用户名: 密码: 验证码:
基于斜面分解的非对称逆布局图像表示方法与处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像表示是图像数据在计算机中的数字化表示和存储方式,与图像处理一起组成图像模型。图像表示方法对图像处理算法的性能起到了至关重要的作用。选择不同的图像表示方法在很大程度上就决定了图像处理算法的效率。基于非对称逆布局模式表示模型,以改进图像处理算法的效率为目的,提出一种新的图像表示方法——基于斜面分解的非对称逆布局图像表示方法(IDNAM)。IDNAM使用一系列矩形斜面子模式的实例来表示图像。基于失真IDNAM模型和无失真IDNAM模型,分别提出了一种灰度图像的表示方法和一种二值图像的表示方法。在灰度图像IDNAM表示方法中,提出了一种矩形区域的同质性判定条件,来限制在逆布局过程中引入的失真。在IDNAM表示的基础上,提出了一种抽象图像处理算法。该算法概括了基于IDNAM表示的图像处理算法的基本思想,是一个具有指导性的抽象算法。根据算法的时间复杂度分析,当矩形斜面子模式的数目小于像素的数目时,该算法较基于点阵的抽象图像处理算法更快。实验结果表明矩形斜面子模式的数目远小于小于像素的数目,且灰度图像IDNAM表示方法不仅能根据图像的内容自适应地逆布局出不同大小的矩形斜面子模式,而且保持了良好的保真度。
     积分投影变换是图像分析中的一种基本方法,在人脸识别、直线检测和倾斜估计等多种领域中有着广泛的应用。传统的积分投影变换算法都是基于点阵表示的,直接根据积分投影的定义逐像素计算的。在二值图像IDNAM表示方法的基础之上,研究矩形斜面子模式的积分投影向量的计算方法、以及图像的积分投影向量与矩形斜面子模式的积分投影向量之间的关系,提出直接根据矩形斜面子模式计算图像的积分投影向量的算法。理论分析和实验结果均表明,在任何投影方向上基于IDNAM表示的积分投影变换算法较传统算法在处理速度方面更具优势。
     边缘检测主要是对图像中像素灰度值的不连续性的度量、检测和定位,是图像分析领域中的一个基础问题。边缘检测作为一个预处理过程,已经广泛地应用于图像分割、模式识别和运动分析等领域中。传统的边缘检测算法都是根据像素之间的不连续性来提取边缘信息。在灰度图像IDNAM表示方法的基础之上,提出了矩形斜面子模式的理想边缘模型,将矩形斜面子模式内的边缘分成五种:中心边缘模型、左边界边缘模型、上边界边缘模型、右边界边缘模型、下边界边缘模型,并给出了每一种边缘模型的边缘强度和边缘方向的计算公式。为了消除噪声对边缘检测结果的干扰,提出了矩形斜面子模式内边缘存在性判定条件。根据该判定条件,可以直接根据理想边缘模型的参数判断矩形斜面子模式内是否存在边缘信息,并对存在边缘信息的矩形斜面子模式直接给出其边缘参数。理论分析和实验结果均表明,基于IDNAM表示的边缘检测算法的处理速度较传统的边缘检测算法更快。
     图像分割的目的是将一幅图像划分成若干具有相似特征的区域。图像分割是对图像进行进一步分析、理解和识别的基础,在多种图像分析和机器视觉应用中都是常用的技术。基于灰度图像IDNAM表示方法,提出了一种图像分割算法。该算法根据矩形斜面子模式内的边缘信息以及矩形斜面子模式之间的同质性,将矩形斜面子模式聚合成若干个区域,来实现图像分割。理论分析和实验结果均表明,基于IDNAM表示的图像分割算法所需的执行时间远小于分水岭算法。
     研究结果表明,IDNAM图像表示方法能有效地加快图像处理运算的速度。
An image system model consists of two parts: image representation and imageprocessing. Image representation is the manner in which images are described and storedin the computer. Image representation plays a key role in optimizing image processingalgorithms. Selection of different image representation methods always determines theefficiency of image processing algorithms to a great extent. Based on the Non-symmetryAnti-packing pattern representation Model (NAM), a new image representation method ispresented, which is called Inclined plane Decomposition based Non-symmetry andAnti-packing image representation Method (IDNAM), in order to improve the efficiencyof image processing algorithms. A series of instances of rectangular inclined planesub-patterns are used to represent an image in IDNAM. A grey scale image representationmethod is proposed based on the distorted IDNAM. A homogeneity determination rule fora rectangular region of a grey scale image is introduced to limit the distortion caused byanti-packing in IDNAM. Experimental results show that the IDNAM representation forgrey scale images can not only extract rectangular inclined plane sub-patterns withdifferent sizes according to the image contents, but also keep a high fidelity. A binaryimage representation method is proposed based on the undistorted IDNAM. An algorithmis given for an abstract image processing based on IDNAM, and the algorithm sums up theentire idea of image processing algorithms based on IDNAM. It is a general, abstract andguide algorithm. The theoretical analyses show that the time complexity of this algorithmis smaller than that of the abstract image processing algorithms based on pixelrepresentation, when rectangular inclined plane sub-patterns are less than pixels in animage.
