is a convenient, economical and effective pre-treatment method for bamboo leaf.
     (4) The effective part of P. kongosanensis f. aureostriatus leaf extract was selected by active components content and biological activity determination. The70%ethanol extract of P. kongosanensis f. aureostriatus (PLE) and its four different polarity fractions i.e. petroleum ether fraction (PLE-PF), ethyl acetate fraction (PLE-EF),n-butanol fraction (PLE-BF) and water fraction (PLE-WF) showed concentration dependent scavenging ability on DPP·、ABTS·+、·OH、O·2-、H2O2and DNA damage prevention ability. PLE-BF had the highest yield rate (7.49%, DW) and total flavonoids content (18.97%) while PLE-EF possessed the highest content of total phenolic (32.42%) and titerpenoids (7.37%). Both two fractions showed the highest antioxidant activity and DNA damage prevention ability than others (p<0.05). Thus, in practice, PLE-BF and PLE-EF were combined and supposed to be the effective part of P. kongosanensis f. aureostriatus leaf extract (PLE-EP).
     (5) The characteristic compounds of P. kongosanensis f. aureostriatus leaf were isolated, purified and structural analyzed. By using normal phase and reversed-phase silica gel column, RP-C18, Sephadex LH-20and thin-layer chromatography, five compounds were isolated from PLE-EP. They were identified as p-coumaric acid, ferulic acid, kurilensin A, siparunoside and tricin. The contents of them were measured by RP-HPLC, with a value of11.30,2.05,12.64,3.18and8.79mg/g in PLE-EP. Free radical scavenging effect (DPPH·, ABTS·+), reducing power and DNA damage prevention ability of each compounds were also investigated. Kurilensin A showed significant stronger antioxidant activity and DNA damage prevention ability than others (p<0.05), was referred to be the main active compound in P. kongosanensis f. aureostriatus leaf.
     (6) The radioprotection ability of P. kongosanensis f. aureostriatus leaf were determined using animal test. In the60Co.y radiation injured mice, both PLE-EP and bamboo leaf flavonoids (BLF-d24) was able to significantly improve the survival of the treated mice in the30d test at the dose of200mg/kg-d. Also, they decreases the white blood cell, red blood cell, platelet counts and hemoglobin level in the peripheral blood of the radiation injured mice. After3weeks administration, the white blood cell counts of radiation injured mice was significantly improved (p<0.05). Additionally, PLE-EP (400mg/kg-d) was able to rescue nucleated cells in treated mice bone marrow to normal level and significantly reduce its micronucleated polychromatic erythrocytes. Futhermore. both PLE-EP and BLF-d24was shown to elevate the endogenous antioxidant enzymes (SOD、GSH-Px、CAT) activities and reduce the MDA、LPO、LF content, and protect the liver, thymus and spleen of mice from irradiation injury to different degrees.
     In conclusion, P. kongosanensis f. aureostriatus leaf extract showed significant antioxidant activities, DNA damage prevention ability, and effective effect on protecting organism from irradiation injury. Phenolic acid and flavonoids were the main active compounds. P-coumaric acid, ferulic acid, kurilensin A, siparunoside and tricin is the first time detected from P. kongosanensis f. aureostriatus. Furthermore, kurilensin A has never been reported in Phyllostachys bamboo so far, while siparunoside was first time reported in bamboo. Kurilensin A, with strong antioxidant activity and DNA damage prevention ability, was the key active compound in P. kongosanensis f. aureostriatus leaf contributing its antioxidant activity and radioprotection ability. In addition, P. kongosanensis f. aureostriatus with the advantage of fast growing and large leaf biomass have the potential to be developed as a kind of leafy bamboo grove.
     Results of this study expanded a new space for bamboo chemical elements and modern biological utilization of bamboo resources.
引文
Abdul-Fattah AM. Kalonia DS, Pikal MJ. The challenge of drying method selection for protein pharmaceuticals:product quality implications [J]. Journal of Pharmaceutical Science,2007,96(8):1886-1916.
    Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent [J]. Nature Protocols,2007,2:875-877.
    Alexander P, Charlesby A, Ross M. The degradation of solid polymethylmethacrylate by ionizing radiation [J]. Proceedings of the Royal Society,1954,223(1154):392-404.
    Andrade ER, Cruz IBM, Andrade VVR, et al. Evaluation of the potential protective effects of ad libitum black grape juice against liver oxidative damage in whole-body acute X-irradiated rats [J]. Food and Chemical Toxicology.2011,49: 1026-1032.
    Arora R. Herbal radiomodulators:Applications in medicine, homeland defence and space [M]. Oxfordshire:UK. CABI Publishing,2008,197-206.
    Bansal P, Paul P, Kunwar A, et al. Radioprotection by quercetin-3-O-rutinnoside a flavonoid glycoside-A cellular and mechanistic approach [J]. Journal of Functional Foods,2012,4,924-932.
    Barnham KJ, Masters CL, Bush Al. Neurodegenerative diseases and oxidative stress [J]. Nature Reviews Drug Discovery,2004,3(3):205-214.
    Begum N, Prasad NR. Apigenin, a dietary antioxidant modulates gamma radiation-induced oxidative damages in human peripheral blood lymphocytes [J]. Biomedicine & Preventive Nutrition,2012,2:16-24.
    Benkovic V, Knezevic AH, Dikic D, et al. Radioprotective effect of propolis and quercetin in y-irradiated mice evaluated by the alkaline comet assay [J]. Phytomedicine,2008,15:851-858.
