用户名: 密码: 验证码:
可摘挂式抱索器结构设计及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对重力式抱索器自身较重、体积大、在脱绳时容易卡死、不能进行斜坡转弯、铰孔容易开裂等缺点和不足,以及设计理论体系的不完整,研究抱索器的运动特点及结构特征,提出其核心部件的四杆机构工作原理。为设计抱索器抱紧力,采用杠杆比衡量抱索器四杆机构的增力效果,进而确定抱索器关键零件的有效尺寸。为保证抱索器抱绳的稳定性,又能在脱绳时灵活自如,采用包形系数衡量其作用效果,通过钳口理论,设计抱索器的包形角。增设轮架和摩擦板,为抱索器脱绳后在轨道上的运行提供平衡支撑和动力。最后,通过仿真分析和实验研究论证设计理论的可靠性,为抱索器的开发和设计提供理论依据和数据支持。
     针对可摘挂式抱索器系统特性要求,采用Pro/E进行数字样机装配并检查装配精度,为抱索器的优化设计提供尺寸设计依据和装配数据。利用Pro/Mechanical平台对抱索器进行运动分析,检测抱索器各个零件的运动状态以及是否存在空间干涉和运动过度现象,为抱索器活动抱卡的张开角度提供三维数据,确保抱索器运动性能的实现。通过ANSYS仿真模态分析,提取抱索器的模态参数,改善抱索器结构布置和尺寸,提高易引起共振的低阶固有频率,减少因振动对抱索器零部件造成的损坏,确保抱索器安全稳定运行。再运用ANSYS应力应变仿真模块,研究应力应变的分布规律,对活动抱卡应力集中的危险部位(铰孔和内外抱体连接处),采用增厚或增大过度角等安全设计手段减小应力集中,保证抱索器的危险截面的可靠性。
     实验研究中引入间接测力概念,通过测定抱索器抱紧钢块的变形,获得钢块所受压力即为抱索器抱紧力,经过反复测试,求得抱索器平均杠杆比,验证设计理论的可靠性。通过抱索器试验模态,对抱索器低阶自然频率的测定,验证抱索器结构设计的可靠性,以及仿真模态分析时边界条件设定的合理性。借助应变实验,测试抱索器内外抱体关键部位(抱头和铰孔)的应变量,对仿真中应力应变分布规律进行校验,确定抱索器核心零部件的危险截面,并优化危险截面的承载能力。
     本文对可摘挂式抱索器从理论、仿真到实验进行系统性的分析研究,为抱索器的优化设计和优化性能提供理论及实验数据,经过三方面的对比分析,用理论计算指导抱索器的设计,以仿真分析优化抱索器活动抱卡的结构和尺寸,最后以实验检验优化后的效果及前期设计的准确性,为企业的研发和生产提供参考。
To deal with the drawbacks of the existing gravity-based grip, such as heavy self-weight, bulky size, easy to get jammed when derailing, incapable of making turns on a slope and easily cracked reamed holes, as well as the lack of integral theoretical system to aid design procedure, the kinematics and structural characteristics of the grip is studied in this study. The operation principles of the 4-bar mechanism, the core part of the grip, are proposed. The holding force of the grip is designed based on the theoretical calculation and the force amplification efficiency of the 4-bar mechanism is characterized with the concept of lever ratio. The dimensions of the grip's core parts are determined by the design of a proper lever ratio. The envelop angle is calculated with the jaw theory, where the grip performance is characterized with an envelop coefficient. A proper envelop coefficient ensures both the stability during the griping and the flexibility during the derailing. Wheel carrier and friction board are installed to supply the balance point and power for the grip to run after derailing. The reliability of the proposed theoretical calculation results is analyzed through both the simulation and the experiment, providing data and theory support to the development and design of grips.
