用户名: 密码: 验证码:
金属—有机骨架材料中天然气存储的分子模拟研究及MOF-5的实验合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属—有机骨架材料(Metal-Organic Frameworks,MOFs)是一类类似于沸石的新型多孔材料,具有多样性的结构组成、较大的比表面积和孔隙率、可裁剪性的孔等特点,可应用于气体储存、分离及催化等领域。计算化学不仅可以突破传统方法的局限性,而且还可为最佳吸附材料的设计和最优操作条件的确定提供理论依据,实现从以经验为主向定量、定向制备的转变,从而节省大量繁杂的实验研究。本工作主要针对甲烷存储这一热门话题,通过分子模拟手段分析其在材料中的吸附机理,从而设计具有更高甲烷存储量的新材料。此外,为了进一步设计新材料,我们进行了实验合成的探索研究。其主要研究内容如下:
     1、针对具有最大甲烷存储量的金属—有机骨架材料(MOFs)PCN-14,采用质心分布图研究了甲烷在其中的吸附机理。结果表明,PCN-14中主要存在两个吸附位,其中金属簇—苯基区域中靠近苯环的位置为第一吸附位,蒽基上方为第二吸附位。两个吸附位均与有机配体有关,有机配体较之金属簇在CH_4的吸附中发挥着重要的作用。
     2、在此基础上,我们通过改变PCN-14的有机配体,设计了具有高存储量的新型MOF材料PCN-M1和PCN-M2。通过模拟290 K时的吸附等温线,发现新材料PCN-M1和PCN-M2的吸附性能比PCN-14增强很多。在3.5 PMa时,PCN-M1、PCN-M2的吸附量分别达到了246 v/v、257 v/v,比PCN-14增加了7%、12%。本章接着模拟了298 K和3.5 MPa时的吸附,PCN-M2对甲烷的吸附量达到了241v/v,超过了DOE标准180 v/v的34%。
     3、为了进一步验证上述分子模拟结果,需要实验合成上述新材料并对其结构特性以及吸附性能进行研究,从而开发具有更高甲烷存储量的MOF材料。但是由于本实验室之前并没有过实验合成MOF材料的经验,所以本人选择合成晶体结构相对简单、合成步骤简易的MOF-5材料,为本实验室开展实验合成MOF材料做前期探索工作,为建立分子模拟—实验合成共同筛选高性能甲烷存储材料机制作前期准备。
Metal-Organic Frameworks (MOFs), commonly recognized as "soft" analogues of zeolites, is a new class of nanoporous materials. MOFs, with extremely high porosity, chemical diversity, and as tailored materials with well-defined pore size, are promising materials for gases storage, separation, and catalyst, etc. Computational chemistry can not only overcome the limitations of traditional methods, but also provides theoretical guidance for the design of optimal adsorbents and the determination of optimal industrial operation conditions, which also saves a lot of time for complicated experimental works. In this work, a systematic study was carried out on methane storage in MOFs using molecular simulation technique, and the new material was designed by investigating the adsorption mechanism in MOFs. Furthermore, we also synthesized a MOF material named MOF-5. The main contents and findings are summarized as follows:
     (1) An effective method denoted as "center of mass probability distributions" was employed to study the methane adsorption mechanism in metal-organic framework PCN-14 which shows the highest methane storage capacity to date, finding that this material has two adsorption sites for methane molecules, and the organic linkers play an important role in adsorption.
     (2) Based on this point, two new materials named PCN-M1 and PCN-M2 were designed by modifying the organic linkers of PCN-14. The newly designed MOF materials have a methane storage capacity of ca. 246 and 257 v/v at 290 K and 3.5 MPa, which is 7 % and 12 % higher than that of PCN-14. On the other hand, it has a methane capacity of ca. 241 v/v at 298 K and 3.5 MPa in PCN-M2, which is 34 % over the DOE target (180 v/v).