    Benzie IF, Strain JJ. The ferric ability of plasma as measure of antioxidant power: the FRAP method [J]. Analytical Biochemistry,1996,239:70-76.
    Bijlsma R, Loeschcke V. Environmental stress, adaptation and evolution:an overview [J]. Journal of Evolutionary Biology,2005,18:744-749.
    Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity [J]. LWT-Food Science and Technology,1995,28:25-30.
    Cai L, Satoh M, Tohyama C, et al. Metallothionein in radiation exposure:its induction and protective role [J]. Toxicology,1999,132:85-98.
    Cantos E, Garca-Viguera C, Pascual-Teresa S, et al. Effect of postharvest ultraviolet irradiation on resveratrol and other phenolics of cv. napoleon table grapes. Journal of Agriculture and Food Chemistry,2000,48:4606-4612.
    Canu IG, Garsi JP, Caer-Lorho S, et al. Does uranium induce circulatory disease? First results from a French cohort of uranium workers [J]. Journal of Occupational and Environmental Medicine,2012,69:404-409.
    Cardis E, Vrijheid M, Blettner M, et al. The 15-country collaborative study of cancer risk among radiation workers in the nuclear industry:estimates of radiation-related cancer risks [J]. Radiation Research,2007,167(4):396-416.
    Cavusoglu K. Radioprotective effect of Ginkgo Biloba against gamma radiation-induced chromosomal aberrations in human lymphocytes in vitro [J]. Fresenius Environmental Bulletin,2010,19(2):243-247.
    Chen Q, Zhang SZ, Ying HZ, et al. Chemical characterization and immunostimulatory effects of a polysaccharide from Polygoni Multiflori Radix Praeparata in mice [J]. Carbohydrate Polymers,2012,88:1476-1482.
    Chen T, Burke KA, Zhan Y, et al. IL-2 facilitates both recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation [J]. Experimental Hematology,2007,35:203-213.
    Choi YJ, Lim HS, Choi JS, et al. Blockade of chronic high glucose-induced endothelial apoptosis by Sasa borealis bamboo extract [J]. Experimental Biology and Medicine,2008,233(5):580-591.
    Cinkilic N, Cetintas SK, Zorlu T, et al. Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro [J]. Food and Chemical Toxicology,2013,53:359-363.
    Cui ZW, Xu SY, Sun DW, et al. Dehydration of concentrated ganoderma lucidum extraction by combined Microwave-Vacuum and Conventional Vacuum Drying [J]. Dry Technology,2006,24(5):595-599.
    Daly M J, Gaidamakova EK, Matrosova VY, et al. Small-molecule antioxidant proteome-shields in Deinococcus radiodurans [J]. Plos one,2010,5(9):1-15.
    Devi PU, Bisht KS, Vinitha M. A comparative study of radioprotection by Ocimum flavonoids and synthetic aminothiol protectors in the mouse [J]. British Journal of Radiology,1998,71(847):782-784.
    Dixit AK, Bhatnagar D, Kumar V, et al. Antioxidant potential and radioprotective effect of soys isoflavone against gamma irradiation induced oxidative stress [J]. Journal of Functional Foods.2012,4:197-206.
    Dizdaroglu M, Jaruga P, Birincioglu M, et al. Free radical-induced damage to DNA: Mechanisms and measurement [J]. Free radical biology & medicine,2002,32(11): 1102-1115.
    Duan Y, Zhang H, Xie B, et al. Whole body radioprotective activity of an acetone-water extract from the seedpod of Nelumbo nucifera Gaertn. seedpod [J]. Food and Chemical Toxicology,2010,48:3374-3384.
    El-Nahas SM, Mattar FE, Mohcmed AA. Radioprotective effect of vitamins C and E [J]. Mutation Research Letters,1993,301(2):143-147.
    Ennajar M, Bouajila J, Lebrhi A, et al. The influence of organ, season and drying method on chemical composition and antioxidant and antimicrobial activities of Juniperus phoenicea L. essential oils [J]. Journal of the Science of Food and Agriculture,2010,90(3):462-470.
    Erkan M, Wang SY, Wang CY. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit [J]. Postharvest Biology and Technology,2008,48:163-171.
    Frota AC, Lima Filho AA, Dias AB, et al. Freeze-drying as an alternative method of human sclera preservation [J]. Arquivos Brasileiros de Oftalmologia,2008,71(2): 137-141.
    Gaspar T, Franck T, Bisbis B, et al. Concepts in plant stress physiology. Application to plant tissue cultures [J]. Journal of Plant Growth Regulation.2002,37: 263-285.
    Georgieva S, Popov B, Boney G Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on y-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood [J]. Indian Journal of Exprimental Biology,2013, 51:29-36.
    Gidoh M, Tsutsumi S, Kaniwa S, et al. Studies on search for a promising immunopotentiative substance for treatment of leprosy (2):on several biological actions of bamboo grass extracts [J]. Nippon Rai Gakkai Zasshi,1980,49(1): 47-53.
    Gidoh M, Tsutsumi S, Narita M, et al. Influences of several antileprosy drugs on immunological state of experimental animals [J]. Nihon Rai Gakkai Zasshi,1980, 48(4):159-170.
    Goiato MC, Fernandes AU, Santos DM, et al. Alteration of blue pigment in artificial iris in ocular prosthesis:effect of paint, drying method and artificial aging [J]. Contact Lens and Anterior Eye,2011,34(1):22-25.