     According to the requirement of system performance of detachable grip, assemble accuracy of digital model is assembled and its assembly accuracy is checked in Pro/E. It provides a spatial concept and assembly data for optimum grip design. The kinematics of the grip are analyzed in Pro/Mechanical to obtain the motion state of each part and detect the possible spatial interference or the excessive motion, which provides three dimensional data to the open angle of the movable clip to guarantee the realization of kinematics performance of the grip. Simulation is carried out with ANSYS software to investigate the distribution of stress and strain in the grip. According to the simulation results, the critical sections in the movable clip where stress concentration occurs are improved by thickening or increasing the transition angle to guarantee the reliability of the critical sections in the grip.
     In the experimental study, the concept of indirect force measurement is introduced to measure the distortion in the steel clip of the grip, corresponding to the pressure of the clip, which is equal to the gripping force of the grip. After a serial of measurements, the average lever ratio was calculated, which was used to verify the theoretical design and calculation, as well as the reasonableness of boundary condition settings for modal analysis simulation. Through the strain experiments, the total strain in key parts of inner and outer clip, i.e. clip head and reamed holes, were measured to check the stress and strain distribution obtained through the simulation and define the critical sections in the grip's core parts. The measurements were also used to enhance the load capacity of the critical sections in later optimization process.
     The systematic analysis and investigation are carried out on the detachable grip through the theoretical, the simulation and experimental study to provide theoretical data for the optimization of movable clip. Theoretical calculations are used to guide the grip design. Simulations are carried out to optimize the structure and dimensions of the grip. Experiments are carried out to verify the optimized design and its accuracy. The work completed in this thesis provides a beneficial reference for the industry.
引文
[I]About Ropeways [http://library.mines.edu/About_Ropeways http://www.ushabreco.com/about-ropeways.html].
    [2]周新年,郑丽凤,邓盛梅.我国工程索道的发展与展望[J].福建林学院学报,2005,25(1):85-90.
    [3]Klaus Hoffmann.Recent developments in cable-drawn urban transport systems [J]. Faculty of Mechanical Engineering (FME) Transactions,2006,34(4):205 212.
    [4]Chairlift [http://en.wikipedia.org/wiki/Chairlift http://en.academic.ru/dic.nsf/enwiki/180459].
    [5]张立忠,刘黎明.我国矿山载人索道现状及发展前景[C].2007年赣闽皖苏湘五省煤炭学会联合学术交流会.厦门,2007:124-126.
    [6]王庆武.中国索道建设的现状与发展趋势[J].中国索道,2001,1(2):1-6.
    [7]Aerial lift [http://en.wikipedia.org/wiki/Aerial_lift].
    [8]袁庭栋.巴蜀文化[M].沈阳:辽宁教育出版社,1995.41-58.
    [9]Fausto Veranzio [http://en.wikipedia.org/wiki/Fausto_Veranzio http://www.arcipelagoadriatico.it/uomini/dalmati/veranzio.html].
    [10]Wybe Adam [http://trifter.com/europe/germany/the-first-ski-lift/ http://ezinearticles.com/?The-First-Ski-Lift-Through-to-Todays-Cable-Cars&id= 5378537].
    [11]Wilhelm Albert [http://en.wikipedia.org/wiki/Wilhelm_Albert],
    [12]Funitel [http://en.wikipedia.org/wiki/Funitel].
    [13]Aerial tramway [http://en.wikipedia.org/wiki/Aerial_tramway].
    [14]Gondola lift [http://en.wikipedia.org/wiki/Gondola_lift].
    [15]嵇焕章.客运索道脱挂式抱索器的剖析与计算[J].中国索道,2002,2(4):23-29.
    [16]T-bar lift [http://en.wikipedia.org/wiki/T-bar_lift].
    [17]Cable grip [http://en.wikipedia.org/wiki/Cable_grip].
    [18]肖公平.浅谈煤矿架空乘人装置中平面转弯机构的设计[J].煤矿开采,2009,14(1):72-74.
    [19]J-bar lift [http://en.wikipedia.org/wiki/J-bar_lift].
    [20]Detachable chairlift [http://en.wikipedia.org/wiki/Detachable_chairlift].
    [21]朱俊国.脱挂式抱索器综合评述[J].中国索道,2001,1(4):1-5.
