用户名: 密码: 验证码:
非均匀杂波环境下相控阵机载雷达STAP技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载雷达所面临的真实杂波环境往往是非均匀的,缺乏足够的与待检测样本中的干扰独立同分布(IID)的训练样本,而常规STAP方法性能最优的前提条件是有充足的与待检测样本中的干扰独立同分布(IID)的训练样本估计协方差矩阵,因此常规STAP方法在真实杂波环境中性能会受到影响。研究适应于真实杂波环境的新型STAP算法是目前STAP技术的研究热点之一。本论文着重研究的就是各种杂波非均匀情况下的相控阵机载雷达的STAP杂波抑制方法与目标检测问题,主要工作和创新点概括如下:
     1、建立了双基地机载雷达杂波模型,并利用杂波模型分析了机载雷达内部因素导致的杂波非均匀现象。接着还定量分析了内部、外部因素导致的杂波非均匀现象对STAP处理器的影响。
     2、对机载雷达接收数据模型进行了研究,建立并分析了适合非均匀杂波环境的机载雷达接收数据模型,最后对适合于非均匀杂波环境的机载雷达接收数据模型运用的相关问题进行了研究。适合非均匀杂波环境的机载雷达接收数据模型为后续的适合于非均匀杂波环境的STAP方法提供了基础。
     3、研究了杂波非均匀检测器,针对杂波谱移动非均匀和杂波功率非均匀,提出了“频心”法杂波非均匀检测器。结合本文提出的机载雷达杂波数据模型,针对干扰目标及孤立干扰提出了基于“残差”的杂波非均匀检测器,仿真表明这种杂波非均匀检测器对干扰目标及孤立干扰有较好的杂波非均匀检测效果。
     4、结合本文提出的机载雷达接收数据模型,对两种新型STAP方法(PAMF方法和STAR方法)具有较好的杂波非均匀处理性能的物理本质进行了分析,分析表明这两种方法有内在联系,本文统称为线性预测类STAP方法。线性预测类STAP方法利用了脉冲维数据的平稳性,本质上是一类降维降秩相结合的STAP方法。通常对线性预测类STAP方法的定阶采用信息论准则,计算量大,不易实现,利用线性代数定阶法给出了线性预测类STAP方法的定阶公式,降低了线性预测类STAP方法的计算量。
     5、结合本文提出的机载雷达接收数据模型,提出了结构化降维STAP算法框架。结构化降维STAP方法充分利用了机载雷达接收数据特性,在极小样本数下也能计算出性能稳定的自适应权。针对结构化降维STAP方法需要实时计算空时二维自适应权,计算量大,工程实现不便的缺点,结合共轭梯度算法与基于“残差”的杂波非均匀检测器,提出了一种结构化降维STAP方法的实现算法。新算法使基于“残差”的杂波非均匀检测器与共轭梯度算法有机的结合在一起,有效的降低了计算量,使非均匀杂波环境下的结构化降维STAP算法更具工程可实现性。
     6、从分析滤波器频率响应入手,提出了基于杂波参数的STAP方法,这种方法利用估计的杂波参数在杂波区形成有效的抑制凹口,与常规STAP方法相比,在清晰区能较明显的减少信号通道的损失,可使性能改善2dB左右。基于杂波参数的STAP方法利用杂波参数只对杂波形成凹口,因此自适应抑制干扰的能力较差。针对这个缺点,本文利用基于杂波参数STAP方法中的杂波抑制滤波器作为预滤波,在滤除杂波后再进行STAP处理,经预处理后,不仅杂波得到了充分的抑制,而且使后续的STAP处理有更多的自由度对抗干扰,因此与不进行预滤波的STAP方法相比有更好的潜在杂波非均匀处理能力。
     7、对机载雷达实测数据进行了理论分析,并结合前面各章的研究结果,构成了一种适合非均匀杂波环境的实用化STAP处理系统。新系统经实测数据验证,不仅具有较强的杂波非均匀处理能力,而且具有较强的工程可实现性。
The real clutter enviroment of airborne radar is nonhomogeneous, while the training samples which shall be iid with detecting samples are not enough for this case. The optimum performance of regular STAP algorithms needs suffice training samples to calculate covariance matrix, so the performance will worsen seriously in real clutter enviroment. New STAP algorithms for this problem are studied widely and the dissertation here discusses the problems such as STAP clutter suppression algorithms and targets detecting of phase array airborne radar in some kinds of nonhomogeneous clutter environments. The main contributions of this dissertation can be summarized as follows:
     1、Bistatic clutter model is set up to analyze some clutter nonhomogeneous problems caused by inner reasons of airborne radar, and the influence to STAP of clutter nonhomogeneous phenomena caused by outer reasons is analyzed quantitatively. 2、The received data model of airborne radar is studied, and the model of nonhomogeneous clutter environment is set up to analyze some questions when it is used. The model of nonhomogeneous clutter environment is the precondition of the following research.
