用户名: 密码: 验证码:
海洋平台振动分析及相似模型实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台在恶劣的环境下工作,受到地震、波浪、风力、冰载及平台上的机器和设备等各种载荷的作用,会引起强烈的振动。有害的振动会影响人体的健康,使仪器不能正常的使用,严重的还会导致平台的损坏。在对海洋平台的研究中,虽然通过数值计算手段可得出所需的技术数据,但是,由于在计算中常引入诸多假定或经验数据,计算结果可靠度欠佳。海洋工程界仍一致认为物理模型实验的结果最为可靠,并以此作为设计、建造海洋平台的标准。因此,海洋平台相似模型的设计、建造与实验研究便显得尤为重要。本文结合国家自然科学基金项目,对海洋平台的振动分析及相似模型实验进行研究,本文研究内容主要包括以下几个方面。
     第一,参照W12-1和其他的海洋平台,设计一个海洋储油平台,该平台由上、下两层甲板、四层水平面导管架、平台的六个竖向主导管和支撑组成。为使设计的海洋平台的稳定性更高,将平台设计为六边行框架结构。同时,为使设计的海洋平台满足使用要求,在材料的选择、平台储油量的设计、结构的设计、平台刚度和强度的设计上进行研究,并通过建立平台的三维模型,对其进行静力和动力的仿真分析。结果表明,所设计的海洋平台满足使用要求。
     第二,进行相似模型设计研究。分析研究了海洋平台的各动力特性参数并重点研究了材料阻尼对相似模型设计及实验数据分析的影响,结果表明:材料阻尼对相似模型的几何尺寸没有影响,对模型的固有频率影响不大,因此可以忽略;对模型的动力响应影响较大。为方便研究应用,还给出已知阻尼比和阻尼系数时的转换关系。在此基础上,得出在确定模型的相似条件时,可分两阶段来分析即模型设计阶段和模型实验阶段,并得出了相应的相似条件。
     第三,通过相似条件的应用,设计了采用PVC材料的海洋平台相似模型,对其进行结构的设计、平台刚度和强度的计算、以及各设计数据的相似检验。通过各数据的相似检验得出满足相似条件,验证了设计的相似模型的正确性。
     第四,在设计的相似模型的基础上,建造了一个海洋平台相似模型的实物,进行海洋平台相似模型振动模态实验,制定了振动模态实验系统。考虑到模型测点较多,为节省传感器,实验采用多输入单输出的实验方法,即多点激振单点输出测量的方法。信号的激振采用锤击法,激励信号和响应信号将分别通过力传感器和加速度计拾取。为使所测得的信号的可靠性更高,采用力锤激振时在每个测点敲击4次,即采4块数据,以便在传递函数分析时可进行4次平均。采用南京安正软件工程有限公司的AZ016G采集箱进行数据采集,用CRAS V6.1进行数据分析、曲线拟合,识别出各阶模态频率、阻尼系数等结构特性参数。
     第五,为了研究海洋平台的动态特性,识别出其模态参数,包括各阶固有频率、空间振型和阻尼比等,对海洋平台相似模型振动模态实验数据进行分析和处理。将相似模型的实验数据和原型的仿真数据进行对比分析,都能够较好的吻合,说明实验的可靠性,而且证明海洋平台相似模型设计和建造的一致性。并对海洋平台相似模型的实验数据的误差在相似模型设计中、建造中和实验中三个方面进行了分析。
     第六,为了研究海洋平台上设备的自身振动对平台的影响,对海洋平台进行动力响应研究,得出对模型施加激振时,需要考虑三个参数的影响,即激振力F,激振频率ωF,激励持续时间t。将得出的实验结果和原型仿真结果对比分析,得出数据趋势基本吻合,并对海洋平台相似模型的实验数据的误差进行了分析。
     总之,理论分析、仿真分析和实验研究表明,设计的海洋平台相似模型与原型满足相似条件,为下一步的研究奠定了基础。在后续研究中,将减振控制应用到相似模型上,对海洋平台的振动控制做进一步的研究。
The offshore platforms serviced in the offshore environments will subject to earthquakes, waves, wind, ice and the loads of machinery and equipment on the platform and will cause strong vibrations. Harmful vibration will affect human health, the equipment can not be normally used and cause the platform damage. Although the technical data needed can be obtained by the numerical computations, the reliability of the results is sometimes unsatisfactory since many assumptions or empirical data are used in the computations. Marine engineering is still agreed that the physical model experiment's result is most reliable, as the standards of the offshore platform’s design, construction. Therefore, the design, construction and the experiment of similar model appear especially important. Some researches on the offshore platform's vibration analysis and the similar model experiment, which is associated with a research project sponsored by National Natural Science Foundation of China. The major aspects of the research of the dissertation are shown as follows.