    [22]王黎虹POMA双抱索器的检测与研究[J].中国索道,2002,2(6):35-41.
    [23]杨义勇,王延利,王人成.循环式索道抱索器的结构优化设计及有限元分析[J].机械设计与制造.2006(11):32-34.
    [24]Yu-Qiu Long, Song Cen, Zhi-Fei Long. Advanced Finite Element Method in Structural Engineering[M]. New York:Springer Publishing Company, Incorporated,2009.546-673.
    [25]尚晓江,邱峰,赵海峰ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2005.119-267.
    [26]张向慧,钱桦.1/2波长复合形变幅杆的有限元分析[J].南京理工大学学报(自然科学版),2010,34(1):99-102.
    [27]M. Zgraggen, G. Piskoty, M. Faller et al.Analysis of track rope damage in serious incident on Schilthorn aerial ropeway[J]. Materials and Corrosion,2006, 57(7):549-554.
    [28]习小英,姜莉莉,丘瑞林.双四杆机构的运动分析及其优化[J].机械设计与制造,2010(1):106-108.
    [29]R. V. Petrova, K. Hoffmann, R. Liehl.Modelling and simulation of bicable ropeways under cross-wind influence[J].Mathematical and Computer Modelling of Dynamical Systems:Methods, Tools and Applications in Engineering and Related Sciences,2007,13(1):63-81.
    [30]杨义勇,李建中.架空索道新型脱挂抱索器的结构原理及试验装置研究[J].中国机械工程,2001,12(8):871-872,875.
    [31]孙林松,王德信,谢能刚.接触问题有限元分析方法综述[J].水利水电科技进展,2001,21(3):18-20,68.
    [32]Javier Bonet, Richard D.Wood. Nonlinear Continuum Mechanics for Finite Element Analysis[M],2nd Edition. New York:Cambridge University Press, 2008.63-130.
    [33]ANSYS Inc. ANSYS ICEM CFD/AI*Environment 10.0 User Manual.
    [34]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.58-101.
    [35]冯坤.振动信号处理技术及其在机械故障诊断中的应用[D].北京:北京化工大学,2006.
    [36]Klaus Hoffmann.Oscillation Effects of Ropeways Caused by Cross-Wind and Other Influences[J]. Faculty of Mechanical Engineering (FME) Transactions, 2009,37(4):175-184.
    [37]崔志琴,杨瑞峰.复杂机械结构的参数化建模及模态分析[J].机械工程学报, 2008,44(2):234-237.
    [38]汪伟,辛勇.车架有限元建模及模态分析[J].机械设计与制造,2009(11):53-54.
    [39]王誉蓉.基于虚拟技术的结构模态分析系统的研究[D].保定:华北电力大学,2006.
    [40]Jimin He, Zhi-Fang Fu. Modal Analysis[M]. Oxford:Butterworth-Heinemann, 2001.1-251.
    [41]I. Zaghbani, V. Songmene.Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis[J]. International Journal of Machine Tools and Manufacture,2009,49(12-13):947-957.
    [42]Hans C. Renezeder, Alois Steindl, Hans Troger.Three-Dimensional Simulation of a Circulating Monocable Ropeway[J]. PAMM,2006,6(1):327-328.
    [43]Javier Garcia de Jalon, Eduardo Bayo. Kinematic and Dynamic Simulation of Multibody Systems:The Real Time Challenge[M]. New York:Springer-Verlag New York, Inc.,1994.71-198.
    [44]朱琦.含移动副四杆机构运动仿真设计的数学模型[J].山西机械,2003(4):17-18.
    [45]Liedl Stephan. Motions and forces in the rope system of aerial ropeways during operation [C]. Internationaler Seilbahnkongress. San Francisco:Center for Ropeway Studies:International Organization for the Study of Transportation by Rope (O.I.T.A.F.),1999:381-382.
    [46]James M. W. Brownjohn.Dynamics of an aerial cableway system[J].Engineering Structures,1998,20(9):826-836.
    [47]B. Portier.Dynamic phenomena in ropeways after a haul rope rupture[J]. Earthquake Engineering & Structural Dynamics,1984,12(4):433-449.