     Integral projection is a basic method in image analysis, which is widely used inseveral domains such as face recognition, line detection and skew detection etc. Thetraditional integral projection algorithm is developed using the pixel representation. Bystudying the method of computing the integral projection vector of a rectangular inclinedplane sub-pattern and the relationship between the integral projection vectors of arectangular inclined plane sub-pattern and an image, a fast integral projection algorithm isproposed, which achieves computing the integral projection vectorof an image fromrectangular inclined plane sub-patterns directly. The theoretical analyses and experimentalresults show that significant improvement is obtained with the algorithm using theIDNAM representation over the pixel representation along all projection directions.
     Edge detection, which measures, checks and captures discontinuity in gray levelvalues in an image, is a basic problem in image analysis. Edge detection, as an initial step,is widely used in several domains such as image segmentation, pattern recognition andmotion detection etc. Classical edge detection algorithms are based on pixel representation,which extract edge information from pixels. On the basis of the IDNAM representation forgrey scale images, an ideal edge model within a rectangular inclined plane sub-pattern ispresented. In the model, edges within rectangular inclined plane sub-patterns are dividedinto five types: central edge model, left border edge model, top border edge model, rightborder edge model and bottom border edge model. The methods for computing the edgestrength and direction of the five edge models are presented. The existence of an edgewithin a rectangular inclined plane sub-pattern should be determined according to theparameters of the five edge models, to separate between edge and noise. The theoreticalanalyses and experimental results show that the edge detection algorithm using IDNAMperforms faster than the classical ones because it permits the execution of operations onsub-patterns instead of pixels.
     Segmentation of an image entails the division or separation of the image into regionswith similar attribute. Image segmentation is a common technology in many applicationsof image analysis and computer vision. A fast image segmentation algorithm is proposedbased on IDNAM. According to the edge strength within rectangular inclined planesub-patterns and the homogeneity between them, the algorithm groups the rectangularinclined plane sub-patterns into different regions, to achieve the segmentation. Thetheoretical analyses and experimental results show that the image segmentation methodusing IDNAM performs faster than the watershed algorithm.
     The theoretical analyses and experimental results show that the IDNAM imagerepresentation method can speedup image processing effectively.
引文
[1]章毓晋.图像处理和分析技术.第2版.北京:高等教育出版社,2008.1-2
    [2]Manchev N. Parallel algorithm for run length encoding.'In: Proceedings - Third International Conference onInformation Technology: New Generations, ITNG 2006, Las Vegas, NV, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2006. 595-596
    [3]Ablameyko S., Bereishik V., Paramonova N. et al. Vectorization and representation of large-size 2-D line-drawing images. Journal of Visual Communication and Image Representation, 1994, 5(3): 245-254
    [4]Zingaretti P., Gasparroni M., Vecci L. Fast chain coding of region boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 407-415
    [5]Liu Y. K., Zalik B. An efficient chain code with Huffman coding. Pattern Recognition, 2005, 38(4): 553-557
    [6]Sikora T., Makai B. Shape-adaptive DCT for generic coding of video. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(1): 59-62
    [7]Tahoces P. G., Varela J. R., Lado M. J. et al. Image compression: Maxshift ROI encoding options in JPEG2000. Computer Vision and Image Understanding, 2008, 109(2): 139-145
    [8]Belloulata K., Konrad J. Fractal image compression with region-based functionality. IEEE Transactions on Image Processing, 2002, 11 (4): 351-362