     Firstly, with reference to W12-1 and other offshore platforms, designs an offshore platform for oil storage. This platform is composed of the upper deck and lower deck, four floors horizontal jackets, six vertical king posts and some supports. In order to design a higher stability of the marine platform, the design of the platform framework is six-line structure. At the same time, in order to enable the design of offshore platforms to meet the requirements of use, some researches on the materials selection, design of platform storage volume for oil, structural design, stiffness and strength of platform design, and through the establishment of three-dimensional model of the platform, the simulation analysis of static force and dynamic force are studied. The results show that the offshore platform designed to meet the requirements.
     Secondly, the similar model design is studied. Study influence of material damping to the similar model design and experimental data analysis. The results show that material damping does not affect the geometry of similar model. Material damping has little effect on the natural frequency, so it can be ignored. But the influence of model’s dynamic response is so great that material damping must be taken into account in the analysis of experimental data. In order to facilitate research and application, the transformation relations of damping ratio and the damping factor which are known are given in this article. Based on this, obtains when determine simulated condition of model, may divide two stages to analyze, which are the model design stage and the model experiment stage, and obtained the response simulated condition.
     Thirdly, through the application of similar conditions, the similar offshore platform model is designed using PVC materials, the structural design, platform’s stiffness and strength calculations are done, and the similar test for design data are studied. Through the similar test of data to draw that it meets similar conditions, which verify the design for the similar model is correct.
     Fourthly, based on the design of similar model, the physical model of offshore platform’s similar model is constructed. The vibration mode experiment of similar model is done; the experimental system of vibration mode is developed. Taking into account the more model measuring points and to save the sensor, the experiment uses the method of multi-point vibration and single-point output measurement. The excitation by hammering, Encouraging signals and respond signals were picked up by forced sensors and accelerometers in experiment. In order to get the signal reliability higher, when excitation by hammering, rap each measuring point 4 times, get 4 data. When transfer function analysis we may carry on 4 averages. AZ016G collection boxes is used for data acquisition which is made in Nanjing Software Engineering Co., Ltd. CRAS V6.1 is used for data analysis, curve fitting and identify structure dynamic characteristic parameters include including natural frequency, mode and shape damping ratio.
     Fifthly, in order to study the dynamic characteristics of offshore platform, distinguishes its modal parameters, including natural frequencies, vibration mode and the space damping ratio and so on. Carries on the analysis and processing to the vibration mode experimental data of offshore platform’s similar model.Compared the data of the experiment of similar model with those of the simulation of prototype, which can be better tally. These not only show the reliability of the experiment, but also prove the consistency of design and construction for offshore platform similar model. The experimental data error of similar model of offshore platform at the design, construction and experiment three aspects were analyzed.
     Sixthly, in order to study the influence of the platform equipment's own vibration to the platform, the power response is studied. Obtains when exerts the excitation to the model, necessary to take into account three parameters, namely excitation force F, excitation frequencyωF, incentive duration t. Compared the data of the experiment of similar model with those of the simulation of prototype ,which can be better tally. The experimental data errors of similar model of offshore platform were analyzed.
     In conclusion, the theoretical analysis, simulation analysis and experimental show that the design for similar model and prototype of offshore platform meet the similar conditions, establish the foundation of the next study. The damping control is applied to similar model, the vibration control of offshore platforms should do further study in the follow-up research.
引文
[1]段梦兰,方华灿,陈如恒.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [2]马汝建,赵东,熊永功,等.海洋平台振动测试及分析.济南大学学报(自然科学版), 2004,18(2):114-116.
    [3]张火明,杨建民,肖龙飞.深海海洋平台混合模型试验技术研究与进展.中国海洋平台, 2004,19(5):1-6.
    [4]王均刚.海洋平台振动控制研究及相似模型设计.济南大学硕士论文,2007.
    [5]A.Naessa, O.Gaidai, S.Haver. Efficient estimation of extreme response of drag-dominated offshore structures by Monte Carlo simulation. Ocean Engineering, 2007, 34: 2188-2197.
    [6]Yasser E.Mostafa, M.Hesham El Naggar. Effect of seabed instability on fixed offshore platforms . Soil Dynamics and Earthquake Engineering, 2006, 26: 1127-1142.