     3、Clutter non-homogeneity detector is studied, and a new clutter non-homogeneity detector is proposed by using frequency center idea for clutter spectrum shifting and nonhomogeneity of clutter power. Another clutter non-homogeneity detector using the residual error idea based on the proposed data model is brought to interferential targets and isolated jamming, simulation results show that the new detector performs well for interferential targets and isolated jamming.
     4、The physical essences of two new STAP methods (PAMF and STAR) are analyzed based on the proposed data model. They are called as linear forecasting STAP methods because there are some inner relations between them. Linear forecasting STAP methods use the stationarity of pulse dimension data, which can be seen as a kind of reduced dimension combined with reduced rank STAP algorithm. The formula of calculating rank is shown to reduce the computational load of linear forecasting STAP methods.
     5、Structured reduced dimension STAP algorithm is proposed based on the proposed data model. Structured reduced dimension STAP algorithm which uses the characteristic of received data of airborne radar can get the good adaptive weights with very few samples. Because the computational load of structured reduced dimension STAP algorithm is too great to be deal with real time, a new structured reduced dimension STAP algorithm idea is discussed by combining conjugate grads and clutter non-homogeneity detector based on the residual error to reduce the computational load.
     6、Clutter parametric applied STAP method which shapes suppressing notch in clutter field by using estimated clutter parameters is proposed by analyzing frequency response of filter. Compared with the regular STAP method, this method performs worse in clutter field, but signal channel loss can be reduced in clear filed, which improves the performance about 2dB. The above method does not suppress interfere well because it only shapes notch to suppress clutter. In order to solve this problem the clutter suppressing filter in clutter parametric STAP method is used as advance filtering followed with STAP processing. After the above processing, clutter can be suppressed entirely and the following STAP processing will have more degree of freedom for interfere, so the proposed method has better nonhomogeneous processing performance.
     7、The measured data of airborne radar is analyzed theoretically. Based on the former research conclusions a STAP processing system is proposed for nonhomogeneous clutter environment. The experimental results show that the new system performs well for the current studied clutter nonhomogeneous cases, and the computational load is not great for realization.
引文
[1]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [2]蒋庆全.机载雷达技术发展动向.空载雷达,2004(1):1-4.
    [3]R.Voles.New approach to MTI clutter locking,IEE Proc,1973,120(11):1383-1390.
    [4]M.Skolnik.Radar Handbook.2nd Ed.New York:McGraw Hill,1990.
    [5]D.B.Anderson.A Microwave Technique to Reduce Platform Motion and Scanning Noise in Airborne Moving Target Radar.IRE WESCON conv.Record,1958,2(1):201-211.
    [6]陈俊宇.E-2预警机的现状和发展.雷达与电子战,2006(1):31-36.
    [7]Ward J.Space-time adaptive processing for airborne radar.Technical Report 1015,MIT Lincoln Laboratory,1994.
    [8]Klemm R.Principles of space-time adaptive processing.London:lEE Press,2002.
    [9]Guerci J R.Space-time adaptive processing for radar.Boston,London:Artech House,2003.
    [10]Klemm R.Space-time adaptive processing:principles and applications.London:IEE Press,1998.
    [11]Richmond C D.Performance of the adaptive sidelobe blanker detection algorithm in homogeneous environments.IEEE Trans.on SP,2000,48(5):1235-1247.
    [12]Reed I S,Mallett J D,Brennan L E.Rapid convergence rate in adaptive arrays.IEEE Trans.on AES,1974,10(6):853-863.
    [131 董瑞军.机载雷达非均匀STAP方法及其应用.[博士学位论文];西安:西安电子科技大学;2002.
    [14]王万林.非均匀杂波环境下的相控阵机载雷达STAP研究.[博士学位论文];西安:西安电子科技大学;2004.
    [15]Melvin W L.Eigenbased modeling of nonhomogeneous airborne radar environments.Proc.of the IEEE National Radar Conf,Dallas,TX,USA,1998.171-176.
    [16]Melvin W L.Space-time adaptive radar performance in heterogeneous clutter.IEEE Trans.on AES,2000,36(2):621-633.
    [17]Melvin W L,Guerci J R,Callahan M J.et al.Design of adaptive detection algorithms for surveillance radar.Proc.of the IEEE Int.Radar Conf,Alexandria, VA,USA,2000.608-613.
    [18]Brennan L E,Reed I S.Theory of adaptive radar.IEEE Trans.on AES,1973,9(2):237-252.
    [19]Brennan L E,Mallete J D,Reed I S.Adaptive arrays in airbrone MTI radar.IEEE Trans.on AP,1976,24(5):566-571.
    [20]Klemm R.Airborne MTI via subgroup processing.Int.Conf.On Radar,Paris,1989.43-47.
    [21]Klemm R.Adaptive airborne MTI:an auxiliary channel approach.IEE Proc.F,1987,134(3):269-276.
    [22]Klemm R.Adaptive clutter suppression for airborne phased array radars.IEE Proc.F&H:Feb.1983,1 125-132.
    [23]Klemm R.Suboptimum clutter suppression for airborne phased array radar.IEE Radar Conf,London,1982.473-476.