     (3) In order to further verify the simulation results mentioned above, we should experimentally synthesize the new designed materials and investigate their structural characteristics, as well as the adsorption performance. Thus, we can develop a higher amount of methane stored MOF materials. However, as the limited ability in synthesis of MOF materials in our laboratory, we have to synthesize a relatively simple material (MOF-5) firstly, as the preliminary exploration work.
引文
[1]Ferey G.Hybrid porous solids:past,present,future[J].Chem.Soc.Rev.,2008,37:191-214
    [2]Champness N R.Current opinion in solid state & materials[J].Science,1998,3,419-426
    [3]林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J].结构化学,2004,23:1388-1398
    [4]魏文英,方键,孔海宁,等.金属有机骨架材料的合成及应用[J].化学进展,2005,17:1110-1115
    [5]Kitagawa S,Kitaura R,Noro S.Functional porous coordination polymers[J].Angew.Chem.Int.Ed.,2004,43:2334-2375
    [6]James S L.Metal-organic frameworks[J].Chem.Soc.Rev.,2003,32:276-288
    [7]Chen B,Eddaoudi M,Hyde S T,et al.Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J].Science,2001,291:1021-1023
    [8]Nathaniel L R,Juergen E,Mohamed E,et al.Hydrogen storage in microporous metal-organic frameworks[J].Science,2003,300:1127-1129
    [9]Chael H K,Siberio-Perez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427:523-527
    [10]Chen Banglin,Nathan W O,Millward A R,et al.High H_2 adsorption in a microporous metal-organic framework with open metal sites[J].Angew.Chem.Int.Ed.,2005,44:4745-4749
    [11]Lee J Y,Pan L,Kelly S P,et al.Achieving high density of adsorbed hydrogen in microporous metal organic frameworks[J].Adv.Mater.,2005,17:2703-2706
    [12]Kesanli B,Cui Yong,Smith M R,et al.Highly interpenetrated metal-organic frameworks for hydrogen storage[J].Angew.Chem.Int.Ed.,2005,44:72-75
    [13]Navarro J A R,Barea E,Salas J M,et al.H_2,N_2,CO,and CO_2 sorption properties of a series of robust sodalite-type microporous coordination polymers[J].Inorg.Chem.,2006,45:2397-2399
    [14]Millward A R,Yaghi O M.Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J].J.Am.Chem.Soc.,2005,127:17998-17999
    [15]Latroche M,Surbl S,Serre C,et al.Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101[J].Angew.Chem.Int.Ed.,2006,45:8227-8231
    [16]Dietzel P D C,Panell B,Hirscher M,et al.Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework[J].Chem.Commun.,2006,959-961
    [17]Dinca M,Dailly A,Liu Y,et al.Hydrogen storage in a microporous metal-organic framework with exposed Mn~(2+) coordination sites[J].J.Am.Chem.Soc.,2006,128:16876-16883
    [18]Humphrey S M,Chang J S,Jhung S H,et al.Porous cobalt(Ⅱ)-organic frameworks with corrugated walls:Structurally robust gas-sorption materials[J].Angew.Chem.Int.Ed.,2007,46:272-275
    [19]Dybtsev D N,Chun H,Yoon S H,et al.Microporous manganese formate:A simple metal-organic porous material with high framework stability and highly selective gas sorption properties [J]. J. Am. Chem. Soc., 2004, 126: 32-33
    [20] Lin X, Jia J H, Zhao X B, et al. High H_2 adsorption by coordination-framework materials [J]. Angew. Chem. Int. Ed. 2006, 45: 7358-7364