    [9]Jones L. P., Iyengar S. S. SPACE AND TIME EFFICIENT VIRTUAL QUADTREES. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(2): 244-247
    [10]Wu X. Image coding by adaptive tree-structured segmentation. IEEE Transactions on Information Theory, 1992, 38(6): 1755-1767
    [11]Tanaka H., Leon-Garcia A. EFFICIENT RUN-LENGTH ENCODINGS. IEEE Transactions on Information Theory, 1982, IT-28(6): 880-890
    [12]Berghorn W., Boskamp T., Lang M. et al. Fast variable run-length coding for embedded progressive wavelet-based image compression. IEEE Transactions on Image Processing, 2001, 10(12): 1781-1790
    [13]林小竹,万建邦.灰度图像的有损RLE压缩.石油化工高等学校学报,2004,17(3):89-93
    [14]Lin X., Ji J., Gu Y. The Euler Number study of image and its application. In: ICIEA 2007:2007 Second IEEE Conference on Industrial Electronics and Applications, Harbin, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007. 910-912
    [15]Breuel T. M. Binary morphology and related operations on run-length representations. In: VISAPP 2008 - 3rd International Conference on Computer Vision Theory and Applications, Proceedings, Funchal, Madeira, Portugal: Inst. for Syst. and Technol. of Inf., Control and Commun. (INSTICC), Setubal, 2910-595, Portugal, 2008. 159-166
    [16]Zhang J.-S., Yu J.-H., Mao G.-H. et al. Denoising of Chinese calligraphy tablet images based on run-length statistics and structure characteristic of character strokes. Journal of Zhejiang University: Science, 2006, 7(7): 1178-1186
    [17]Kim W.-J., Kim S.-D., Kim K. Fast algorithms for binary dilation and erosion using run-length encoding. ETRI Journal, 2005, 27(6): 814-817
    [18]Freeman H. On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic Computers, 1961, 10:260-268
    [19]Lele Z., Zahir S. A new efficient context-based relative-directional chain coding. In: 2006 IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No. 06EX1455), Vancouver, BC, Canada: IEEE, 2006. 787-790
    [20]Bribiesca E. New chain code. Pattern Recognition, 1999, 32(2): 235-251
    [21]刘勇奎,魏巍,郭禾.压缩链码的研究.计算机学报,2007,30(2):281-287
    [22]Rogers P. R., Lynch P. M. An algorithm for rotating images of objects represented as chain-code. In: Conference Proceedings IEEE SOUTHEASTCON, New Orleans, LA, USA: Publ by IEEE, Piscataway, NJ, USA, 1990. 1105-1109
    [23]Ji G.-r., Wang G.-y., Houkes Z. et al. New method for fast computation of moments based on 8-neighbor chain code applied to 2-D object recognition. In: Proceedings of the IEEE International Conference on Intelligent Processing Systems, ICIPS, Beijing, China: IEEE, Piscataway, NJ, USA, 1998. 974-978
    [24]Lu G.-Q., Xu H.-G., Li Y.-B. Line detection based on chain code detection. In: 2005 IEEE International Conference on Vehicular Electronics and Safety Proceedings, Xi'an, Shaan'xi, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005. 98-103
    [25] Sun Y.-X., Zhang C.-M., Liu P.-Z. et al. Shape feature extraction of fruit image based on chain code. In: Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR '07, Beijing, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2008. 1346-1349
    [26] Ahmed N., Natarajan T., Rao K. R. On Image Processing and a Discrete Cosin Transform. IEEE Transactions on Computers, 1974, 23(1): 90-93
    [27] Chen W.-H., Pratt W. K. SCENE ADAPTIVE CODER. IEEE Transactions on Communications, 1984, CM-32(3): 225-232
    [28] Xiong Z., Guleryuz O. G., Orchard M. T. DCT-based embedded image coder. IEEE Signal Processing Letters, 1996, 3(11): 289-290
    [29] Hai-Feng X., Song-Yu Y, Ci W. An adaptive image resizing algorithm in DCT domain. IEICE Transactions on Information and Systems, 2007, 90(8): 1308-1311
    [30] Shen B., Sethi I. K. Direct feature extraction from compressed images. In: Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, USA: Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA, 1996.404-414
    [31] Choi J., Chung Y.-S., Kim K.-H. et al. Face recognition using energy probability in DCT domain. In: 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings, Toronto, ON, Canada: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2006. 1549-1552