    Gonzalez-Aguilar GA, Zavaleta-Gatica R, Tiznado-Hernandez ME. Improving postharvest quality of mango "Haden" by UV-C treatment. Postharvest Biology and Technology,2007,45:108-116.
    Guo S, Deng Q, Xiao J, et al. Evaluation of antioxidant activity and preventing DNA damage effect of pomegranate extracts by chemiluminescence method [J]. Journal of Agricultural and Food Chemistry,2007,55:3134-3140.
    Halliwell B. Antioxidant in human health and disease [J]. Annual Reviews of Nutrition,1996,16:33-50.
    Hasegawa T, Tanaka A, Hosoda A, et al. Antioxidant C-glycosyl flavones from the leaves of Sasa kurilensis var. gigantea [J]. Phytochemistry,2008,69:1419-1424.
    He L, Zhang X, Xu H, et al. Subcritical water extraction of phenolic compounds from pomegranate(Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC-ABTS'+ assay [J]. Food and bioproducts processing,2012,90:215-223.
    Hollosy F. Effects of ultraviolet radiation on plant cells [J]. Micron,2002,33(2): 179-197.
    Hosseinimehr SJ. Foundation review:Trends in the development of radioprotective agents [J]. Drug Discovery Today,2007,12 (19/20):794-805.
    Howe GR, Zablotska LB, Fix JJ, et al. Analysis of the mortality experience amongst U.S. nuclear power industry workers after chronic low-dose exposure to ionizing radiation [J]. Radiation Research,2004,162 (5):517-526.
    Hu C, Zhang Y, Kitts DD. Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra Var. Henonis leaf extraction in vitro [J]. Journal of Agricultural and Food Chemistry,2000,48:3170-3176.
    Hwang JY, Han JS. Inhibitory effects of Sasa borealis leaves extracts on carbohydrate digestive enzymes and postprandial hyperglycemia [J]. Journal of the Korean Society of Food Science and Nutrition,2007,36(8):989-994.
    Ito H, Meistrich ML, Barkley HT, et al. Protection of acute and late radiation damage of the gastrointestinal tract by WR-2721 [J]. International Journal of Radiation Oncology Biology Physics,1986,12 (2):211-219.
    Jarvis RB, Knowles JF. DNA damap:in zebrafish larvae induced by exposure to low-dose rate y-radiation:detection by the alkaline comet assay [J]. Mutation Research,2003,541:63-69.
    Jiao J, Zhang Y, Liu C, et al. Separation and purification of tricin from an antioxidant product derived from bamboo leaves [J]. Journal of Agricultural and Food Chemistry,2007,55:10086-10092.
    Kalpana KB, Devipriya N, Srinivasan M, et al. Evaluating the radioprotective effect of hesperidin in the liver of Swiss albino mice [J]. European Journal of Pharmacology,2011,658:206-212.
    Kanimozhi G, Prasad NR, Ramachandran S, et al. Umbelliferone modulates gamma-radiation induced reactive oxygen species generation and subsequent oxidative damage in human blood lymphocytes [J]. European Journal of Pharmacology,2011,672:20-29.
    Kim EY, Jung EY, Lim HS, et al. The effects of the Sasa Borealis leaves extract on plasma adiponectin, resistin, C-reactive protein, and homocysteine levels in high fat diet-induced obese C57/BL6J mice [J]. The Korean Journal of Nutrition,2007, 40(4):303-311.
    Kim MJ, Byun MW, Jang MS. Physiological and antibacterial activity of bamboo (Sasa coreana Nakai) leaves [J]. Journal of the Korean Society of Food and Nutrition,1996,25(1):135-142.
    Kong C, Liang W, Xu X, et al. Release and activity of allelochemicals from allelopathic rice seedlings [J]. Journal of Agricultural and Food Chemistry,2004, 52:2861-2865.
    Konings AWT, Faber H, Vissink A, et al. Radioprotective effect of amifostine on parotid gland functioning is region dependent [J]. International Journal of Radiation Oncology Biology Physics.2005,63 (5):1584-1591.
    Kruse JJCM, Poele JAM, Russell NS, et al. Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues [J]. International Journal of radiation oncology biology physics,2004, 58(2):420-426.
    Kuboyama N, Fujii A, Tamura T. Antitumor activities of bamboo leaf extracts (BLE) and its lignin (BLL) [J]. Yakurigaku Zasshi,1981,77(6):579-596.
    Kunyanga CN, Imungi JK, Okoth MW, et al. Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients [J]. LWT-Food Science and Technology,2012, 45,269-276.
    Kweon MH, Hwang HJ, Sung HC. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo(Phyllostachys edulis)[J]. J. Agric. Food Chem.2001,49,4646-4655.
    Lahouel M, Viotte G, Sumereau E, et al. Haematotoxicity of doxorubicin and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) and of their association in rats [J]. Drugs under Experimental and Clinical Research,1987,13:593-599.
    Leitao GG, Soares SSV, Brito TBM, et al. Kaempferol glycosides from Siparuna apiosyce [J]. Phytochemistry,2000,55:679-682.
    Lemoine ML, Civello PM, Martinez GA, et al. Influence of postharvest UV-C treatment on refrigerated storage of minimally processed broccoli (Brassica oleracea var. Italica) [J]. Journal of the Science of Food and Agriculture,2007,87: 1132-1139
    Li X, Wang Z, Wang L. Polysaccharide of Hohenbuehelia serotina as a defense against damage by whole-body gamma irradiation of mice [J]. Carbohydrate Polymers,2013,94:829-835.