    [21] Pan L, Olson D H, Ciemnolonski L R, et al. Separation of hydrocarbons with a microporous metal-organic framework [J]. Angew. Chem. Int. Ed. 2006, 45: 616-619
    [22] Li Y W, Yang R T. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover [J]. J. Am. Chem. Soc. 2006, 128: 726-727
    [23] Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. J. Am. Chem. Soc. 2006,128: 1304-1305
    [24] Pan.L, Parker B, Huang X, et al. Zn(tbip)(H2tbip=5-tert-Butyl Isophthalic Acid): A highly stable guest-free microporous metal organic framework with unique gas separation capability [J]. J. Am. Chem. Soc. 2006, 128: 4180-4181
    [25] Wong-Foy A G, Matzger A J, Yaghi O M. Exceptional H_2 saturation uptake in microporous metal-organic frameworks [J]. J. Am. Chem. Soc. 2006, 128: 3494-3495
    [26] Sun D, Ma S, Ke Y, et al. An interweaving MOF with high hydrogen uptake [J]. J. Am. Chem. Soc. 2006,128: 3896-3897
    [27] Li Y W, Ralph T Yang. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover [J]. J. Am. Chem. Soc. 2006, 128: 8136-8137
    [28] Dinca M, Yu A F, Long J R. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: Syntheses, structures, and hydrogen storage properties [J]. J. Am. Chem. Soc. 2006, 128: 8904-8913
    [29] Dinca M, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal-organic framework with exposed Mn~(2+) coordination sites [J]. J. Am. Chem. Soc. 2006, 128: 16876-16883
    [30] Culp J T, Matranga C, Smith M, et al. Hydrogen storage properties of metal nitroprussides M[Fe(CN)_5NO], (M=Co, Ni) [J]. J. Phys. Chem. B, 2006, 110: 8325-8328
    [31] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295: 469-472
    [32] Jia H P, Li W, Ju Z F, et al. Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers [J]. Eur. J. Inorg. Chem., 2006,4264-4270
    [33] Rowsell J L C, Yaghi O M. Metal-organic frameworks: A new class of porous materials [J]. Microporous and Mesoporous Materials, 2004, 73: 3-14
    [34] Rosi N L, Eddaoudi M, Kim J, et al. Infinite secondary building units and forbidden catenation in metal-organic frameworks [J]. Angew. Chem. Int. Ed., 2002,41: 284-287
    [35] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu_3(TMA)_2(H_2O)_3]n [J]. Science, 1999, 283: 1148-1150
    [36] Kondo M, Okubo T, Asami A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu_2(pzdc)_2(L)}n] (pzdc = pyrazine-2,3-dicarboxylate; L= a Pillar Ligand) [J]. Angew. Chem. Int. Ed., 1999, 38: 140-143
    [37] Noro S I, Kitagawa S, Kondo M, et al. A new, methane adsorbent, porous coordination polymer [{CuSiF_6(4,4'bipyridine)_2}n] [J]. Angew. Chem. Int. Ed., 2000, 39: 2081-2084
    [38] Yang G, Raptis R G. A robust, porous, cationic silver(i) 3,5-diphenyl-1,2,4-triazolate framework with a uninodal 49.66 net [J]. Chem. Commun., 2004,4: 2058-2059
    [39]Fujita M,Kwon Y J,Washizu S,et al.Preparation,clathration ability,and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and 4,4'-bipydine[J].J.Am.Chem.Soc.,1994,116:1151-1152
    [40]Kepert C J,Rosseinsky M J.Zeolite-like crystal structure of an empty microporous molecular framework[J].Chem.Commun.,1999,375-376
