用户名: 密码: 验证码:
改性Silicalite-1填充聚酰胺反渗透复合膜的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善分子筛Silicalite-1与聚酰胺(PA)之间的相容性,减少膜内非选择性的缺陷,本文采用双酚A型环氧树脂(简称BE188)对分子筛纳米颗粒表面进行改性,并通过界面聚合将其添加到PA层中制备了Silicalite-1/PA杂化膜,再进一步地研究了该杂化膜的分离性能、耐氯性、荷电性、化学稳定性以及耐污染性等。
     首先以双酚A型环氧树脂作为改性剂,氯化亚锡作为催化剂,通过环氧基团与硅醇键的开环反应,对Silicalite-1分子筛纳米颗粒表面进行改性,接枝有机短链,并通过FTIR、1H-NMR、EDX、XRD、TEM测试等对改性前后的Silicalite-1分子筛进行表征,结果证实分子筛表面成功接枝上有机短链。改性后的分子筛亲油性提高,在界面聚合油相溶剂正己烷中分散性提高,团聚现象得到改善。
     将改性分子筛添加到油相中通过界面聚合制备反渗透杂化膜。添加改性分子筛后,杂化膜不但维持较高的亲水性,而且膜的荷负电性提高。TEM表征结果证明:分子筛经表面改性后,不但提高了在PA基质中的分散性,而且与PA基质之间的相容性也有明显改善,从而减少了界面缺陷。由SEM表征结果可知:分子筛的表面改性对杂化膜表面形貌的影响较小。将所制备的膜用于2000 ppm NaCl水溶液反渗透脱盐,发现改性Silicalite-1/PA杂化膜的分离性能优于未改性Silicalite-1/PA杂化膜;且当改性分子筛的添加量为0.1%时,膜的水通量为38.72 L·m~(-2)·h~(-1),约是PA膜通量的1.5倍,同时膜的截留率也有所提高。
     最后,考察了含改性分子筛杂化膜的耐氯性、化学稳定性、BSA吸附量以及耐BSA污染能力。全硅型分子筛Silicalite-1表面的有机短链有助于提高反渗透膜的耐酸性,其表面的苯环减少了氯对聚酰胺的取代,使得膜结构没有遭到严重破坏。所以采用BE188对分子筛表面进行有机化改性,对于防止聚酰胺膜的氯化起到了一定的作用。由于改性杂化膜的Zeta电位较低,膜表面与水和盐离子的静电排斥作用较强,使其在测试的pH范围内一直保持较高的截留率,而膜通量几乎保持不变。将改性分子筛填充于聚酰胺膜后,不但提高了膜的化学稳定性,同时也提高了膜的耐蛋白质污染性能,延长了反渗透膜的运行时间。
In order to improve the compatibility between Silicalite-1 zeolite and polyamide (PA), and reduce non-selective voids, zeolite nanoparticles are modified by the diglycidylether of bisphenol-A with commercial code BE188 (epoxy equivalentweight, EEW = 188). Hybrid membranes are fabricated by interfacial polymerization in the presence of zeolites.
     Further research of the separation performance, the chlorine resistance , the electrical charge, the chemical stability, and the anti-fouling of resulted membranes are investigated too.
     Firstly, the surface of the silicalite-1 zeolite nanoparticles is modified by a ring-opening reaction between the epoxy group of BE 188 and the silanol of zeolite under the catalysization of stannous chloride. Then, original and modified silicalite-1 zeolites are characterized by IR, 1H-NMR, EDX, XRD and TEM. The results confirm that the organic shortchain was grafted on the zeolite surface successfully. Moreover, the dispersibility in n-hexane and the hydrophobicity of modified zeolite are improved.
     The hybrid reverse osmosis membrane is prepared by an interfacial polymerization between MPD and TMC with zeolite. After adding the modified zeolite, the hybrid membranes not only maintain a high hydrophilic, but also an increased negative charge. From TEM images, it has been found that the dispersibility of zeolite in PA matrix increases and the compatibility between them is improved too. The prepared membranes are used for reverse osmosis desalination with 2000ppm NaCl aqueous solution. The separation performance of hybrid membranes filled with modified zeolite is better than the ones filled with original zeolite. When the loading of modified zeolite is 0.1%, the flux is 38.72 L·m-2·h-1, which is ca. 1.5 times as much as that of bare PA membrane, and the rejection improves as well.