    [24]Wang H,Cai L.On adaptive spatial-temporal processing for airborne surveillance radar systems.IEEE Trans.on AES,1994,30(3):660-669.
    [25]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现.[博士学位论文];西安:西安电子科技大学;1993.
    [26]廖桂生.相控阵天线AEW雷达时空二维自适应处理.[博士学位论文];西安:西安电子科技大学;1992.
    [27]张良.机载相控阵雷达降维STAP研究.[博士学位论文];西安:西安电子科技大学;1999.
    [28]王彤.机载雷达简易STAP方法及其应用.[博士学位论文];西安:西安电子科技大学;2001.
    [29]王永良,保铮,彭应宁,等.空时二维自适应处理的统一理论模型与局域处理方法.电子学报,1996,24(9):64-69.
    [30]王永良.新一代机载雷达的空时二维自适应信号处理.[博士学位论文];西安:西安电子科技大学;1994.
    [31]保铮,张玉洪,廖桂生,等.机载雷达空时二维信号处理(1).现代雷达,1994,16(1):38-48.
    [32]保铮,廖桂生,吴仁彪,等.相控阵机载雷达杂波抑制的时空二维自适应滤波.电子学报,1993,21(9):1-7.
    [33]保铮,张玉洪,廖桂生,等.机载雷达空时二维信号处理(2).现代雷达,1994,16(2):17-27.
    [34]许志勇.AEW雷达空时二维自适应处理降维方法的研究.[博士学位论文]; 西安:西安电子科技大学;1997.
    [35]Wang Y L,Bao Z,Liao G S.Three united configurations on adaptive spatial-temporal processing for airborne surveillance radar system.International conference on signal processing(ICSP'93),Beijing,1993.381-386.
    [36]Wang Y L,Peng Y N,Bao Z.Space-time adaptive processing for airborne radar with various array orientations.IEE Proc.-Radar,Sonar and Navig,1997,144(6):330-340.
    [37]Barile E.C,Fante R.L,Torres J.A.Some limitations on the effectiveness of airborne adaptive radar.IEEE Trans.on AES,1992,28(4):1015-1023.
    [38]Richardson P.Relationships between DPCA and space-time processing techniques for cLutter suppression.Proceedings of the International Conference on Radar,Pads,1994.295-300.
    [39]Dipietro R.Extended factored space-time processing for airborne radar systems.Proceedings of the 26th Asilomar Conference on Signals,Systems.and Computing,Pacific Grove,CA,1992.425-430.
    [40]Farina A,Saverione A,Timmoneri L.The MVDR vectorial lattice applied to space-time processing for AEW radar with large instanoueous bandwidth.IEEE Proc.Radar Sonar and Navigation,1996,143(1):41-46.
    [41]Farina A,Graziano R,Lee F.et al.Adaptive space-time processing with algorithm:experimental results using recorded live data.Proc.of 1995 IEEE Int Conf,Alexandria,VA,1995.595-602.
    [42]Liu Q.G,Peng Y.L.Analysis of array errors and a short-time processor in airborne phased array radars.IEEE Trans.on AES,1996,32(2):587-597.
    [43]Moo P W.GMTI performance of ΣΔ-STAP for a forward-looking radar.Proc.of the IEEE National Radar Conf,Atlanta,GA,USA,2001.258-263.
    [44]Wang H,Zhang Y H,Zhang Q W.Lessons learned from recent STAP experiments.Proc.of the IEEE Int.Radar Conf,Beijing,China,1996.761-765.
    [45]Wang H.An overview of space-time adaptive processing for airborne radars.Proc.of the IEEE Int.Radar Conf,Beijing,China,1996.789-794.
    [46]Wang H,Zhang Y H,Zhang Q W.et al.An improved and affordable space-time adaptive processing approach.Proc.of the IEEE Int.Radar Conf,Beijing,China,1996.72-77.
    [47]Brown R D,Wicks M C,Zhang Y H.et al.A space-time adaptive processing approach for improved performance and affordability.Proc.of the IEEE National Radar Conf,Ano Arbor,MI,USA,1996,321-326.
    [48]Maher J,Zhang Y H,Wang H.A performance evaluation of ΣΔ-STAP approach to airborne surveillance radars in the presence of both clutter and jammers.Proc.of the IEEE Int.Radar Conf,Edingburg,UK,1997,305-309.
    [49]Zhang Y H,Wang H.Further study on space-time adaptive processing with sum and difference beams.Proc.of the IEEE Antennas and Propagation Symposium,Montreal Que,Canada,1997.2422-2425.
    [50]Zhang Y H,Wang H.Further results of ΣΔ-STAP approach to airborne surveillance radars.Proc.of the IEEE National Radar Conf,Syracuse,NY,USA,1997.337-342.
    [51]Wang H,Zhang Y H.A STAP configuration for airborne surveillance radars.Proc.of the IEEE National Radar Conf,Syracuse,NY,USA,1997.217-222.
    [52]Zhang Y H,Maher J,Chang H.et al.Adaptive pre-suppression of jammers for STAP-based airborne surveillance radars.Proc.of the IEEE National Radar Conf,Dallas,TX,USA,1998.32-37.