    Li XL, Zhou AG. Preparation of polysaccharides from Acanthopanax senticosus and its inhibition against irradiation-induced injury of rat [J]. Carbohydrate Polymers, 2007,67:219-226.
    Lin Y, Collier AC, Liu W, et al. The inhibitory effect of bamboo extract on the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer [J]. Phytotherapy Research,2008,22:1440-1445.
    Liu C, Cai L, Lu X, et al. Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage [J]. Journal of Integrative Agriculture,2012,11(1):159-165.
    Liu Z, Wang J, Shen P, et al. Microwave-assisted extraction and high-speed counter-current chromatography purification of ferulic acid from Radix Angelicae sinensis[J]. Separation and Purification Technology,2006,52:18-21.
    Liu Z, Wang L, Liu Y. Studies on Bio-antioxidants-prooxidation of vitamin E on the autoxidation of linoleic acid in sodium dodecyl sulfate [J]. Science in China series B-Chemistry,1991,34(7):787-795.
    Livanos P, Apostolakos P, Galatis B. Plant cell division:ROS homeostasis is required [J]. Plant Signaling & Behavior,2012,7(7):771-778.
    Lu B, Cai H, Huang W, et al. Protective effect of bamboo shoot oil on experimental nonbacterial prostatitis in rats [J]. Food Chemistry,2011,124:1017-1023.
    Lu B, Ren Y, Zhang Y, et al. Effects of genetic variability, parts and seasons on the sterol content and composition in bamboo shoots [J]. Food Chemistry,2009,112: 1016-1021.
    Lu B, Wu X, Shi J, et al. Toxicology and safety of antioxidant of bamboo leaves. Part 2:Developmental toxicity test in rats with antioxidant of bamboo leaves [J]. Food and Chemical Toxicology,2006,44:1739-1747.
    Lu B, Wu X, Tie X, et al. Toxicology and safety of anti-oxidant of bamboo leaves. Part1:Acute and subchronic toxicity studies on anti-oxidant of bamboo leaves [J]. Food and Chemical Toxicology,2005,43:783-792.
    Lu C, Song G, Lin JM. Reactive oxygen species and their chemiluminescence-detection methods [J]. Trends in Analytical Chemistry,2006,25(10):985-995.
    Ma W, Cao E, Zhang J, et al. Phenanthroline-Cu complex-mediated chemiluminescence of DNA and its potential use in antioxidation evaluation [J]. Journal of Photochemistry and Photobiology B:Biology,1998,44:63-68.
    Magalhaes LM, Segundo MA, Reis S, et al. Methodological aspects about in vitro evaluation of antioxidant properties [J]. Analytica Chimica Acta,2008,613:1-19.
    Manthey JA, Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines [J]. Journal of Agricultural and Food Chemistry,2002,50: 5837-5843.
    Martinez-Cayuela M. Oxygen free radicals and human disease [J]. Biochimie,1995, 77:147-161.
    Nakajima Y, Yun YS, Kunugi A. Six new favonolignans from Sasa veitchii (Carr.) Rehder [J]. Tetrahedron,2003,59:8011-8015.
    Odontuya G, Hoult JRS, Houghton PJ. Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides [J]. Phytotherapy Research,2005,19:782-786.
    Otani K, Yanaura S, Yuda Y, et al. Histo-chemical studies on the anti-ulcer effect of bamboo grass in rats [J]. International Journal of Tissue Reactions,1990; 12(6): 319-32.
    Pachkowski BF, Guyton KZ, Sonawane B. DNA repair during in utero development: A review of the current state of knowledge, research needs, and potential application in risk assessment [J]. Mutation Research/Reviews in Mutation Research,2011,728(1-2):35-46.
    Panee J. Bamboo extract in the prevention of diabetes and breast cance [D]. In: Watson RR Complementary and Alternative Therapies and the Aging Population: An Evidence-Based Approach. San Diego:ELSEVIER; 2008,159-177.
    Park EJ, Jhon DY. The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts [J]. LWT-Food Science and Technology,2010,43:655-659.
    Perkins-Veazie P, Collins JK, Howard L. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology,2008,47: 280-285.
    Pillai TG, Nair CKK, Janardhanan KK. Polysaccharides isolated from Ganoderma lucidum occurring in Southern parts of India, protects radiation induced damages both in vitro and in vivo [J]. Environmental Toxicology and Pharmacology,2008, 26:80-85.
    Pirie A, Parsons D, Renggli J, et al. Modulation of flavonoid and tannin production of Carpobrotus rossii by environmental conditions [J]. Environmental and Experimental Botany,2013,87:19-31.
    Pollard JM, Reboucas JS, Durazo A, et al. Radioprotective effects of manganese-containing superoxide dismutase mimics on ataxia-telangiectasia cells [J]. Free Radical Boilogy & Medicine,2009,47:250-260.
    Pujari G, Sarma A, Chatterjee A. The influence of reduced glutathione on chromosome damage induced by X-rays or heavy ion beams of different LETs and on the interaction of DNA lesions induced by radiations and bleomycin [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2010, 696:154-159.
    Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing [J]. Trends in Biochemical Sciences,2000,25:502-508.