    [41]Fletcher A J,Cussen E J,Prior T J,et al.Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni_2(4,4'-Bipyridine)_3(NO_3)_4:Guest modification of host sorption behavior[J].J.Am.Chem.Soc.,2001,123:10001-10011
    [42]Zhao X B,Fletcher A J,Thomas K M,et al.Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks[J].Science,2004,306:1012-1015
    [43]Halder G J,Kepert C J.In situ single-crystal X-ray diffraction studies of desorption and sorption in a flexible nanoporous molecular framework material[J].J.Am.Chem.Soc.,2005,127:7891-7900
    [44]Dai Y,Cheng C,Liao D Z,et al.A nanotubular 3D coordination polymer based on a 3d-4f heterometallic assembly[J].Angew.Chem.Int.Ed.,2003,42:934-936
    [45]Chandler B D,Cramb D T,George K H,et al.Microporous metal-organic frameworks formed in a stepwise manner from luminescent building blocks[J].J.Am.Chem.Soc.,2006,128:10403-10412
    [46]Zhen X J,Sun C Y,Lu S Z,et al.New porous lanthanide-organic frameworks:Synthesis,characterization,and properties of lanthanide 2,6-naphthalenedicarboxylates[J].Eur.J.Inorg.Chem.,2004,3262-3268
    [47]Zheng X J,Jin L P,Lu S Z.Hydrothermal syntheses,structures and properties of first examples of lanthanide(Ⅲ) 2,3-pyrazinedicarboxylates with three-dimensional framework [J].Eur.J.Inorg.Chem.,2002,3356-3363
    [48]Rosseinsky M J.Recent developments in metal-organic framework chemistry:Design,discovery,permanent porosity and flexibility[J].Microporous and Mesoporous Materials,2004,73:15-30
    [49]Yaghi O M,Davis C E,Li G M,et al.Selective guest binding by tailored channels in a 3-D porous Zinc(Ⅱ)-1,3,5-benzenetricarboxylate network[J].J.Am.Chem.Soc.,1997,119:2861-2863
    [50]Li H,Eddaoudi M,O'Keeffe M,et al.Design and synthesis of an exceptionally stable and high porous metal-organic framework[J].Nature,1999,402:276-279
    [51]Huang L,Wang H,Chen J,ea al.Synthesis,morphology control,and properties of porous metal-organic coordination polymers[J].Microporous and Mesoporous Materials,2003,58:105-114
    [52]程绍娟,赵强,薛建伟,等.金属有机骨架配合物MOF-5的合成及其储氢研究[J].武汉理工大学学报,2006,28:339-342.
    [53]Zheng N,Richard I M.Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis[J].J.Am.Chem.Soc.,2006,128:12394-12395
    [54]李以圭,刘金晨.分子模拟与化学工程[J].现代化工,2001,21:10-15.
    [55]林梦海.量子化学—计算方法与应用[M].科学出版社:北京,2004
    [56]赫尔曼.理论物理学中的计算机模拟方法(秦克诚译)[M].北京大学出版社:北京,1996
    [57]Alder B J,Wainwright T E.Studies in molecular dynamics.I:General methed[J].J.Chem.Phys.,1959,31:459-466
    [58]Woodcock L V.Isothermal molecular dynamics calculations for liquid salts[J].Chem.Phys. Lett, 1971,10: 257-261
    [59] Anderson H C. Molecular dynamics simulation at constant ressure and/or temperature [J]. J. Chem. Phys., 1980, 72: 2384-2393
    [60] Nose S A. Unified formation of the constant temperature molecular dynamics methods [J]. J. Chem. Phys., 1984, 81: 511-519
    [61] Nose S A. Molecular dynamics method for simulations in the canonical ensemble [J]. Mol. Phys., 1984, 52: 255-268
    [62] Evans D J. Computer "experiment" for nonlinear thermodynamics of couette flow [J]. J. Chem. Phys., 1983, 78: 3297-3302
    [63] Allen M P, Tildesley D J. Computer simulation of liquids [M]. Clarendon press: Oxford, 1987.