    [7]周焕廷,王燕,朱雷鸣.海洋平台动力响应分析的复模态法.青岛建筑工程学院学报, 2004,25(4):111-116.
    [8]张若瑜,谢文会,唐友刚,等.海导管架平台振动响应简化计算方法.中国海洋平台, 2005,20(3):23-26.
    [9]YasserE, Mostafa, M. Hesham ElNaggar. Response of fixed off-shore platforms towave and current loading including soil-struc-ture interaction. Soil Dynamics and Earthquake Engineering, 2004, 24: 357-368.
    [10]王世圣,时钟民,侯金林,等. JZ20-2MUQ海洋平台的动态特性研究.石油矿场机械, 2004,33:1-3.
    [11] J.A.Eicher, H.Guan, D.S.Jeng. Stress and deformation of offshore piles under structural and wave Loading. Ocean Engineering, 2003, 30: 369-385.
    [12]Qian K, Wang Y Y. Analysis of wave loads on a semi-submersible platform. China Ocean Engineering, 2002, 16(3): 395-406.
    [13]郑雪坤,陈义厚,王松.导管架海洋平台波浪地震荷载分析及研究.内蒙古石油化工,2007,5:299-321.
    [14]American Petroleum Institute(API). Designing and Constructing for Fixed Offshore Platforms-load and Resistance Factor Design. 1995: 127-128.
    [15]Coles S G and Tawn J A. Statistical methods for multivariate extremes: an application to structural design Appl Statist, 1994, 43(1): 1-48.
    [16]Liu D F, Dong S and Wang C. Uncertainty and sensitivity analysis of reliability for marine structure. The Proceedings of the 6th International Offshore and Polar Engineering Conference. Los Angeles, USA: 1996, Vol.Ⅳ: 380-386.
    [17]Yue S, Ouarda T B M J, Bobee B, et al. The Gumbel mixed model for flood frequency Analysis. J Hydrol, 1999, 226(1): 88-100.
    [18]Liu D F, Wen S Q, Wang L P. Compound bivariate extreme distribution of typhoon induced sea environments and its application. The Proceedings of 12th International Offshore and Polar Engineering Conference. Kitakyushu, Japan: 2002, Vol.Ⅰ: 130-134.
    [19]董胜,樊敦秋,郝小丽.海洋平台设计中的风浪参数选取标准.中国造船,2005,46(1): 8-13.
    [20]Torgeir Moana, Xiang Yuan Zhenga, Ser Tong Quek. Frequency-domain analysis of non-linear wave effects on offshore platform responses. International Journal of Non-Linear Mechanics, 2007, 42: 555-565.
    [21]M.Luo, W.Q.Zhu. Nonlinear stochastic optimal control of offshore platforms under wave loading .Journal of Sound and Vibration, 2006, 296: 734-745.
    [22]梁永超,李巨川,张剑波.浅海导管架平台地震响应分析.中国海洋平台,2003,18(6): 15-17.
    [23]何晓宇,李宏男.地震与波浪联合作用下海洋平台动力特性分析.海洋工程,2007,25(3): 18-25.
    [24]Li HN, He X Y, Huo L S. Seismic response control of offshore platform structrues with shape memory alloy dampers. China Ocean Engineering, 2005, 19(2): 185-194.
    [25]岳前进,季顺迎,于学兵.局地海冰数值预测的冰激结构响应计算.中国海洋平台, 2003,21(2):32-37.
    [26]陈荣,王德禹.正压冲固基础海洋平台冰激振动动力响应.石油机械,2006,34(3):20-23.
    [27]YUE Q J, BI X J. Ice-induced jacket structure vibrations in Bohai Sea. J Cold Regions Eng, 2000, 14(2): 81-92.
    [28]岳前进,郭峰玮,毕祥军,等.冰致自激振动测量与机理解释.大连理工大学学报,2007, 47(1):1-5.
    [29]杨和振,李华军,王国兴.海洋平台结构模态参数识别的仿真研究.海洋工程,2003, 21(4):75-80.
    [30]赵东,马汝建,王威强,蔡冬梅.海洋平台局部振动模态分析.石油大学学报(自然科学版),2005,29(1):75-78.
    [31]Mir R A, Taylor C A. An experimental investigation into earthquake induced failure of medium to low height concrete gravity dam. Earthquake Eng Sruct Dyn, 1995, 24: 378-393.