    [53]Brown R D,Schneible R A,Wicks M C.et al.STAP for clutter suppression with sum and difference beams.IEEE Trans.on AES,2000,36(2):634-646.
    [54]Klemm R.Adaptive airborne MTI:comparison of sideways and forward looking radar.Proc.of IEEE Int.Radar Conf,Alexandria,VA,USA,1995.614-618.
    [55]Richardson P.G,Haywrd S.D.Adaptive spate-time processing for forward looking radar.Proceedings of the IEEE 1996 National Radar Conference,Ano Arbor,MI,USA,126-130.
    [56]Wang Y.L,Bao Z,Peng Y.N.STAP with Medium PRF Mode for Non-side-looking Airborne Radar.IEEE Trans.on AES,2000,36(2):609-620.
    [57]王永良,吴志文,彭应宁.适于非均匀杂波环境的空时自适应处理方法.电子学报,1999,27(9):56-58.
    [58]Berin,Haimovich A.M.Signal Cancellation Effects in Adaptive Radar Mountaintop Data-Set.IEEE ICASSP'96 Proc,1996.2614-2617.
    [59]Marshall D.Evaluation of STAP training strategies with Mountaintop data.MIT Lincoln Laboratory TR MTP-,1996.
    [60]Seliktar Y,Williams D.B,McClellanJ.H.Evaluation of Partially Adaptive STAP Algorithms on the Mountain Top Data Set.IEEE ICASSP'96 Proc,1996.1169-1172.
    [61]Titi W,Marshall D.F.The Arpa/Navy Mountaintop Program:Adaptive Signal Processing for Airborne Early Warning Radar.IEEE ICASSP'96 Proc,1996.1165-1168.
    [62]Little M O,Berry W P.Real-time multichannel airborne radar measurements. Proc. of the IEEE National Radar Conf, Syracuse, NY, USA, 1997. 138-142.
    [63] Melvin W L, Wicks M C. Improving practical space-time adaptive radar. Proc. of the IEEE National Radar Conf, Syracuse, NY, USA, 1997. 48-53.
    [64] Melvin W L, Wicks M C, Brown R.D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architecture and algorithms. Proc. of the IEEE National Radar Conf, Ano Arbor, MI, USA, 1996.130-135.
    [65] Roman J. R, Davis D. W, Michels J. H. Multichannel Parametric Models for Airborne Phased Array Clutter. IEEE Proc. Int. Conf. Radar Syracuse, New York,1997. 72-77.
    [66] Castro J, LeBlane J. P. Model order selection for multidimensional innovations based detection in airborne radar. Proceedings of the IEEE 1998 National Radar Conference, Dallas, Tx, 1998. 141-146.
    [67] Linderman M H, Linderman R W. Real-time STAP demonstration on an embedded high performance computer. Proc. of the IEEE 1997 National Radar Conf, Syracuse, 1997.
    [68] Fenner D K, Hoover W F, Jr. Test Results of a Space-Time Adaptive Processing System for Airborne Early Warning Radar. Proc. 1996 IEEE National Radar Conf,arm Arbor, Michigan, 1996.13-16.
    [69] Pados D A, Tsao T, Michels J H.et al. Joint domain space-time adaptive processing with small training data sets. Proc. of the IEEE National Radar Conf,Dallas, TX, USA, 1998. 99-104.
    [70] Haimovich A M, Ness Y B. An eigenanalysis interference canceler. IEEE Trans.on SP, 1991,9(1):76-84.
    [71] Haimovich A M. The eigencanceler: adaptive radar by eigenanalysis methods.IEEE Trans. on AES, 1996,32(2):532-542.
    [72] Haimovich A M, Berin M. Eigenanalysis-based space-time adaptive radar:performance analysis. IEEE Trans. on AES, 1997,33(4): 1170-1179.
    [73] Goldstein J S, Kogon S M, Reed I S.et al. Partially adaptive radar signal processing: the cross-spectral approach. Proc. of the 29th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, 1995. 1383-1387.
    [74] Goldstein J S, Zulch P A, Reed I S. Reduced rank space-time adaptive radar processing. Proc. of the IEEE Int. Acoustics, Speech, and Signal Processing Conf,Atlanta, GA, USA, 1996. 1173-1176.
    [75] Goldstein J S, Reed I S, Smith R N. Low-complexity subspace selection for partial adaptivity. Proc. of the IEEE Military Communications Conf, McLean, VA, USA, 1996.597-601.
    [76] Goldstein J S, Reed I S. Reduced rank adaptive filtering. IEEE Trans. on SP,1997,45(2):493-496.
    [77] Goldstein J S, Reed I S. Subspace selection for partially adaptive sensor array processing. IEEE Trans. on AES, 1997,33(2):539-554.
    [78] Goldstein J S, Reed I S. Theory of partially adaptive radar. IEEE Trans. on AES,1997,33(4):1309-1325.
    [79] Reed I S, Goldstein J S. A tutorial on space-time adaptive processing. Proc. of the IEEE National Radar Conf, Syracuse, NY, USA, 1997.