    [64] Heffelfinger G S, Vanswol F V. Diffusion in lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD) [J]. J. Chem. Phys., 1994, 100: 7548-7552
    [65] Palmer B J, Lo C M. Molecular dynamics implementation of the gibbs ensemble calculation [J]. J. Chem. Phys., 1994, 101: 10899-10907
    [66] Cummings P T, Evans D. Nonequilibrium molecular dynamics approaches to transport properties and non-newtonian fluid rheology [J]. J. Ind. Eng. Chem. Res., 1992, 31: 1237-1252
    [67] Frost H, Snurr R Q. Design requirements for metal-organic frameworks as hydrogen storage materials [J]. J. Phys. Chem. C, 2007, 111, 18794-18797
    [68] Frost H, Düren T, Snurr Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks [J]. J. Phys. Chem. B, 2006, 110: 9565-9570
    [69] Jung D, Kim D, Lee T B, et al. Grand canonical monte carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks [J]. J. Phys. Chem. B, 2006, 110: 22987-22990
    [70] Garberoglio G, Skoulidas A I, Johnson J K. Adsorption of gases in metal organic materials: comparison of simulations and experiments [J]. J. Phys. Chem. B, 2005, 109: 13094-13103
    
    [71] Kawakami T, Takamizawa S, Kitagawa Y, et al. Theoretical studies of spin arrangement of adsorbed organic radicals in metal-organic nanoporous cavity [J]. Polydedron, 2001, 20: 1197-1206
     [72] Liu J C, Culp J T, Natesakhawat S, et al. Experimental and theoretical studies of gas adsorption in Cu_3(BTC)_2: An effective activation procedure [J]. J. Phys. Chem. C, 2007, 111:9305-9313
    [73] Liu J C, Lee J Y, Pan L, et al. Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)_(0.5)] [J]. J. Phys. Chem. C, 2008, 112: 2911-2917
    [74] Noguchi D, Tanaka H, Kondo A, et al. Quantum sieving effect of three-dimensional Cu-based organic framework for H_2 and D_2 [J]. J. Am. Chem. Soc.,2008, 130: 6367-6372
    [75] Han S S, Deng W Q, Goddard III W A. Improved designs of metal-organic frameworks for hydrogen storage [J]. Angew. Chem. Int. Ed., 2007, 46: 6289-6292
    [76] Han S S, Goddard III W A. Lithium-doped metal-organic frameworks for reversible H_2 storage at ambient + temperature [J]. J. Am. Chem. Soc., 2007, 129: 8422-8423
    [77] Zhang L, Wang Q, Liu Y C. Design for hydrogen storage materials via observation of adsorption sites by computer tomography [J]. J. Phys. Chem. B, 2007, 111: 4291-4295
    [78] Yang Q Y, Zhong C L. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks [J]. J. Phys. Chem. B, 2005, 109: 11862-11864
    [79] Yang Q, Zhong C. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks [J]. J.Phys. Chem. B, 2006, 110: 17776-17783
     [80] Yang Q Y, Zhong C L. Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: A computational study [J]. ChemPhysChem, 2006, 7: 1417-1421
    [81] Wang S. Comparative molecular simulation study of methane adsorption in metal-organic frameworks [J]. Energy Fuels, 2007, 21: 953-956
    [82] Liu D H, Yang Q Y, Zhong C L. Adsorption of methane in heterometallic metal-organic frameworks with anions: a molecular simulation study [J]. Mol. Simulat., 2008, 113, 5004-5009
    [83] Duren T, Sarkisov L, Yaghi O M, Snurr R Q. Design of new materials for methane storage [J]. Langmuir, 2004,20,2683-2689
    [84] Sarkisov L, Düren T, Snurr R Q. Molecular modeling of adsorption in novel nanoporous metal-organic materials [J]. Mol. Phys., 2004, 102: 211-221
    [85] Jiang J W, Sandier S I. Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1 [J]. Langmuir, 2006, 22: 5702-5707