    [48]R. Pintelon, P. Guillaume, J. Schoukens.Uncertainty calculation in (operational) modal analysis[J]. Mechanical Systems and Signal Processing,2007,21(6): 2359-2373.
    [49]R. M. Lin, M. K. Lim.Modal analysis of close modes using perturbative sensitivity approach[J]. Engineering Structures,1997,19(6):397-406.
    [50]K. Hoffmann, R. Petrova.Simulation of Vortex Excited Vibrations of a Bicable Ropeway[J].Engineering Review,2009,29(1):11-23.
    [51]Y. Y. Hung, S. Y. Hung, Y. H. Huang. et al.Hybrid holographic-numerical method for modal analysis of complex structures[J]. Optics & Laser Technology, 2010,42(1):237-242.
    [52]徐彬,陈南,王辉.基于接触单元法的复杂机构有限元分析[J].东南大学学报(自然科学版),2009,39(3):495-501.
    [53]D. Hanson, R. B. Randall, J. Antoni. et al.Cyclostationarity and the cepstrum for operational modal analysis of MIMO systems--Part Ⅱ:Obtaining scaled mode shapes through finite element model updating[J]. Mechanical Systems and Signal Processing,2007,21(6):2459-2473.
    [54]C. B. Gurung, H. Yamaguchi, T. Yukino.Identification and characterization of galloping of Tsuruga test line based on multi-channel modal analysis of field data[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(7): 903-924.
    [55]Xiaoqing Sun, Jacob Philip.A study of experimental modal analysis for seismic response assessment of underground facilities[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):307.e301-307.e314.
    [56]D. Hanson, R. B. Randall, J. Antoni. et al.Cyclostationarity and the cepstrum for operational modal analysis of mimo systems--Part I:Modal parameter identification[J]. Mechanical Systems and Signal Processing,2007,21(6): 2441-2458.
    [57]B. Cauberghe, P. Guillaume, P. Verboven. et al.Identification of modal parameters including unmeasured forces and transient effects[J]. Journal of Sound and Vibration,2003,265(3):609-625.
    [58]Christof Devriendt, Gert De Sitter, Patrick Guillaume.An operational modal analysis approach based on parametrically identified multivariable transmissibilities [J]. Mechanical Systems and Signal Processing,2010,24(5): 1250-1259.
    [59]R. M. Lin.Identification of modal parameters of unmeasured modes using multiple FRF modal analysis method[J]. Mechanical Systems and Signal Processing,2011,25(1):151-162.
    [60]Mohamed A. A. Wahab, Kenji Matsuura.Modified Fourier transform lightning surge analysis of an overhead line-underground coaxial (CV) cable system Part I. Modal analysis of underground cables and overhead lines and effect of subterranean water on cable modal propagation characteristics[J]. Electric Power Systems Research,1994,31(1):31-42.
    [61]Mohamed A. A. Wahab, Kenji Matsuura.Modified Fourier transform lightning surge analysis of an overhead line-underground coaxial (CV) cable system Part Ⅱ. System lightning surge response[J]. Electric Power Systems Research,1994, 31(1):43-49.
    [62]张立彬.基于LMS Test.Lab的小型农业作业机振动测试与分析[J].农业工程学报,2008,24(199(5)):5-7.
    [63]Lingmi Zhang, Tong Wang, Yukio Tamura.A frequency-spatial domain decomposition (FSDD) method for operational modal analysis[J]. Mechanical Systems and Signal Processing,2010,24(5):1227-1239.
    [64]S. V. Modak, Chetan Rawal, T. K. Kundra.Harmonics elimination algorithm for operational modal analysis using random decrement technique[J]. Mechanical Systems and Signal Processing,2010,24(4):922-944.
    [65]Klaus Hoffmann, Thomas Gabmayer, Gerhard Huber.Measurement of oscillation effects on ropeways and chairlifts[J]. Osterreichische Ingenieur-und Architekten Zeitschrift(OIAZ),2008,153(10-12):435-438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700