    [32] Wang H., Ding K., Liao C. Chaotic watermarking scheme for authentication of JPEG images. In: IEEE- International Symposium on Biometrics and Security Technologies, ISBAST'08, Piscataway, NJ 08855-1331, United States: Institute of Electrical and Electronics Engineers Computer Society, 2008. 4547-4541
    [33] Liu H., Fu H., Huang J. A watermarking algorithm for JPEG file. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Heidelberg, D-69121, Germany: Springer Verlag, 2006. 319-328
    [34] Wallace G K. The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 1992, 38(1): xviii-xxxiv
    [35] Zhao D.-B., Zhang D.-P., Gao W. Embedded image coding based on hierarchical discrete cosine transform. Ruan Jian Xue Bao/Journal of Software, 2001, 12(9): 1287-1294
    [36] Shishikui Y., Sakaida S. Region support DCT (RS-DCT) for coding of arbitrarily shaped texture. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(5): 320-330 [37] Shapiro J. M. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 1993, 41(12): 3445-3462
    [38] Tan E.-L., Gan W.-S., Wong M.-T. Fast arbitrary resizing of images in DCT domain. In: Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME 2007, Beijing, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007. 1671-1674
    [39] Matos F. M. D. S., Batista L. V., Poel J. V. D. Face recognition using DCT coefficients selection. In: Proceedings of the ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil: Association for Computing Machinery, New York, NY 10036-5701, United States, 2008. 1753-1757
    [40] Choi Y, Aizawa K. Digital watermarking using inter-block correlation: extension to JPEG coded domain. In: Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540), Los Alamitos, CA, USA:IEEE Comput. Soc, 2000. 133-138
    [41] Mallat S. G. Multifrequency channel decompositions of images and wavelet models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 2091-2110
    [42] Mallat S. G. Theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989, 11(7): 674-693
    [43] Donoho D. L., Johnstone I. M. Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1992, 81(3): 425-455
    [44] Mallat S., Zhong S. Characterization of Signals from Multiscale Edges. IEEE TRANSACTIONS ON PATIERN ANALYSIS AND MACHINE INTELLIGENCE,, 1992, 14(7): 710-732
    [45] Carey W. K., Chuang D. B., Hemami S. S. Regularity-preserving image interpolation. IEEE Transactions on Image Processing, 1999, 8(9): 1293-1297
    [46] Fan Y.-C., Chiang A., Shen J.-H. ROI-based watermarking scheme for JPEG 2000.Circuits, Systems, and Signal Processing, 2008, 27(5): 763-774
    [47] Said A., Pearlman W. A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3): 243-250
    [48] Taubman D. High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 2000, 9(7): 1158-1170
    [49] Servetto S. D., Ramchandran K., Orchard M. T. Image coding based on a morphological representation of wavelet data. IEEE Transactions on Image Processing, 1999, 8(9): 1161-1174
    [50] Donoho D. L., Johnstone I. M. Minimax estimation via wavelet shrinkage. Ann. Statist, 1998, 26(3): 879-921
    [51] Coifman R. R., Donoho D. L. Translation-invariant de-noising. In: Wavelets and statistics, Antoniadis, A. et al., Ed. San Diego: Springer-Verlag, 1995, 125-150
    [52] Su P.-C., Wang H.-J. M., Kuo C. C. J. Integrated approach to image watermarking and JPEG-2000 compression. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2001, 27(1-2): 35-53
    [53] Mandelbrot B. B. Fractals: Form, Chance and Dimension. San Francisco: W. H. Freeman, 1975.15-17
    [54] Hutchinson J. E. Fractals and self similarity. Indiana University Mathamatics Journal, 1981, 3(5): 713-747
    [55] Barnsley M. F., Demko S. Iterated function systems and the global construction of fractals. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1985, 399(1817): 243-75
    [56] Barnsley M. F., Sloan A. D. Abetter way to compress images. BYTE, 1988, 13(1): 215-23
    [57] Jacquin A. E. A fractal theory of iterated Markov operators with applications to digital image coding: [Ph.D. Thesis]. Atlanta, Georgia: Georgia Institute of Technology, 1989.