    [80] Goldstein J S, Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans. on IT,1998,44(7):2943-2959.
    [81] Goldstein J S, Reed I S, Zulch P A.et al. A multistage STAP CFAR detection technique. Proc. of the IEEE National Radar Conf, Dallas, TX, USA, 1998.111-116.
    [82] Zulch P A, Goldstein J S, Guerci J R.et al. Comparison of reduced-rank signal processing techniques. Proc. of the 32th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 1998. 421-425.
    [83] Goldstein J S, Reed I S, Zulch P A. Multistage partially adaptive STAP CFAR detection algorithm. IEEE Trans. on AES, 1999,35(2):645-661.
    [84] Reed I S, Goldstein J S, Yu X.et al. Multidisciplinary perspective on adaptive sensor array processing. IEE Proc- Radar, Sonar and Navig,1999,146(5):221-234.
    [85] Peckham C D, Haimovich A M, Ayoub T F.et al. Reduced-rank STAP performance analysis. IEEE Trans. on AES, 2000,36(2):664-676.
    [86] Melvin W L. A STAP overview. IEEE Trans. on AES, 2004,19(1): 19-35.
    [87] Richmond C D. The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar. Proc. of the 32th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 1998.1327-1331.
    [88] Rabideau D J, Steinhardt A O. Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training. Proc. of the 30th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA,1996.75-79.
    [89] Rabideau D J, Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training. IEEE Trans. on AES, 1999,35(3):879-891.
    [90]Adve R S,Wicks M C,Hale T B.et al.Ground moving target indication using knowledge based space time adaptive processing.Proc.of the IEEE Int.Radar Conf,Alexandria,VA,USA,2000.735-740.
    [91]魏进武,王永良,陈建文.双基地机载雷达空时自适应处理方法.电子学报,2001,29(12(A)):1936-1939.
    [92]Zatman M.Production of adaptive array troughs by dispersion synthesis.IEE Electronics Letters,1995,31(25):2141-2412.
    [93]Zatman M.Circular array STAP.Proc.of the IEEE National Radar Conf,Boston,MA,USA,1999.108-113.
    [94]Zatman M.The properties of adaptive algorithms with time varying weights.Proc.of the IEEE Sensor Array and Multichannel Signal Processing Workshop,Cambridge,MA,USA,2000.82-86.
    [95]Zatman M.Circular array STAP.IEEE Trans.on AES,2000,36(2):510-517.
    [96]Kreyenkamp O,Klemm R.Doppler compensation in forward-looking STAP radar,IEE Proc.-Radar,Sonar,Navig,2001,148(5):253-258.
    [97]Lapierre F D,Droogenbroeck M V,Verly J G.New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars.Proc.of the IEEE Int.Acoustics,Speech,and Signal Processing Conf,HongKong,China,2003.73-76.
    [98]Braham H,Michel J H,Zhang Y H.Bistatic STAP performance analysis in radar applications.Proc.of the IEEE National Radar Conf,Atlanta,GA,USA,2001.198-203.
    [99]Klemm R.Ambiguities in bistatic STAP radar.Proc.of the IEEE Int.Geoscience and Remote Sensing Symposium,Honolulu,HI,USA,2000.1009-1011.
    [100]Kogon S M,Zatman M A.Bistatic STAP for airborne radar systems.ASAP Workshop,MIT Lincoln Laboratory,Lexington.2001.
    [101]Lapierre F D,Verly J G,Droogenbroeck M.V.New solutions to the problem of range dependence in bistatic STAP radars.Proc.of the IEEE National Radar Conf,the Huntsville Marriott,Huntsville,AL,USA,2003.452-459.
    [102]Melvin W L,Himed B,Davis M.Doubly adaptive bistatic clutter filtering.Proc.of the IEEE Radar Conf,the Huntsville Marriott,Huntsville,AL,USA,2003.171-178.
    [103]Borsari G K.Mitigating effects on STAP processing caused by an inclined array.Proc.of the IEEE National Radar Conf,Dallas,TX,USA,1998.135-140.
    [104]Himed B,Zhang Y H,Hajjari A.STAP with angle-Doppler compensation for bistatic airborne radar.Proc.of the IEEE National Radar Conf,Long Beach,CA, USA, 2002. 311-317.
    [105] Ong K P, Mulgrew B. Doppler compensation for JDL for airborne bistatic radar.Proc. of the IEEE Sensor Array & Multichannel Signal Processing Workshop,2002. 82-86.
    [106] Lim C H, Aboutanios E, Mulgrew B. Modified JDL with Doppler compensation for airborne bistatic radar. Proc. of the IEEE National Radar Conf, Arlington, VA,USA, 2005. 854-858.
    [107] Pearson F, Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2001.
    [108] Jaffer A, Ho P T. Adaptive angle-Doppler compensation techniques for bistatic STAP radars. Final Technical Report, AFRL-S, 2005.
    [109] Jaffer A, Himed B, Ho P. Estimation of range-dependent cluter covariance by configuration parameter estimation. Proc. of the IEEE Int. Radar Conf, Arlington,VA, USA, 2005. 596-601.