    Rajagopalan R, Ranjan SK, Nair CKK. Effect of vinblastine sulfate on y-radiation-induced DNA single-strand breaks in murine tissues [J]. Mutation Research,2003,536:15-25.
    Rana MA. Swelling and structure of radiation induced near-surface damage in CR-39 and its chemical etching [J]. Radiation Measurements,2012,47(1):50-56.
    Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay [J]. Free radical biology & medicine. 1999,26(9/10):1231-1237.
    Redha A, Patrice S, Al-Hasan R, et al. Conocarpus lancifolius biochemical responses to variable UV-Birradiation [J]. Biochemical Systematics and Ecology, 2013,48:157-162.
    Rohloff J, Dragland S, Mordal R, et al. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha x piperita L.) [J]. Journal of Agricultural and Food Chemistry,2005,53(10): 4143-4148.
    Rolim A, Maciel CPM, Kaneko TM, et al. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract [J]. Journal of AOAC International,2005,88(4):1015-1019.
    Sakai A, Watanabe K, Koketsu M, et al. Anti-human cytomegalovirus activity of constituents from Sasa ablo-marginata (Kumazasa in Japan) [J]. Antiviral Chemistry & Chemotherapy,2008,19:125-132.
    Sakai S, Saito G, Sugayama J, et al. On the anticancer action of bamboo extract [J]. The Journal of Antibiotics,1963,16:387-391.
    Sakai S, Saito G, Sugayama J, et al. Anticancer effect of polysaccharide fraction prepared from bamboo grass [J]. Gann,1964,55:197-203.
    Samarth RM, Panwar M, Kumar M, et al. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts [J]. Food Chemistry,2008,106:868-873.
    Sasse AD, Oliveira Clark LG, Sasse EC, et al. Amifostine reduces side effects and improves complete response rate during radiotherapy:Results of a meta-analysis [J]. International Journal of Radiation Oncology Biology Physics,2006,64(3): 784-791.
    Sato T, Tsuchiya A, Kobayashi N, et al. The use in periodontal therapy of a bamboo leaf extract solution [J]. Nippon Shishubyo Gakkai Kaishi,1986,28(2):752-757.
    Saxena S, Hajare SN, More V, et al. Antioxidant and radioprotective properties of commercially grown litchi (Litchi chinensis) from India [J]. Food Chemistry,2011, 126:39-45.
    Selmar D, Kleinwachter M. Influencing the product quality by deliberately applying
    drought stress during the cultivation of medicinal plants [J]. Industrial Crops and
    Products.2013,42:558-566.
    Shibata M, Yamatake Y, Sakamoto M, et al. Phamacological studies on bamboo grass (1). Acute toxicity and anti-inflammatory and antiulcerogenic activities of water-soluble fraction (Folin) extracted form Sasa albomarginata Makino et Shibata [J]. Yakurigaku Zasshi,1975,75:481-490.
    Shibata M, Kubo K, Onoda M. Pharmacological studies on bamboo grass (2). Central depressant and antitoxic actions of a water-soluble fraction (folin) extracted from Sasa albomarginata Makino et Shibatai [J]. Yakurigaku Zasshi, 1976,72,531-541.
    Shibata M, Kubo K, Onoda M. Pharmacological studies on bamboo grass. Ⅲ. Effects on cardiovascular and isolated organs of water-soluble fraction extracted from Sasa albomarginata Makino et Shibata (Bambusaceae) (author's transl) [J]. Yakugaku Zasshi,1978,98:1436-1440.
    Shibata M, Fojii M, Yamaguchi R. Pharmacological studies on bamboo grass.Ⅳ. Toxicological and pharmacological effects of the extract (FⅢ) obtained from Sasa albomarginata Makino et Shibata (author's transl) [J]. Yakugaku Zasshi,1979,99: 663-668.
    Shimizu Y, Kodama K, Nishi N, et al. Radiation exposure and circulatory disease risk:Hiroshima and Nagasaki atomic bomb survivor data,1950-2003 [J]. British Medical Journal,2010,340:b5349, doi:10.1136/bmj.b5349.
    Sigman DS, Mazumder A, Perrin DM. Chemical nucleases [J]. Chemical Reviews, 1990,29(39):9097-9105.
    Singh PK, Wise SY, Ducey EJ, et al. Radioprotective efficacy of tocopherol succinate is mediated through granulocyte-colony stimulating factor [J]. Cytokine, 2011,56:411-421.
    Stewart FA, Lundbeck F, Oussoren Y, et al. Acute and late radiation damage in mouse bladder:A comparison of urination frequency and cystometry [J]. International Journal of Radiation Oncology Biology Physics,1991,21(5): 1211-1219.
    Sugayama J, Kamasuka T, Takada S, et al. On the anticancer active polysaccharide prepared from bamboo grass [J]. The Journal of Antibiotics,1966,19(3):132-136.
    Sun M, Gu X, Fu H, et al. Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction [J]. Innovative Food Science and Emerging Technologies,2010,11,672-676.
    Takahashi I, Abbott RD, Ohshita T, et al. A prospective follow-up study of the association of radiation exposure with fatal and non-fatal stroke among atomic bomb survivors in Hiroshima and Nagasaki (1980-2003) [J]. British Medical Journal,2012,2(1):e000654, doi:10.1136/bmjopen-2011-000654.
    Terry NHA, Travis EL. The influence of bone marrow depletion on intestinal radiation damage [J]. International Journal of Radiation Oncology Biology Physics,1989,17(3):569-573.