     Finally, the investigation of the hybrid membranes with modified zeolite is carried out, containing the chlorine resistance , the chemical stability, anti-fouling of BSA. The organic shortchain on modified silicalite-1 zeolite surface can improve the acid resistance of the reverse osmosis membrane. The benzene ring of the modified zeolite surface reduces the replacement of chlorine to the polyamide matrix, making membranes structure are not seriously damaged. Therefore, the use of BE188 plays a certain role to prevent the chlorination of polyamide membrane. As the Zeta potential of the hybrid membrane loaded modified zeolite is lower than that of membrane loaded original zeolite, the electrostatic repulsion is strongger between the membrane surface and hydrated salt ions, which makes them maintaining high rejection in the test pH range , while the flux remained almost unchanged. The chemical stability of the polyamide membranes filled with modified zeolite is improved, and the performance of the resistance to protein contamination enhanced at the same time, extending the running time of the reverse osmosis membrane.
引文
[1]俞三传,高从堦.膜技术在海水淡化和综合利用中的新进展[J].海洋通报, 2001, (1): 83-87.
    [2] Qin G, Liu C K, Richm N H, etc. Aquaculnlre wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii [J]. Aquacultural Engineering. 2005, 2: 365-378.
    [3]朱小莎,和慧勇,罗奖合.反渗透技术在我国电厂中的应用总结[J].热力发电, 1997, 06: 38-43.
    [4] Yoon Y Lueptow R M. Reverse osmosis membrane rejection for ersatz space mission wastewaters [J]. Water Research. 2005, 39: 3298-3308.
    [5]韩芸,高旭阔,王志盈,等.城市污水回用于工业生产过程中的除盐与除硬度问题的研究[J].给水排水, 2003, (10): 55-58.
    [6]高隆绪,范潇芳,张美珍.饮用纯净水的制备[J].水处理技术, 1998, 24(1): 26-29.
    [7] Urairi M, Tsuru T, Nakao S, etc. Bipolar reverse-osmosis membrane for separating monovalent and divalent ions [J]. Journal of Membrane Science, 1992, 70(2-3): 153-162.
    [8] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential [J]. Journal of Membrane Science, 2011, 370: 1-22.
    [9]Jeong B H, Hoek E M V, Yan Y S, etc. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes [J]. Journal of Membrane Science, 2007, 294: 1-7.
    [10] IDA Newsletter [N], 2006, 9-10.
    [11] The International Desalination and Water Reuse Quarterly [J], 2006, 16:10-22.
    [12] Cadotte J E. Interfacially synthesized reverse osmosis membrane [J]. US Patent 4277344, 1981-06-07.
    [13] Larson R E, Cadotte J E, Petersen R J. The FT-30 sea-water reverse-osmosis membrane: element test results [J]. Desalination, 1981, 38: 473-483.
    [14]Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336: 140–148.
    [15] Kim H I, Kim S S. Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane [J]. Journal of Membrane Science, 2006, 286: 193-201.
    [16] Kim E S, Kim Y J, Deng B L. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF) [J]. Journal of Membrane Science, 2009, 344: 71-81.
    [17] Wei J, Jian X, Wu C, etc. Influence of polymer structure on thermal stability of composite membranes [J]. Journal of Membrane Science, 2005, 256: 116-121.
    [18] Wu C R, Zhang S H, Yang D L, etc. Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane [J]. Journal of Membrane Science, 2006, 279: 238-245.
    [19] Wu C R, Zhang S H, Yang D L, etc. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane [J]. Journal of Membrane Science, 2009, 326: 429-434.
    [20] Asim K G, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science, 2009, 336: 140-148.
    [21]吴礼光,周勇,张林,等.反渗透复合膜功能材料研究进展[J].化学进展, 2008, 7/8: 1216-1221.
    [22] Chen G, Li S H, Zhang X S, etc. Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups [J]. Journal of Membrane Science, 2008, 310: 102-109.
    [23] Li L, Zhang S D, Zhang XS, etc. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine [J]. Journal of Membrane Science, 2008, 315: 20-27.
    [24] Li L, Zhang S B, Zhang X S, etc. Polyamide thin film composite membranes prepared from 3,40,5-biphenyl triacyl chloride, 3,30,5,50-biphenyl tetraacyl chloride and m-phenylenediamine [J]. Journal of Membrane Science, 2007, 289: 258-267.
    [25] Zhou Y, Yu S C, Liu M H, etc. Polyamide thin film composite membrane prepared from m-phenylenediamine and m-Phenylenediamine-5-sulfonic Acid. ICOM2005,2005.8,Seoul in Korea.