    [110] Jaffer A, Ho P T, Himed B. Adaptive compensation for conformal array STAP by configuration parameter estimation. Proc. of the IEEE National Radar Conf,Verona, NY, USA, 2006.
    [111] Neyt X, Lapierre F D, Verly J G. Estimation of geometric radar configuration parameters for range-dependence compensation in STAP in the presence of targets, jammers, and decorrelation effects. Proc. of the IEEE Sensor Array and Multichannel Signal Processing Workshop, 2004. 662-666.
    [112] Neyt X, Lapierre F D, Verly J G. Priciple and evaluation of a registration-based range-dependence compensation method for STAP in case of arbitrary antenna patterns and simulated snapshots. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2004.
    [113] Lapierre F D, Verly J G. The range-dependence problem of clutter spectrum for non-sidelooking monostatic STAP radars. Proc. of the 21st Benelux Meeting on Systems and Control, Veldhoven, The Netherlands, 2002.
    [114] Lapierre F D, Verly J G. Registration-based solutions to the range-dependence problem in STAP radars. Proc. of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2003.
    [115] Lim C H, Mulgrew. Filter banks based JDL with angle and separate Doppler compensation for airborne bistatic radar. Proc. of the Int. Radar Symposium,Bangalore, India, 2005. 583-587.
    [116] Zatman M. Performance analysis of the derivative based updating method. Proc. of the Adaptive Sensor Array Processing Workshop,Lincoln Laboratory,MA,USA,2001.
    [117]Varadarajan V,Krolik J.STAP with a distorted linear array in inhomogeneous clutter.Proc.of the Adaptive Sensor Array Processing Workshop,Lincoln Laboratory,MA,USA,2002.1-17.
    [118]Lim C H,Mulgrew B.Prediction of inverse covariance matrix(PICM) sequences for STAP.IEEE SP Letters,2006,13(4):236-239.
    [119]Lim C H,Aboutanios E,Mulgrew B.Linear prediction of range-dependent inverse covariance matrix.Proc.of the National Radar Conf,Verona,NY,2006.
    [120]Han Y I,Kim T.Performance of excision GO-CFAR detectors in nonhomogeneous environments.IEE Proc.-Radar,Sonar,Navig,1996,143(2):105-112.
    [121]Guerci J R,Bergin J S.Principal components,covariance matrix tapers and the subspace leakage problem.IEEE Trans.on AES,200,38(1):152-162.
    [122]Guerci J R.Theory and application of covariance matrix tapers for robust adaptive beamforming.IEEE Trans.on SP,1999,47(4):977-985.
    [123]Guerci J R,Bergin J S.Principal components,covariance matrix tapers and the interference modulation problem.Proc.of the Adaptive Sensor Array Processing Workshop,MIT Lincoln Laboratory,Lexington,MA,USA,1999.
    [124]Chang H H.Improving space-time adaptive processing(STAP) radar performance in nonhomogeneous clutter.(Doctor Dissertation);Syracuse University;1997.
    [125]王彤,保铮.空时二维自适应处理的目标污染样本挑选方法.电子学报,2001,29(12A):1840-184.
    [126]Adve R S,Hale T B,Wicks M.C.Transform domain localized processing using measured steering vectors and non-homogeneity detection.Proc.of the IEEE National Radar Conf,Boston,MA,USA,1999.285-290.
    [127]Rangaswamy M,Himed B,Michels J H.Performance analysis of the nonhomogeneity detector for STAP applications.Proc.of the IEEE National Radar Conf,Atlanta,GA,USA,2001.193-197.
    [128]Wicks M C,Melvin W L,Chen P.An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar.Proc.of the IEEE Int.Radar Conf,Edinburgh,UK,1997.295-299.
    [129]Melvin W L,Guerci J R.Adaptive detection in dense target environments.Proc.of the IEEE National Radar Conf,Atlanta,GA,USA,2001.187-192.
    [130]Chen P.Partitioning procedure in radar signal processing problems.Final report for AFOSR Summer,Rome Laboratory,Rome,NY.1995.
    [131]Chen P.On testing the equality of covariance matrices under singularity.Report for AFOSR Summer Facult,Rome Laboratory,Rome,NY,1994.
    [132]Himed B,Salama Y,Michel J.H.Improved detection of close proximity targets using two-step NHD.Proc.of the IEEE Int.Radar Conf,Alexandria,VA,USA,2000.781-786.
    [133]陈建文,王永良,皇甫堪,等.基于非均匀检测的机载雷达空时自适应处理方法.数据采集与处理,2000,15(1):44-47.
    [134]陈建文.机载雷达空时自适应处理方法研究.[博士学位论文];长沙:国防科学技术大学;2000.
    [135]Wang Y L,Chen J W,Bao Z.et al.Robust space-time adaptive processing for airborne radar on nonhomogeneous clutter environment.IEEE Trans.on AES,2003,39(1):70-81.
    [136]Fabrizio G A,Turley M D.An advanced STAP implementation for surveillance radar systems.Proc.of the IEEE 11th Signal Processing Workshop on Statistical Signal Processing,Singapore,2001.134-137.