    [32]Konagaik, Nogam I T. Analog circuit to simulate dynamic soil-structure interaction in shaking table test. Soil Dyn Earthquske Eng, 1998, 17: 279-287.
    [33]杨飏,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析.应用基础与工程科学学报,2007,15(2):183-189.
    [34]冯士伦,王建华.海洋平台桩基的振动台模型试验研究.岩石力学与工程学报,2006, 25(1):3229-3234.
    [35]徐汉涛.海洋平台塑料管节点模型局部柔度试验研究.中国海洋平台,1995,10(1): 18-24.
    [36]金伟良,陈海江,庄一舟.极端波浪对海洋导管架平台的作用及其模型试验研究.海洋工程,1999,17(4):33-38.
    [37]杨飏,欧进萍.导管架式海洋平台结构磁流变阻尼隔震的振动台试验.地震工程与工程振动,2005,25(4):141-148.
    [38]董平,陈招平.矩形TLD在结构振动控制中的性能试验研究.工业建筑,2006,36(2): 7-10.
    [39]顾剑民.海洋平台管节点局部柔度的参数分析及其试验研究.上海交通大学学报, 1994,28:9-15.
    [40]屈成忠,金载南,赵岩松,等.调频液态阻尼器(TLD)系统在结构减振中的应用试验.东北电力学院学报,1999,19(4):53-58.
    [41]黄维平,杨永春,李华军.固定式导管架平台超常振动及减振措施试验研究.振动工程学报,2004,17(1):116-120.
    [42]Spencer B F Jr, Sain M K. Controlling Buildings:A New Frontier in Feedback. Special Issue of the IEEE Control System Magazine on Emerging Technology, 1997, 17(6): 19-35.
    [43]Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal, 1995, 3(2): 380.
    [44]Li Sun, Hong-Nan Li, Liang Ren. Dynamic response measurement of offshore platform model by FBG sensors. Sensors and Actuators A: Physical, 2007, 136(2): 572-579.
    [45]王树青,王长青,李华军.基于模态应变能的海洋平台损伤定位试验研究.振动、测试与诊断,2006,26(4):282-287.
    [46]Giuseppe Barbaro. A new expression for the direct calculation of the maximum wave force on vertical cylinders. Ocean Engineering, 2007, 34: 1706-1710.
    [47]Jinping Ou, Xu Longa, Q.S.Lic. Vibration control of steel jacket offshore platform structures with damping isolation systems. Engineering Structures, 2007, 29(7): 1525-1538.
    [48]杨飏,欧进萍.导管架式海洋平台磁流变阻尼隔震结构的模型试验.振动与冲击,2006, 25(5):1-5.
    [49]楼梦麟,牛伟星,宗刚等. TLD控制的钢结构振动台模型试验研究.地震工程与工程振动,2006,26(1):145-151.
    [50]王腾,孙宝江.软粘土中水平荷载模型桩的试验研究.中国石油大学学报(自然科学版), 2007,31(1):76-79.
    [51]Wilson D W. Soil-pile-superstructure interaction in liquefying sand and soft clay. Davis: University of California, 1998.
    [52]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究.东南大学学报(自然科学版),2005, 35(1):31-34.
    [53]董胜,李锋,郝小丽.规则波作用下圆形调谐液体阻尼器的试验研究.海洋工程,2003, 21(2):52-57.
    [54]Qiao Jin, Xin Li, Ning Sun. Experimental and numerical study on tuned liquid dampers for controlling earthquake response of jacket offshore platform. Marine Structures, 2007, 5(2): 1-17.
    [55]姚美旺,张承懿,缪国平,等.海洋平台沉垫的波浪载荷试验研究.海洋工程,1997, 15(4):9-17.
    [56]欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用.北京:科学出版社,2003.5.
    [57]罗漪,王全凤.考虑阻尼的变刚度薄壁杆件动力稳定.华侨大学学报(自然科学版),2002, 23(2):157-163.
    [58]周雷靖,沙曾炘,尹春明,等.核电站百万千瓦级半速汽轮发电机组弹簧隔振基础强迫振动模型实验探讨.电力勘测设计,2007(4):51-54.
    [59]王均刚,马汝建.满足固有频率相似的海洋平台相似模型设计.西安石油大学学报(自然科学版),2007,22(1):103-106.
    [60]wardH,stefnaL,PaulS著.白化同,郭继忠译.模态分析理论与试验.北京:北京理工大学出版社,2000.
    [61]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001.
    [62]王济,胡晓. MATLAB在振动信号处理中的应用.北京:中国水利水电出版社:知识产权出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700