    [58] Davoine F., Antonini M., Chassery J.-M. et al. Fractal image compression based on Delaunay triangulation and vector quantization. IEEE Transactions on Image Processing, 1996, 5(2): 338-346 [59] Ida T., Sambonsugi Y. Image segmentation and contour detection using fractal coding. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(8): 968-975
    [60] Jacquin A. E. A novel fractal block-coding technique for digital images. In: ICASSP 90. 1990 International Conference on Acoustics, Speech and Signal Processing (Cat. No.90CH2847-2), Albuquerque, NM, USA: IEEE, 1990.2225-2228
    [61] Thomas L., Deravi F. Region-based fractal image compression using heuristic search. IEEE Transactions on Image Processing, 1995, 4(6): 832-838
    [62] Farhadi G An enhanced fractal image compression based on quadtree partition. In:ISPA 2004. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis (IEEE Cat. No.03EX651), Rome, Italy: Univ. of Zagreb, 2003.213-216
    [63] Shiping Z., Liang Y., Belloulata K. An improved fractal image coding algorithm based on adaptive threshold for quadtree partition. In: Proc. SPIE - Int. Soc. Opt. Eng. (USA), Beijing, China: SPIE - The International Society for Optical Engineering, 2008. 7129-7137
    [64] Polvere M., Nappi M. Speed-up in fractal image coding: comparison of methods. IEEE Transactions on Image Processing, 2000, 9(6): 1002-1009
    [65] Zhang C, Zhou Y, Zhang Z. Fast Fractal Image Encoding Based on Special Image Features. Tsinghua Science and Technology, 2007, 12(1): 58-62
    [66] Berthe K., Yang Y, Hui Fang B. Fractal image encoding based on adaptive search. In: Proceedings of SPIE - The International Society for Optical Engineering, Shanghai, China: The International Society for Optical Engineering, 2002. 38-45
    [67] Moon Y. H., Kim H. S., Kim Y S. et al. Novel fast fractal decoding algorithm. Signal Processing: Image Communication, 1999, 14(4): 325-333
    [68] Moon Y. H., Kim H. S., Kim J. H. Fast fractal decoding algorithm based on the selection of an initial image. IEEE Transactions on Image Processing, 2000, 9(5): 941-945
    [69] Ida T, Sambonsugi Y. Image segmentation using fractal coding. IEEE Transactions on Circuits and Systems for Video Technology, 1995, 5(6): 567-570
    [70] Klinger A. Data structures and pattern recognition. In: 1st International Joint Conference on Pattern Recognition, Washington, DC, USA: IEEE, 1973. 497-498
    [71] Woodwark J. R. COMPRESSED QUAD TREES. Computer Journal, 1984, 27(3): 225-229
    [72]Fabbrini F., Montani C. AUTUMNAL QUADTREES. Computer Journal, 1986, 29(5): 472-474
    [73]Kawaguchi E., Endo T. ON A METHOD OF BINARY-PICTURE REPRESENTATION AND ITS APPLICATION TO DATA COMPRESSION. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(1): 27-35
    [74]Gargantini I. An Effective Way to Represent Quadtrees. Communications of the ACM, 1982, 25(12): 905-910
    [75]Chien C. H., Aggarwal J. K. NORMALIZED QUADTREE REPRESENTATION. Computer Vision, Graphics, and Image Processing, 1984, 26(3): 331-346
    [76]Chen C., Zou H. Linear binary tree. In: Proceedings - International Conference on Pattern Recognition, Rome, Italy: Publ by IEEE, Piscataway, NJ, USA, 1988. 576-578
    [77]Cohen Y., Landy M. S., Pavel M. HIERARCHICAL CODING OF BINARY IMAGES. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(3): 284-298
    [78]陈传波,邹海明,周冠雄.图像分层表示的最优分割和线性二元树.计算机学报,1991,14(7):505-513
    [79]You K., Tian J., Liu J. Real-time rendering of large terrain using quadtree based triangulation. In: Proceedings of SPIE - The International Society for Optical Engineering, Hangzhou, China: The International Society for Optical Engineering, 2002.55-61
    [80]Aizawa K., Motomura K., Kimura S. et al. Constant time neighbor finding in quadtrees: An experimental result. In: 2008 3rd International Symposium on Communications, Control, and Signal Processing, ISCCSP 2008, St. Julians, Malta: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2008. 505-510
    [81]Unnikrishnan A., Shankar P., Venkatesh Y. V. THREADED LINEAR HIERARCHICAL QUADTREES FOR COMPUTATION OF GEOMETRIC PROPERTIES OF BINARY IMAGES. IEEE Transactions on Software Engineering, 1987, 14(5): 659-665
    [82]Elmesbahi J., Bouattane O., Benabbou Z. Theta (1) time quadtree algorithm and its application for image geometric properties on a mesh connected computer (MCC). IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(12): 1640-1648
    [83]Samet H. COMPUTING PERIMETERS OF REGIONS IN IMAGES REPRESENTED BY QUADTREES. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1981, PAMI-3(6): 683-687