    [137]Park S,Sarkar T K.A deterministic eigenvalue approach to space time adaptive processing.Proc.of the IEEE Int.Phased Array Systems and Technology Symposium,Boston,MA,USA,1996.372-375.
    [138]Park S,Sarkar T K.A modified generalized eigenvalue approach to space-time adaptive processing.Proc.of the IEEE Int.Antennas and Propagation Symposium,Atlanta,GA,USA,1998.1292-1295.
    [139]Sarkar T K,Sangruji N.An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method.IEEE Trans.on AP,1989,37(7):940-944.
    [140]Sarkar T K,Park S,Koh J.et al.A deterministic least square approach to adaptive antennas.Digital Signal Processing,1996:185-194.
    [141]Sarkar T K,Adve R S,Wicks M.C.Effects of mutual coupling and channel mismatched on space-time adaptive processing algorithms.Proc.of IEEE Int.Phased Array Systems and Technology Conf,Dana Point,CA,USA,2000.545-548.
    [142]Sarkar T K,Koh J,Adve R S.et al.A pragmatic approach to adaptive antennas.IEEETrans.on AP,2000,42(2):39-55.
    [143]Sarkar T K,Wang H,Park S.et al.A deterministic least-squares approach to space-time adaptive processing(STAP).IEEE Trans.on AP,2001,49(1):91-103.
    [144]Adve R S,Hale T B,Wicks M C.Practical joint domain localized adaptive processing in homogeneous and nonhomogeneous environments.Part Ⅱ:Nonhomogeneous environments.IEE Proc.-Radar,Sonar Navig,2000,147(2):66-74.
    [145]Adve R S,Hale T B,Wicks M C.Practical joint domain localized adaptive processing in homogeneous and nonhomogeneous environments.Part Ⅰ:Homogeneous environments,IEE Proc.-Radar,Sonar Navig,2000,147(2):57-65.
    [146]Adve R S,Hale T B,Wicks M.C.A two stage hybrid space-time adaptive processing algorithm.Proc.of the IEEE National Radar Conf,Boston,MA,USA,1999.279-284.
    [147]Adve R S,Wicks M C.Joint domain localized processing using measured spatial steering vectors.Proc.of the IEEE National Radar Conf,Dallas,Tx,USA,1998.165-170.
    [148]Kim Y.Efficient signal processing techniques for space-time adaptive radar.(Doctor Dissertation);Polytechnic University;1998.
    [149]Pillai S U,Kwon B H.Forward/backword spatial smoothing techniques for coherent signal identification.IEEE Trans.on ASSP,1989,37(1):8-15.
    [150]Pillai S U,Kim Y L,Guerci J R.Gneralized forward/backward subaperture smoothing techniques for sample starved STAP.IEEE Trans.on SP,2000,48(12):3569-3574.
    [151]Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced rank STAP.IEEE Trans.on AES,2000,36(2):647-663.
    [152]Lombardo P.Data selection strategies for radar space time adaptive processing.Proc.of the IEEE National Radar Conf,Dallas,TX,USA,1998.201-206.
    [153]Klemm R.Comparison between Monostatic and Bistatic Antenna Configuration for STAP.IEEE Trans.on AES,2000,36(2):596-608.
    [154]魏进武.双基地机载雷达空时二维自适应处理技术研究.[硕士学位论文];武汉:空军雷达学院;2002.
    [155]杨振起,张永顺,骆永军.双(多)基地雷达系统.北京:国防工业出版社,1998.
    [156]孙仲康,周一宇,何黎星.单多基地有源无源定位技术.北京:国防工业出版社,1996.
    [157]Zhang Y,Himed B.Effects of Geometry on Clutter Characteristics of Bistatic Radars.2003 IEEE Radar Conference,USA:IEEE,2003.417-424.
    [158]Herbert G M,Richardson G.On the Benefits of Space-Time Adaptive Prosessing(STAP) in Bistatic Airborne Radar.Proceedings of IEEE 2002National Radar conf,USA:IEEE,2002.365-369.
    [159]Himed B.Effects of Bistatic Clutter Dispersion on STAP Systems.IEE Proceedings on Radar,Sonar and Navigation,2003,105(1):28-32.
    [160]任迎舟.机载雷达时空二维杂波仿真和空时级联信号处理系统的性能仿真.[硕士学位论文];西安:西安电子科技大学;1991.
    [161]汤子跃.相控阵机载雷达对悬停直升机目标的检测技术研究.[博士学位论文];武汉:海军工程大学;2000.
    [162]任迎舟,张玉洪.机载相控阵雷达时空二维杂波的仿真.现代雷达,1994,16(2):28-36.
    [163]Richmond C D.Statistical performance analysis of the adaptive sidelobe blanker detection algorithm.Proc.of the 31th Asilomar Conf.on Signals,Systems and Computers,Pacific Grove,CA,USA,1997,872-876.
    [164]Nitzberg R.An effect of range-heterogeneous clutter on adaptive Doppler filters.IEEE Trans.on AES,1990,26(3):475-480.