    [86] Babarao R, Hu Z, Jiang J, et al. Storage and separation of CO_2 and CH_4 ia silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation [J]. Langmuir, 2007, 23: 659-666
    [87] Khoo H H, Tan R B H. Life cycle investigation of CO_2 recovery and sequestration [J]. Environ. Sci. Technol., 2006,40: 4016-4024
    [88] Yang Q, Zhong C, Chen J. Computational study of CO_2 storage in metal-organic frameworks [J]. J. Phys. Chem. C, 2008, 112: 1562-1569
    [89] Walton K S, Millward A R, Dubbeldam D, et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks [J]. J. Am. Chem. Soc., 2008,130:406-407
    [90] Morris R E, Wheatley P S. Gas storage in nanoporous materials [J]. Angew. Chem. Int. Ed., 2008,47:4966-4981
    [91] Keskin S, Liu J, Rankin R B, et al. Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials [J]. Ind. Eng. Chem. Res. 2009, 48: 2355-2371
    [92] Yang Q, Xue C, Zhong C, et al. Molecular simulation of separation of CO_2 from flue gases in Cu-BTC metal-organic framework [J]. AIChE J., 2007, 53: 2832-2840
    [93] Wang S, Yang Q, Zhong C. Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study [J]. Sep. Purif. Technol., 2008, 60: 30-35
    [94] Talu O, Sun M S, Shah D B. Diffusivities of n-alkanes in silicalite by steady-state single-crystal membrane technique [J]. AIChE J, 1998, 44: 681-694
    [95] Stallmach F, Groger S, Kunzel V, ey al. NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5 [J]. Angew. Chem. Int. Ed., 2006, 45: 2123-2126
    [96] Kortunov P V, Heinke L, Arnold M, et al. Intracrystalline diffusivities and surface permeabilities deduced from transient concentration profiles: methanol in MOF manganese formate [J]. J. Am. Chem. Soc., 2009, 129: 8041-8047
    [97] Salles F, Jobic H, Maurin G, et al. Experimental evidence supported by simulations of a very high H_2 diffusion in metal organic framework materials [J]. Phys. Rev. Lett., 2008, 100: 245901-245904
    [98] Jobic H, Skoulidas A I, Sholl D S. Determination of concentration dependent transport diffusivity of CF4 in silicalite by neutron scattering experiments and molecular dynamics [J]. J. Phys. Chem. B, 2004, 108: 10613-10615
    [99] Skoulidas A I, Sholl D S, Krishna R. Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite. A study linking MD simulations with the Maxwell-Stefan formulation [J]. Langmuir, 2003, 19: 7977-7988
    [100] Skoulidas A I. Molecular dynamics simulations of gas diffusion in metal-organic frameworks: Argon in CuBTC [J]. J. Am. Chem. Soc., 2004, 126: 1356-1357
    [101] Skoulidas A I, Sholl D S. Self-diffusion and transport diffusion of light gases in metal-organicframework materials assessed using molecular dynamics simulations [J]. J. Phys. Chem. B, 2005,109: 15760-15768
    [102] Jhon Y H, Cho M, Jeon H R, et al. Simulations of methane adsorption and diffusion within alkoxy-functionalized IRMOFs exhibiting severely disordered crystal structures [J]. J. Phys. Chem.C.,2007,111,16618-16625
    [103]Liu B,Yang Q Y,Xue C Y,et al.Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks[J].Phys.Chem.Chem.Phys.,2008,22:3244-3249
    [104]Xue C Y,Zhou Z E,Liu B,et al.Methane diffusion mechanism in catenated metal-organic frameworks[J].Mol.Simulat.,2009,35:373-380
    [105]Mellot-Draznieks C,Dutour J,Ferey G.Hybrid organic-inorganic frameworks:routes for computational design and structure prediction[J].Angew.Chem.Int.Ed.,2004,46:6290-6296