    Terry NHA, Tucker SL, Travis EL. Residual radiation damage in murine lung assessed by pneumonitis [J]. International Journal of Radiation Oncology Biology Physics,1988,14(5):929-938.
    Thotala D, Chetyrkin S, Hudson B, et al. Pyridoxamine protects intestinal epithelium from ionizing radiationinduced apoptosis [J]. Free Radical Biology and Medicine, 2009,47:779-785.
    Tian B, Wu Yn, Sheng D, et al. Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans [J]. Luminescence,2004,19:78-84.
    Tian B, Xu Z, Sun Z, et al. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses [J]. Biochimica et Biophysica Acta,2007.1770,902-911.
    Tiwari P, Kumar A, Balakrishnan S. et al. Radiaiton-induced micronucleus formation and DNA damage in human lymphocytes and their prevention by antioxidant thiols [J]. Mutation Research,2009,676:62-68.
    Toor RK, Savage GP, Lister CE. Seasonal variations in the antioxidant composition of greenhouse grown tomatoes [J]. Journal of Food Composition and Analysis, 2006,19(1):1-10.
    Turner ND, Braby LA, Ford J, et al. Opportunities for nutritional amelioration of radiation-induced cellular damage [J]. Nutrition,2002,18(10):904-912.
    Uluata S, Ozdemir N. Antioxidant activities and oxidative stabilities of some unconventional oilseeds [J]. Journal of American Oil Chemists Society,2012,89: 551-55.
    Uzan M, Tanriover N, Bozkus H, et al. Nitric Oxide (NO) metabolism in the cerebrospinal fluid of patients with severe head injury:inflammation as a possible cause of elevated no metabolites [J]. Surgical Neurology,2001,56(6):350-356.
    Vijayalaxmi, Reiter RJ, Tan DX, et al. Melatonin as a radioprotective agent:a review [J]. International Journal of Radiation Oncology Biology Physics.2004,59(3): 639-653.
    Vrijheid M, Cardis E, Ashmore P, et al. Mortality from diseases other than cancer following low doses of ionizing radiation:results from the 15 country study of nuclear industry workers [J]. International Journal of Epidemiology,2007,36 (5): 1126-1135.
    Weiss JF, Landauer MR. Protection against ionizing radiation by antioxidant nutrients and phytochemicals [J]. Toxicology,2003,189:1-20.
    Woo SSN, Sung THJ, Kim DS, et al. Composition comprising bamboo extract and the compounds isolated therefrom showing treating and preventing activity for inflammatory and blood circulation disease[P]. USA. US2006/0078632A1.2006.
    Yang N, Galick H. Wallace SS. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks [J]. DNA Repair,2004,3:1323-1334.
    Yokoya A, Shikazono N, Fujii K, et al. DNA damage induced by the direct effect of radiation [J]. Radiation Physics and Chemistry,2008,77(10-12):1280-1285.
    Yuan JX. Research on the production and botanical origin of bamboo juice in Eastern China [J]. Zhong Yao Tong Bao.1983,8(2):10-12.
    Yun EK, Heo YR, Lim HS. Effects of Sasa Borealis leaf extract on the glucose tolerance of major foods for carbohydrate [J]. Korean Journal of Nutrition,2010, 43(3):215-223.
    Zhang Y, Jiao J, Liu C, et al. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography [J]. Food Chemistry, 2008,107,1326-1336.
    Zhang Y, Jiao J, Liu C, et al. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography [J]. Food chemistry, 2008,107:1326-1336.
    Zhang Y, Wu X, Ren Y, et al. Safety evaluation of a triterpenoid-rich extract from bamboo shavings [J]. Food and Chemical Toxicology,2004,42:1867-1875.
    Zhang Y, Jiao J, Liu C, et al. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography [J]. Food Chemistry, 2008,107:1326-1336.
    Zhao B. Free radicals, natural antioxidants and neurodegenerative disease [J]. Acta Biophysica Sinica,2010,26(4):263-274.
    Zielinska D, Zielinski H. Antioxidant activity of flavone C-glucosides determined by updated analytical strategies [J]. Food Chemistry,2011,124(2):672-678.
    操海群,岳永德,彭镇华,等.竹提取物的抗真菌作用[J].植物保护学报,2003,30(1):35-39.
    陈家佩,毛秉智.辐射血液学-基础与临床[M].北京:军事医学科学出版社,2001,第一版,13-133.
    陈霖.基于控温的花生微波干燥工艺[J].农业工程学报,2011,27(增刊2):267- 271.
    陈伟,沈先荣.细胞因子抗辐射作用研究进展[J].海军医学杂志,2006,27(4):363-367.
    陈锡文,管敏强.三七总皂苷对小鼠抗辐射损伤的实验研究[J].中华放射医学与防护杂志,2005,25(6):559-560.
    陈燕,陈羽白.荔枝的微波干燥特性及其对品质的影响研究[J].农业工程学报,2004,20(4):192-194.
    陈瑗,周玫.自由基医学基础与病理生理[M].北京:人民卫生出版社,2002,第一版,50-63.
    陈月,王宝贵,张桂英,等.刺五加皂苷的抗辐射损伤作用[J].吉林大学法学院学报(医学版),2005,31(3):423-425.
    戴昌世,王秉伋.抗辐射药物研究[M].北京:军事医学科学出版社,2003.