    [26]俞三传,周勇,刘立芬,等. 5-氧甲酰氯-异酞酰氯制备新工艺[P].中国专利, 200410017732.8. 2004-04-14.
    [27] Koo J Y, Kim N. Composite polyamide reverse osmosis membrane and method of producing the same [P]. US Patent, US20050094562. 2005-03-30.
    [28]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社, 2008: 31-32.
    [29] Mukherjce D, Kulkami A, Gill W N. Chemical treatment for improved performance of reverse osmosis membranes [J]. Desalination, 1996, 104: 239-249.
    [30]吴宗策,赵小阳,何耀华,等.一种耐氧化复合反渗透膜[P].中国专利, CN2006l0051219.X. 2006-09-19.
    [31]赵小阳,何耀华,吴宗策,等.耐氧化复合反渗透膜[P].中国专利, CN200610051200.5. 2006-08-25.
    [32] Richard U I, Marinas B J. Mechanistic interpretation of solute permeation through a fully aromatic polyamide reverse osmosis membrane [J]. Journal of Membrane Science, 1997, 123(2): 267-280.
    [33] Hirose M, Tomomi O, Masaaki A. Highly permeable composite reverse osmosis membrane [P]. US Patent, 6171497. 2001-01-09.
    [34] Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilie polymers: an FT-IR/AFM/TEM study [J]. Journal of Membrane Science, 2002, 209: 283-292.
    [35] Belfer S, Gtlron J, Purinson Y. Effect of surface modification in preventing fouling of commercial SWRO membranes at the Eilat seawater desalination pilot plant [J]. Desalinafion, 2001, 139: 169-176.
    [36] Gilron J, Belfer S, Vaisanen P. Effects of surface modification on antifouling and performance properties of reverse osmosis membranes [J]. Desalination, 2001, 140: 167-179.
    [37] Reddy A V R, Tfivedi J J, Devmmari C V. Fouling resistant membranes in desalination and recovery [J]. Desalination, 2005, 183: 301-306.
    [38] Kang G, Liu M, Lin B, etc. Yuan Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol) [J]. Polymer, 2007, 48: 1165-1170.
    [39] Buch P R, Mohan D J, Reddy A V R. Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes [J]. Journal of Membrane Science, 2008, 309: 36-44.
    [40] Yu S, L Z H, Chen Z H, etc. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties [J]. Journal of Membrane Science, 2011, 371: 293-306.
    [41] Abhijit S, Peter I C, Tracy Z Adrian M, etc. Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes [J]. Journal of Membrane Science, 2010, 349: 421-428.
    [42] Liu L F, Yu S C, Zhou Y, etc. Study on a novel polyamide-urea reverse osmosis composite membrane (ICICMPD): I. Preparation and characterization of ICIC-MPD membrane [J]. Journal of Membrane Science, 2006, 281: 88-94.
    [43] Wei X, Wang Z, Chen J, etc. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative [J]. Journal of Membrane Science, 2010, 346:
    [44] Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study [J]. Journal of Membrane Science, 2002, 209: 283-292.
    [45] Kabanov V Y, Kudryavtsev V N. Modification of polymers by radiation graft polymerization (state of the art and trends) [J]. High Energy Chemistry, 2003, 37: 1-5.
    [46] Kwak S Y, Jung S G, Kim S H. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films [J]. Environmental Science Technology, 2001, 35: 4334-4340.
    [47] Sung H K, Seung Y K, Takenori S. Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane [J]. Environmental Science Technology, 2005, 39: 1764-1770
    [48] Kong C L, Kanezashi M, Yamomoto T, etc. Controlled synthesis of high performance polyamide membrane with dense layer for water desalination [J]. Journal of Membrane Science, 2010, 362: 76-80.
    [49]吴宗策,蔡志奇,赵小阳,等.低污染复合反渗透膜[P].中国专利, CN200610200816.4. 2008-02-27.
    [50]吴宗策,蔡志奇,刘霞等.低污染复合反渗透膜的生产方法[P].中国专利, CN200610051205.8. 2007-03-07.
    [51] Tang C Y, Kwon Y N, Leckie J O. Probing the nano-and micro-seales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS,TEM, ATR-IR and streaming potential measurements [J]. Journal of Membrane Science, 2007, 287: 146-156.
    [52] Wilbert M C, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes [J]. Desalination, 1998, 115(1): 15-32.
    [53] Lonie J S,Pirmau L C L . Effects of polyether-polyamide block copolymer coating on performance aad fouling of reverse osmosis membranes [J]. Journal of Membrane Science, 2006, 80: 762-770.