    [106]D(u|¨)ren T,Snurr R Q.Assessment of isoreticular metal-organic frameworks for adsorption separations:A molecular simulation study of methane/n-butane mixtures.J.Phys.Chem.B [J],2004,108:15703-15708
    [107]D(u|¨)ren T,Sarkisov L,Yaghi O M,et al.Design of new materials for methane storage[J].Langmuir 2004,20:2683-2689
    [108]Fuentes-Cabrera M,Nicholson D M,Sumpter B G,et al.Electronic structure and properties of isoreticular metal-organic frameworks:the case of M-IRMOFI(M=Zn,Cd,Be,Mg,and Ca)[J].J.Chem.Phys.,2005,123:124713-124716
    [109]Blomqvist A,Araujo C M,Srepusharawoot P,et al.Li-decorated metal-organic framework 5:a route to achieving a suitable hydrogen storage medium[J].PNAS,2007,104:20173-20176
    [110]Mavrandonakis A,Tylianakis E,Stubos A K,et al.Why Li doping in MOFs enhances H_2storage capacity? A multi-scale theoretical study[J].J.Phys.Chem.C,2008,112:7290-7294
    [111]Ryan P,Broadbelt L J,Snurr R Q.Is catenation beneficial for hydrogen storage in metal-organic frameworks?[J]Chem.Commun.,2008,35:4132-4134
    [112]Wegrzyn J,Gurevich M.Adsorbent storage of natural gas[J].Applied Energy,1996,55:71-83
    [113]傅国旗,周理,周亚平,等.天然气吸附存储的研究进展[J].化工进展,1999,55:453-455
    [114]Celzard A,Fierro V.Preparing a suitable material designed for methane storage:A comprehensive report[J].Energy Fuels,2005,19:573-583
    [115]Roswell J L C,Spenser E,Eckert J,et al.Gas adsorption sites in a large-pore metal-organic framework[J].Science,2005,309:1350-1354
    [116]Sagara T,Klassen J,Ganz E.Computational study of hydrogen binding by metal-organic framework-5[J].J.Chem.Phys.,2004,121:12543-12547
    [117]Sagara T,Klassen J,Ortony J,et al.Binding energies of hydrogen molecules to isoreticular metal-organic framework materials[J].J.Chem.Phys.,2005,123:14701-14704
    [118]Muller T,Ceder G.A density functional theory study of hydrogen adsorption in MOF-5[J].J.Phys.Chem.B,2005,109:17974-17983
    [119]Liu B,Yang Q,Xue C,et al.Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration:a molecular simulation study [J].J.Phys.Chem.C,2008,112:9854-9860
    [120]王三跃,阳庆元,仲崇立.柔性金属—有机骨架材料中甲醇吸附和扩撒的分子模拟[J].化学学报,2006,17:1775-1179
    [121]王三跃,仲崇立.金属—有机骨架材料中甲烷吸附机理的密度泛函理论研究[J].化学学报,2006,64:2375-2378
    [122]Amirjalayer S,Tafipolsky M,Schmid R.Molecular dynamics simulation of benzene diffusion in MOF-5:Importance of lattice dynamics[J].Angew.Chem.Int.Ed.,2007,46:463-466
    [123]Accelrys Inc.,Materials Studio,3.1 V,Accelrys Inc:San Diego,CA,2003
    [124]Goodbody S J,Watanabe K,MacGowan D,et al.Molecular simulation of methane and butane in silicalite[J].J.Chem.Soc.Faraday Trans.,1991,87:1951-1958
    [125]Mayo S L,Olafson B D,Goddard Ⅲ W A.DREIDING:A generic force field for molecular simulations[J].J.Phys.Chem.,1990,94:8897-8909
    [126]Rappe A K,Casewit C J,Colwell K S,et al.UFF,a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J. Am. Chem. Soc., 1992, 114: 10024-10035
    [127] Peng D Y, Robinson D B. A new two-constant equation of state [J]. Ind. Eng. Chem. Fundam., 1976, 15:59-64
    [128] Frenkel D, Smit B. Understanding molecular simulations: From algorithms to applications, 2nd ed.; Academic Press [M], San Diego: CA, 2002
    [129] Yang Q, Zhong C. Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: A computational study [J]. J. Phys. Chem. B, 2006, 110: 655-658