    董礼,陈敏,李梅,等.柴胡红景天中一个新氰苷类化合物[J].药学学报,2009,44(12):1383-1386.
    段伟.四种云南高原天然药物对辐射损伤小鼠防护作用的研究[D].昆明:昆明医学院,2006.
    方允中,郑梁荣.自由基生物学的理论与应用[M].北京:科学出版社,2006.
    傅春玲,江伟威,张萍,等.维生素c抗辐射损伤作用研究[J].苏州医学院学报,2000,20(9):793-795.
    付晓春,王希.竹叶总黄酮抗大鼠心肌细胞凋亡作用的研究[J].中西医结合心脑血管病杂志,2007,5(2):125-126.
    高雪娟,陈健,孙红男,等.竹笋壳提取物抑菌活性研究[J].食品工业科技,2011,32(10):76-78,82.
    龚金炎,吴晓琴,夏道宗,等.RP-HPLC法测定竹叶提取物中黄酮类和酚酸类成分[J].中草药,2010,41(1):63-65.
    郭雪峰.毛竹(Phyllostachys pubescens)与铺地竹(Pleioblastus argenteastriatus)叶黄酮类化学成分及其生物活性的研究[D].北京:中国林业科学研究院,2007.
    郭鹞,王克为,王子灿.放射损伤病理学[M].北京:人民卫生出版社,1987,第 一版,128-147.
    海春旭.自由基医学[M].西安:第四军医大学出版社,2006.
    韩燕全,左冬,夏伦祝,等.不同干燥方法和温度对干姜中6、8、10-姜酚含量的影响[J].中药材,2011,34(10):1512-1514.
    何晓莉,关雪晶,吴宏,等.当归多糖对电离辐射小鼠骨髓单个细胞凋亡及氧化损伤的影响[J].重庆医科大学学报,2012,37(4):315-319.
    何跃君,岳永德,汤锋,等.竹叶挥发油化学成分及其抗氧化特性[J].林业科学,2010,46(7):120-128.
    何跃君,岳永德.竹叶提取物的有效成分及其应用研究进展[J].生物质化学工程.2008,42(3):31-38.
    洪新宇,朱云龙,陈林根,等.竹茹提取物黄酮和内酯延缓皮肤细胞衰老的效能[J].日用化学工业,2003,33(5):302-304.
    黄成林,姚玉敏,赵昌恒.安徽休宁倭竹竹叶主要营养成分的研究[J].竹子研究汇刊,2004,23(3):42-46
    黄文,王益,胡筱波,等.竹叶提取物抑菌特性的研究[J].林产化学与工业,2002,22(1):68-70.
    黄文,王益.竹叶的化学成分及应用进展[J].中国林副特产,2002,62:65-66.
    贾海泉,金宏,李培兵,等.大豆异黄酮对辐射小鼠骨髓细胞的防护作用[J].解放军预防医学杂志,2010,28(1):4-7.
    金虹,黄毅,王继生,等.银杏叶提取物对辐射损伤小鼠的保护作用[J].中草药,2010,41(8):1339-1342.
    李善春.NaCl盐胁迫下5种地被观赏竹生理特性的研究[D].南京:南京林业大学,2005.
    李双明,孙蕊,骆浩,等.紫外辐射对东北红豆杉鲜叶中紫杉醇及三尖杉宁碱含量的影响[J].植物研究,2007,27(4):500-508,513.
    李书艺,周玮婧,孙智达,等.荔枝原花青素的体外抗氧化活性和对DNA损伤的保护作用[J].食品科学,2010,31(01),14-18.
    林树燕,丁雨龙.三种观赏竹抗旱生理指标的研究及其综合评价[J].竹子研究汇刊,2006,25(2):7-9.
    林树燕,丁雨龙,王吉子.4种地被观赏竹的笋期生长特性比较[J].林业科技开发,2007,21(1):51-53.
    刘冰,樊金拴,胡桃,等.秦岭大熊猫主食竹氨基酸含量的测定及营养评价[J].安徽农业科学,2008,36(21):9024-9026,9051.
    刘国华,栾以玲,张艳华.自然状态下竹子的抗寒性研究[J].竹子研究汇刊,2006,25(2):10-14.
    刘国华,王福升.修剪对6种地被竹高生长的影响[J].南京林业大学学报(自然科学版),2008,32(2):145-147.
    刘琳,黄荣清,肖炳坤,等.激素类抗辐射药物的研究进展[J].药学进展,2010,29(6):744-746.
    刘西军,丁正亮,徐小牛.毛竹叶片生物量、养分及与土壤的耦合特征[J].世界竹藤通讯,2011,9(5):1-6.
    陆柏益,张英,吴晓琴.竹叶黄酮的抗氧化及其心脑血管药理活性研究进展[J].林产化学与工业,2005,23(3):120-124.
    陆志科,谢碧霞.不同竹叶的化学成分及其提取物抗菌活性的研究[J].西北林学院学报,2005,20(1):49-52.
    朴宰日.茶多酚的辐射防护机理及对肿瘤放射治疗的效应[D].杭州:浙江大学,2003.
    任美玲,吕兆林,张柏林.竹叶多糖的研究现状与进展[J].食品工业科技,2012,33(13):383-387.
    沈健,冯磊.竹叶提取物降低小鼠脂质过氧化、斗高GSH-Px和SOD活力的作用研究[J].现代康复,1999,3(3):334-336.