    [54] Li Q L, Xu Z H, PinnauI. Fouling ofreverse osmosis membranes by biopolymers in wastewater Sccondary emuent: role of membrane surface propenies and initial permeate flux [J]. Journal of Membrane Science, 2007, 290: 173-181.
    [55] Steinle D E, Zedda M, Plumlce M H. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on rcverse osmosis rejection of seven nitrosoalklyamines, including NDMA [J]. Water Research, 2007, 41: 3959-3967.
    [56] Ratto T V, Holt J K, Szmodis A W. Membranes with Embedded Nanotubes for Selective Permeability[P]. Patent Application, 2010, No. 20100025330.
    [57]瞿新营.基于纳米分子筛的界面聚合反渗透膜制备与性能研究[D]: [博士学位论文].浙江:浙江大学化学工程与生物工程学系, 2011.
    [58] Mary L L, Asim K G, Anna J, etc. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes [J]. Langmuir, 2009, 25(17): 10139-10145.
    [59] Lind M L, Jeong B H, Subramani A, etc. Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes [J]. Journal of Materials Research, 2009, 24: 1624-1631.
    [60] Mary Y L, Daniel E S, Nguyen T V, etc. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance [J]. Environmental Science and Technology, 2010, 44: 8230-8235.
    [61] Kong C L, Shintani T, Toshinori T.‘‘Pre-seeding’’-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification [J.] New Journal of Chemistry, 2010, 34: 2101–2104.
    [62]瞿新营,董航,张林,等.沸石/聚酰胺反渗透复合膜的制备[J].化学工程, 2011, 39(2): 56-59.
    [63] Kim S H, Kwak S Y, Sohn B H, etc. Design of TiO_2 nanoparticle self-assembled aromatic polyamidethin-film-composite (TFC) membrane as an approach to solve biofouling problem [J]. Journal of Membrane Science, 2003, 211: 157-165.
    [64] Kwak S Y, Kim S H, Kim S S. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal antifouling. 1. Preparation and characterization of TiO_2 nanoparticle self assembled aromatic polyamide thin-film-composite (TFC) membrane [J]. Environmental Science Technology, 2001, 35: 2388-2394.
    [65] Lee H S, Kim S J, Kim J H, etc. Polyamide thin-film nanofiltration membranes containing TiO_2 nanoparticles [J]. Desalination, 2008, 219: 48–56.
    [66] Lee S Y, Kim H J, Patel R, etc. Silver nanoparticles immobilized on thin Film composite polyamide membrane: characterization, nano?ltration, antifouling properties [J]. Polymers for Advanced Technologies, 2007, 18(7): 562-568.
    [67] Ghanshyam L J, Singh P S. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties [J]. Journal of Membrane Science, 2009, 328: 257-267.
    [68] Ghanshyam L J, Vinod K A, Singh P S. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles [J]. Journal of Colloid Interface Science, 2010, 351: 304-314.
    [69] Li D and Wang H T. Recent developments in reverse osmosis desalination membranes [J]. Journal of Materials Chemistry, 2010, 20: 4551–4566.
    [70] Zou H, Wu S S, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications [J]. Chemical Reviews, 2008, 108 (9): 3907-3913.
    [71] Yi S L, Su Y, Wan Y H. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution [J]. Journal of Membrane Science, 2010, 360(1/2): 341-351.
    [72] Vankelecom I F J, VandenBroeck S, Merckx E, etc. Silylation To Improve Incorporation of Zeolites in Polyimide Films [J]. Journal of Physical Chemistry, 1996, 100(9): 3753-3758.
    [73] Liu Y L, Hsu C H, Wang M L, etc. A novel approach of chemical functionalization on nano-scaled silica particles [J]. Nanotechnology, 2003, 14(7): 813-819.
    [74] Liu Y L, Hsu C H, Wei W L, etc. Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica [J]. Polymer, 2003, 44(18): 5159-5167.
    [75] Wu C S, Liu Y L, Chiu Y S. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents [J]. Polymer, 2002, 43(15): 4277-4284.
    [76]林春回,吴礼光,瞿新营,等. Silicalite-1/PAAS杂化膜的二甲苯异构体渗透汽化分离研究[J].水处理技术, 2011, 37(3): 28-32.
    [77]周勇.高性能反渗透复合膜及其功能单体制备研究[D]: [博士学位论文].浙江:浙江大学化学工程与技术系, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700