    [130] Vishnyakov A, Ravikovitch P I, Neimark A V, et al. Nanopore structure and sorption properties of Cu-BTC metal-organic framework [J]. Nano Letters., 2003, 3: 713-718
     [131] Yildirim T, Hartman M R. Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks [J]. Phys Rev. Lett., 2005, 95: 215504-215507
    [132] Burchell T, Rogers M. Low Pressure Storage of Natural Gas for Vehicular Applications [R]. SAE Tech. Pap. Sen, 2000, 2000-01-2205
    [133] Muris M, Dupont-Pavlovsky N, Bienfait M, et al. Where are the molecules adsorbed on single-walled nanotubes [J]. P. Surf. Sci., 2001,492: 67-74
    
    [134] Quinn D F, MacDonald J A F. Natural gas storage [J]. Carbon, 1992, 30: 1097-1103
    [135] Kondo M, Shimamura M, Noro S, et al. Microporous Materials Constructed from the interpenetrated coordination networks. Structures and methane adsorption properties [J]. Chem. Mater., 2000, 12: 1288-1299
    [136] Bourrelly S, Llewellyn P L, Serre C, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J]. J. Am. Chem. Soc., 2005, 127: 13519-13521
    [137] Zhou W, Wu H, Hartman M R, et al. Communication enhanced H_2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal Ions [J]. J. Phys. Chem. C, 2007, 111: 16131-16137
    [138] Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks [J]. Langmuir, 2007, 23: 12154-12158
    [139] Matranga K R, Myers A L, Glandt E D. Storage of nature gas by adsorption on activated carbon [J]. Chem. Eng. Sci., 1991,47: 1569-1573
    [140] Rowsell J L C, Yaghi O M. Strategies for hydrogen storage in metal-organic frameworks [J]. Angew. Chem. Int. Ed., 2005, 45: 4670-4679
    [141] Ma S, Sun D, Simmons J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake [J]. J. Am. Chem. Soc., 2008, 130:1012-1016
    [142] Mayo S L, Olafson B D, Goddard III W A. DREIDING: A generic force field for molecular simulations [J]. J. Phys. Chem., 1990, 94: 8897-8909
    [143] Frenkel D, Smit B. Understanding molecular simulations: From algorithms to applications, 2nd ed.; Academic Press [M], San Diego: CA, 2002
    [144] Vishnyakov A, Ravikovitch P I, Neimark A V, et al. Nanopore structure and sorption properties of Cu-BTC metal-organic framework [J]. Nano Letters., 2003, 3: 713-718
    [145] Wang S Y. Comparative molecular simulation study of methane adsorption in metal-organic frameworks [J]. Energy & Fuels, 2007,21: 953-956
    [146] Kaye S S, Dailly A, Yaghi O M ,et al. Impact of preparation and handling on the hydrogen storage properties of Zn_4O(1,4-benzenedicarboxylate)_3 (MOF-5) [J]. J. Am. Chem. Soc., 2007, 129: 14176-14177
    [147] Gonzalez J, Devi R N, Tunstall D P, et al. Deuterium NMR studies of framework and guest mobility in the metal-organic framework compound MOF-5, Zn_4O(O_2CC_6H_4CO_2)_3[J]. Microporous and Mesoporous Materials, 2005, 84: 97-104
    [148] Mueller U, Schubert M, Teich, F. Metal-organic frameworks-prospective industrial applications [J]. J. Mater. Chem., 2006, 16: 626-636
    [149]Panella B.Hirscher M.Hydrogen physisorption in metal-organic porous crystals[J].Adv.Mater,2005,17:538-541
    [150]Panella B,Hirscher M,P(u|¨)tte H,et al.Hydrogen adsorption in metal-organic frameworks:Cu-MOFs and Zn-MOF compared[J].Adv.Funct.Mater.,2006,13:520-524
    [151]Saha D,Deng S,Yang Z.Hydrogen adsorption on metal-organic framework(MOF-5)synthesized by DMF approach[J].J.Porous Mater.,2008,16:141-149
    [152]丘利,胡玉和.X射线衍射技术及设备[M].北京:冶金工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700