    宋仲容,江相兰,李树伟.竹叶提取物的抗氧化活性研究[J].化学研究与应用.2006,18(1):67-69.
    孙维琦,郭英,张义全,等.大豆异黄酮与大豆皂苷抗辐射作用的实验研究[J].中国辐射卫生,2007,16(3):273-274.
    汤佩莲,迟文,曾洪辉.杨梅多酚对核辐射损伤小鼠血液系统的保护作用[J].海南医学院学报,2005,11(5):391-392.
    童曾寿,黄明欣,戴昌世.香豆素类辐射防护剂及其构效关系的研讨[J].中国药 物化学杂志,1994,4(2):150-156.
    万尧德,何光星.臧其中,等.茵陈素对60Co-γ线一次全身照射小鼠的防护效果[J].中华放射医学与防护杂志,1988,8(2):94.
    王波,丁雨龙,王奎宏,等.铺地竹叶饲用价值的判定[J].林业科技开发,2008,22(3):58-60.
    王长松,田莉莉,张俊刚,等.五种中药酚酸类化合物体外抗DNA损伤的做与功能[J].中国药理学与毒理学杂志,2012,26(4):529-533.
    王慧,岳永德,郭雪峰,等.不同竹种竹叶提取物制备及其抗氧化活性比较研究[J].安徽农业大学学报,2012,39(4):540-544.
    王记祥,金首文.南川升麻的化学成分和抗菌活性研究[J].安徽农业科学,2012,40(5):2651-2653.
    王清吉,王友绍,何磊,等.茶多酚和银杏叶有效成分的抗辐射作用研究[J].核技术,2004,27(2):148-150.
    王文文,袁艺,武静文.竹笋醇提取物对酪氨酸酶活力的影响[J].江苏农业学报,2010,26(6):1197-1200.
    吴健全,金宏,许志勤,等.染料木黄酮抗辐射作用的实验研究[J].中国辐射卫生,2004,13(3):170-172.
    谢立梅,王淑娥,江红梅,等.葡萄籽提取物对辐射所致小鼠氧化损伤的影响[J].环境与健康杂志,2011,28(8):725-726.
    徐兵.几种天然抗氧化剂对DNA的保护作用及其分子放射生物学机制的研究
    [D].杭州:浙江大学,2001.
    许钢,张虹,庞洁.竹叶提取物对亚硝化反应抑制作用的研究[J].郑州工程学院学院,2001,22(1):69-72.
    杨卫东,费学谦,王敬文.不同溶剂对竹叶提取物抑菌作用的影响[J].食品工业科技,2006,27(1):77-79.
    杨宗渠,张海洋,卫双玲,等.辐射生物学原理及其应用[M].郑州:河南人民出版社,2009.
    姚旌旗,李映红,刘红梅,等.竹叶提取液对ASP-Ⅰ肺癌细胞生长的影响[J].咸阳医学院学报,2002,16(1):21-22.
    姚旌旗,李映红,刘红梅,等.竹叶提取液对H22肝癌细胞生长的影响[J].咸阳 医学院学报,2002,16(4):233-234.
    岳祥华,张明,刘桂华.铺地竹叶片营养成分随季节的动态变化[J].安徽农业科学,2009,37(25):11970-11971.
    张建友,吴晓琴,张英.竹茹提取物成分分析及功能初探[J].食品工业科技,2011,32(2):151-53,,273.
    张世平,张颖,栗学军,等.p-胡萝卜素和维生素E抗辐射作用的临床研究[J].白求恩医科大学学报,2000,26(5):509-510.
    张英,丁霄霖.竹叶特种氨基酸的存在及其生物学意义[J].无锡轻工大学学报,1997,16(1):29-32.
    张英,龚金炎,李栋,等.竹叶黄酮最新研究进展之二--竹叶酚性化学素抑制食品中丙烯酰胺形成及化解人体丙毒危害的作用和机制研究[J].中国食品添加剂,2009,05:56-62,145.
    张英,唐莉莉.毛金竹叶提取物抗衰老作用的实验研究[J].竹子研究汇刊,1997,16(4):62-67.
    张英,吴晓琴,傅小伟,等.强化竹叶提取物对麦乳精抗氧化性能的改进[J].食品科学,2001,22(6):76-79.
    张英,吴晓琴,俞卓裕.竹叶和银杏叶总黄酮含量及其抗自由基活性的比较研究[J].中国中药杂志.2002,27(4):254-257,320.
    章宇,谢萌,吴晓琴,等.强化竹叶黄酮对酿造酒抗自由基和抗氧化性能的改进
    [J].中国食品学报,2005,5(4):34-37.
    赵海军,张桂英,唐海波,等.沙枣多糖对小鼠辐射损伤的保护作用[J].中国预防医学杂志,2012,13(2):107-108.
    郑建仙.功能性食品学[M].北京:中国轻工业出版社,2011.
    邹丹.黄芪对辐射所致小鼠损伤的保护作用[D].郑州:郑州大学,2005.
    周琦.竹叶提取物的脑缺血作用研究[D].中国沈阳:沈阳药科大学,2005.
    周维书,黄振安,郑爱云.银杏叶及其制剂[M].北京:化学工业出版社,1995,1-14.
    祝瑞雪,高鸿,赵志峰,等.响应面法优化青花椒微波干燥工艺[J].中国调味品,2012,37(1):51-55.
    周玉卿.3种地被型观赏竹扦插试验初报[J].西北农业学报,2005,14(5):132-134,141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700