    [84]Unnikrishnan A., Venkatesh Y. V., Shankar P. CONNECTED COMPONENT LABELLING USING QUADTREES-A BOTTOM-UP APPROACH. Computer Journal, 1987, 30(2): 176-182
    [85]Menon S., Smith T. R. Boundary matching algorithm for connected component labeling using linear quadtrees. Image and Vision Computing, 1988, 6(4): 215-224
    [86]王钲旋,李文辉,庞云阶.线性四元树表示二值图像的围线追踪和Euler数的计算.计算机学报,1998,21(3):223-228
    [87]张田文,李仲荣.计算线性四元树表示的二值图象Euler数的图论方法.计算机学报,1989,12(9):682-688
    [88]Wu C.-H., Horng S.-J., Lee P.-Z. A new computation of shape moments via quadtree decomposition. Pattern Recognition, 2001, 34(7): 1319-1330
    [89]Samet H. CONNECTED COMPONENT LABELING USING QUADTREES. Journal of the Association for Computing Machinery, 1981, 28(3): 487-501
    [90]Dyer C. R. Computing the Euler number of an image from its quadtree. Computer Graphics and Image Processing, 1980, 13(3): 270-276
    [91]Pajarola R. Large scale terrain visualization using the restricted quadtree triangulation. In: Proceedings of the IEEE Visualization Conference, Los Alamitos, CA, USA: IEEE Comp Soc, 1998.19-26
    [92]Tayeb J., Ulusoy O., Wolfson O. A quadtree-based dynamic attribute indexing method. Computer Journal, 1998, 41 (3): 185-200
    [93]郑运平,陈传波.一种基于NAM的彩色图像表示方法研究.软件学报,2007,18(11):2923-2941
    [94]Zheng Y., Chen C., Sarem M. A novel algorithm using non-symmetry and anti-packing model with K-lines for binary image representation. In: Proceedingslst International Congress on Image and Signal Processing, CISP 2008, Sanya, Hainan, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2008.461-465
    [95]Xia H., Chen C. Rectangle NAM image representation and contour extraction of binary image represented by NAM. In: Proceedings - lst International Congress on Image and Signal Processing, CISP 2008, Sanya, Hainan, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2008.503-507
    [96]夏晖,陈传波,秦培煜,等.矩形NAM图像表示及其上的连通区域标记算法.计算机科学,2007,34(9):209-212
    [97]陈传波,夏晖,秦培煜,等.矩形NAM图像表示及其上欧拉数计算.小型微型计算机系统,2007,28(12):2233-2237
    [98]Chen C., Zheng Y., Sarem M. et al. A novel algorithm for multi-valued image representation. In: Proceedings - Third International Conference on Natural Computation, ICNC 2007, Haikou, Hainan, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.84-89
    [99]Chen C., Hu W., Wan L. Direct non-symmetry and anti-packing pattern representation model of medical images. In: 2007 lst International Conference on Bioinformatics and Biomedical Engineering, ICBBE, Wuhan, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007. 1011-1018
    [100]黄巍,陈传波,郑运平,等.可重叠矩形多值图像表示及其上的几何矩生成.计算机科学,2008,35(10):204-207
    [101]Huang W., Chen C., Sarem M. et al. Overlapped Rectangle Image Representation and Its Application to Exact Legendre Moments Computation. Geo-Spatial Information Science, 2008, 11 (4): 294-301
    [102]Huang W., Chen C., Sarem M. et al. A novel algorithm for image perimeter computation based on non-symmetry anti-packing representation. Journal of Shanghai University(English Edition), 2008, 12(6): 524-530
    [103]Qiu L., Li Z. A fast component labeling and description algorithm for robocup middle-size league. In: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Chongqing, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2008. 6571-6574
    [104]Liudong Q., Zushu L. A component-labeling algorithm based on contour tracing. In: Proc. SPIE - Int. Soc. Opt. Eng. (USA), Gifu, Japan: SPIE - The International Society for Optical Engineering, 2007. 679446-679451
    [105]Gonzalez R. C., Woods R. E. Digital Image Processing. 2nd Edition. Upper Saddle River, New Jersey: 2002.432-433
    [106]Bednar G. M., Harmon J. C., Narasimha M. S. CHARACTER CONTOUR MEASUREMENTS FROM CHARACTER IMAGES STORED IN RUN-LENGTH FORM. IBM Technical Disclosure Bulletin, 1984, 26(10A): 5279-5282
    [107]Kumar G. N., Nandhakumar N. Efficient object contour tracing in a quadtree encoded image. In: Proceedings of SPIE - The International Society for Optical Engineering, Orlando, FL, USA: Publ by Int Soc for Optical Engineering, Bellingham, WA, USA, 1991. 884-895
    [108]Lee S. C., Wang Y., Lee E. T. Estimating the analog perimeter of a pre-digitized shape. In: Proceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2006. 60660-60669
    [109]Vossepoel A. M., Smeulders A. W. M. VECTOR CODE PROBABILITY AND METRICATION ERROR IN THE REPRESENTATION OF STRAIGHT LINES OF FINITE LENGTH. Computer Graphics and Image Processing, 1982, 20(4): 347-364
    [110]朱长青,杨绪华,邱振戈.数字图像区域周长计算的原理和方法.测绘工程,1999,8(2):29-33
    [111]Kumar B. P. Certain Quadtree Based Image Processing Algorithms:[Master Thesis]. Kanpur: Indian Institute of Technology, 2001.