    [165]Armstrong B C,Griffiths H D,Baker C J.et al.Performance of adaptive optimal Doppler processors in heterogeneous clutter.IEE Proc.-Radar,Sonar,Navig,1995,142(4):179-190.
    [166]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [167]张贤达,保铮.非平稳信号分析与处理.北京:国防工业出版社,2001.
    [168]杨叔子,吴雅.时间序列分析的工程应用.武汉:华中理工大学出版社,1994.
    [169]项静恬,杜金观,史久恩.动态数据处理-时间序列分析.北京:气象出版社,1986.
    [170]陆果.基础物理学教程.北京:高等教育出版社,1998.
    [171]罗伯特 A 蒙津戈,托马斯 W 米勒.自适应阵导论.北京:国防工业出版社,1988.
    [172]张贤达.现代信号处理.北京:清华大学出版社,2003.
    [173]石镇.自适应天线原理.北京:国防工业出版社,1991.
    [174]程云鹏.矩阵论.西安:西北工业大学出版社,2002.
    [175]王永良,魏进武,陈建文.双基地机载雷达空时二维杂波建模及杂波谱性能分析.电子学报,2001,29(12):1940-1943.
    [176]熊洪允,曾绍标,毛云英.应用数学基础.天津:天津大学出版社,1998.
    [177]Michels J H,Roman J R,Himed B.Beam Control Using the Parametric Adaptive Matched Filter STAP Approach.IEEE Radar Conference,Huntsville,Alabama,2003.405-412.
    [178]Roman J R,Rangaswamy M,Davis D W.et al.Parametric Adaptive Matched Filter for Airborne Radar Applications.IEEE Trans.on AES,2000,36(2):678-692.
    [179]Parker P,Swindlehurst A.Space-Time Autoregressive Filtering for Matched Subspace STAP.IEEE Trans.on AES,2003,39(2):510-520.
    [180]Zataman M,Marshall D.Forwards-Backwards Averaging for Adaptive Beamforming and Stap.IEEE Trans.on AP,1996,146:2630-2633.
    [181]Michels J H,Himed B,Rangaswamy M.Evaluation of the Normalized Parametric Adaptive Matched Filter STAP Test in Airborne Radar Clutter.IEEE International Radar Conference,Washington D.C,2000.769-774.
    [182]Waele S D,Broersen M T.Order Selection for Vector Autoregressive Models.IEEE Trans.on SP,2003,51(2):427-433.
    [183]张良,保铮,廖桂生.基于特征空间的降维STAP方法比较研究.电子学报,2000,28(9):27-30.
    [184]Yu J L,Yeh C C.Generalized eigenspace-based beamformer.IEEE Trans.on SP,1995,43(11):2453-2461.
    [185]Guerci J R,Goldstein J S,Reed I S.Optimal and adaptive reduced-rank STAP.IEEE Trans.AES,2000,36(2):647-663.
    [186]Sarkar T K,Arvas E.On a class of finite step iterative methods(conjugate direction) for the solution of an operator equation arising in electromagnetics.IEEE Trans.on AP,1985,33(1):1058-1066.
    [187]陈佩青.数字信号处理教程.第2版版.北京:清华大学出版社,1995.
    [188]Kumar R.A fast algorithm for solving a toeplitz system of equations.IEEE Trans.on SP,1985,33(1):254-267.
    [189]Schleher D C.Mti and pulse doppler radar.London:Artech House Inc,1991.
    [190]Stimson G W.机载雷达导论.第二版版.北京:电子工业出版社,2005.
    [191]SKolnik M L.雷达手册.第二版版.北京:电子工业出版社.
    [192]黄勇,彭应宁,王秀坛,等.杂波谱中心doppler频率和谱宽的快速估计算法.清华大学学报(自然科学版),2001,41(1):33-36.
    [193]葛凤翔,孟华东,彭应宁,等.杂波谱中心和谱宽估计方法.清华大学学报(自然科学版),2002,42(7):941-944.
    [194]Ge F L,Peng Y L,Wang X T.PSD accumulation for estimating the bandwidth of the clutter spectra.IEICE Transaction on Communication, 2002,E85-13(4):1052-1056.
    [195] Wiks M C, Rangaswamy M, Adve R.et al. Space-time adaptive processing (Aknowledge-based perspective for airborne radar). IEEE Signal Processing Magazine, 2006,January:51-65.
    [196] Capraro G T, Farina A, Grifiths H.et al. Knowledge-based radar signal and data processing. IEEE Signal Processing Magazine, 2006,January: 18-29.
    [197] Guerci J R, Baranoski E J. Knowledge-aided adaptive radar at DARPA. IEEE Signal Processing Magazine, 2006,January:41-50.
    [198] Bergin J, Teixeira C, Techau P.et al. STAP with knowledge-aided data pre-whitening. Proc. of the IEEE National Radar Conf, Philadelphia, PA, USA,2004. 289-294.
    [199] Gini F. Knowledge-based systems for adaptive radar. IEEE Signal Processing Magazine, 2006,January:14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700