    [112]Li B.-C. New computation of geometric moments. Pattern Recognition, 1993, 26(1): 109-113
    [113]Yang L., Albregtsen F. Fast and exact computation of Cartesian geometric moments using discrete Green's theorem. Pattern Recognition, 1996, 29(7): 1061-1073
    [114]Belkasim S., Kamel M. Fast computation of 2-D image moments using biaxial transform. Pattern Recognition, 2001, 34(9): 1867-1877
    [115]He J., Du M. Face recognition based on projection map and SVD method for one training image per person. In: Proceedings - International Conference on Computational Intelligence for Modelling, Control and Automation, CIMCA 2005 and International Conference on Intelligent Agents, Web Technologies and Internet, Vienna, Austria: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005.20-24
    [116]Shigenari K., Sakaue F., Shakunaga T. Decomposition and virtualization of eigenface for face recognition under various lighting conditions. Systems and Computers in Japan, 2005, 36(1): 25-34
    [117]郑颖,汪增福.最小邻域均值投影函数及其在眼睛定位中的应用.软件学报,2008,19(9):2322-2328
    [118]张文增,陈强,都东.直线检测的灰度投影积分方法.清华大学学报,2005,45(11):1446-1449
    [119]Zheng Y., Li H., Doermann D. A Parallel-line Detection Based on HMM Decoding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 777-792
    [120]Chen Q., Zhang W., Du D. et al. A new straight line detection method in images for robot seam tracking. China Welding (English Edition), 2006, 15(2): 1-5
    [121]Bagdanov A., Kanai J. Projection profile based a skew estimation algorithm for JBIG compressed images. In: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR, Ulm, Ger: IEEE, Los Alamitos, CA, USA, 1997. 401-405
    [122]Kavallieratou E., Fakotakis N., Kokkinakis G. Skew angle estimation for printed and handwritten documents using the Wigner-Ville distribution. Image and Vision Computing, 2002, 20(11): 813-824
    [123]Julesz B. A method of coding TV signals based on edge detection. Bell System Technical Journal, 1959, 38(4): 1001-1020
    [124]Roberts L. G. Machine Perception of Three-Dimensional Solids. In: Optical and Electro-Optimal Information Processing, Tippett, J. T. et al., Ed. Cambridge, MA: MIT Press, 1965, 159-197
    [125]Prewitt J. M. S. Object Enhancement and Extraction. In: Picture Processing and Psychopictorics, Lipkin, B. S. et al., Ed. New York: Academic Press, 1970, 75-149
    [126]Sobel I. E. Camera Models and Machine Perception:[Ph.D. Thesis]. Standford, CA, USA: Standford University, 1970.
    [127]Canny J. A Computational Approach to Edge Detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698
    [128]Petrou M., Kittler J. Optimal edge detectors for ramp edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5): 483-491
    [129] Pratt W. K. Digital Image Processing. 4th Edition. Los Altos, CA, USA: A John Wiley & Sons, Inc., 2007.494-499
    [130] Marr D., Hildreth E. Theory of Edge Detection. In: Proceedings of the Royal Society of London. Series B, 1980. 187-217
    [131] Sarkar S., Boyer K. L. On optimal infinite impulse response edge detection filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(11): 1154-1171
    [132] Nalwa V. S., Binford T. O. ON DETECTING EDGES. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 699-714
    [133] Chen G, Yang Y. H. H. Edge detection by regularized cubic B-spline fitting. IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(4): 636-643
    [134] Lee J. S. J., Haralick R. M., Shapiro L. G MORPHOLOGIC EDGE DETECTION. IEEE Journal of Robotics and Automation, 1987, RA-3(2): 142-156
    [135] Chanda B., Kundu M. K., Padmaja Y. V. Multi-scale morphologic edge detector. Pattern Recognition, 1998,31(10): 1469-1478
    [136] Wang K., Gao L., Shi Z. et al. An edge detection algorithm based on multi-scale morphology. In: ICIEA 2007: 2007 Second IEEE Conference on Industrial Electronics and Applications, Harbin, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.2210-2213
    [137] Dong Y.-Z., Zhou X.-D., Shen T.-S. et al. Edge Detection of IR Ship Images Based on Soft Morphology. In: Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, United States: The International Society for Optical Engineering, 2003. 581-589
    [138] Guo X., Xu Z., Pang Y. An adaptive soft morphological gradient filter for edge detection. In: Proceedings - Third International Conference on Image and Graphics, Hong Kong, Hong Kong: IEEE Computer Society, Los Alamitos, CA 90720-1314, United States, 2004. 64-67
    [139] Hu D., Tian X. A multi-directions algorithm for edge detection based on fuzzy mathematical morphology. In: Proceedings - 16th International Conference on Artificial Reality and Telexistence - Workshops, ICAT 2006, Hangzhou, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ08855-1331, United States, 2006. 361-364
    [140] Rosenfeld A. Computer vision: A source of models for biological visual processes?
    ??IEEE Transactions on Biomedical Engineering, 1989, 36(1): 93-96
    [141] Yuille A. L., Poggio T. A. SCALING THEOREMS FOR ZERO CROSSINGS. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(1):15-25
    [142] Nguyen T. D., Nguyen V. D., Ba H. T. D. et al. Fast segmentation based on a hybrid of clustering and morphological approaches. In: HUT-ICCE 2008 - 2nd International Conference on Communications and Electronics, Hoi an, Viet Nam: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ08855-1331, United States, 2008. 170-175
    [143] 章毓晋.图像分割.第1版.北京:科学出版社,2001.2-3
    [144] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics, 1979, SMC-9(1): 62-66
    [145] Pun T. NEW METHOD FOR GREY-LEVEL PICTURE THRESHOLDING USING THE ENTROPY OF THE HISTOGRAM. Signal Processing, 1980, 2(3):223-237
    [146] Hammouche K., Diaf M., Siarry P. A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Computer Vision and Image Understanding, 2008, 109(2): 163-175
    [147] Zhao X., Lee M.-E., Kim S.-H. Improved image thresholding using ant colony optimization algorithm. In: Proceedings - ALPIT 2008, 7th International Conference on Advanced Language Processing and Web Information Technology, Liaoning, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2008. 210-215
    [148] Arifin A. Z., Asano A. Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognition Letters, 2006, 27(13): 1515-1521
    [149] Dorigo M., Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41
    [150] Liang Y.-C, Chen A. H. L., Chyu C.-C. Application of a hybrid ant colony optimization for the multilevel thresholding in image processing. In: Neural Information Processing. 13th International Conference, ICONIP 2006. Proceedings,Part Ⅱ(Lecture Notes in Computer Science Vol. 4233), Hong Kong, China:Springer-Verlag, 2006. 1183-1192
    [151] Pavlidis T., Horowitz S. L. SEGMENTATION OF PLANE CURVES. IEEE Transactions on Computers, 1974, C-23(8): 860-870
    [152] Staib L. H., Duncan J. S. Boundary finding with parametrically deformable models.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11):1061-1075
    [153] Goshtasby A. Design and recovery of 2-D and 3-D shapes using rational Gaussian curves and surfaces. International Journal of Computer Vision, 1993, 10(3):233-256
    [154] Robinson G. S. DETECTION AND CODING OF EDGES USING DIRECTIONAL MASKS. Optical Engineering, 1977, 16(6): 580-585
    [155] Illingworth J., Kittler J. A survey of the Hough transform. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87-116
    [156] Revol C., Jourlin M. A new minimum variance region growing algorithm for image segmentation. Pattern Recognition Letters, 1997, 18(3): 249-258
    [157] Wu X. Adaptive split-and-merge segmentation based on piecewise least-square approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(8): 808-815
    [158] Vincent L., Soille P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598
    [159] Adams R., Bischof L. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641-647
    [160] Wan S.-Y., Higgins W. E. Symmetric region growing. IEEE Transactions on Image Processing, 2003, 12(9): 1007-1015
    [161] Kelkar D., Gupta S. Improved quadtree method for split merge image segmentation. In: Proceedings - 1st International Conference on Emerging Trends in Engineering and Technology, ICETET 2008, Nagpur, Maharashtra, India:Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ08855-1331, United States, 2008. 44-47
    [162] Tremeau A., Colantoni P. Regions adjacency graph applied to color image segmentation. IEEE Transactions on Image Processing, 2000, 9(4): 735-744

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700