用户名: 密码: 验证码:
渗透汽化膜的制备及回收水中有机物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在食品、饮料的加工过程中,需要将产生香味的挥发性有机物分离出来,避免其在加工过程中损失变质,在加工完毕后再加入以保证产品的风味特性。在发酵制备生物燃料的过程中,需将发酵液中低浓度的丁醇分离出来,以降低产物抑制作用保证发酵连续进行。传统的分离方法有蒸馏法,萃取法,吸附法等,但这些方法存在能耗高、污染大、投资高、经济效益低等不足。渗透汽化是一种新型的膜分离技术,已被广泛应用于气体分离和液体分离领域当中,在分离低浓度,恒沸近沸体系等方面具有明显优势。合适的膜材料对改善渗透汽化过程的分离效果起到关键作用,因此研究主要集中于膜材料的制备与改性。有机-无机杂化膜因其同时具有高分子聚合物材料和无机材料的优点,越来越受到研究者的关注,但聚合物材料与无机材料间的相容性问题限制了杂化膜的广泛应用,因此改善杂化膜的相容性问题成为研究的重要内容之一。
     本文选择了两种两亲性材料,分别为聚醚嵌段共聚酰胺(PEBA)和聚氨酯(HTPB-PU),分别添加无机ZSM-5沸石粒子制备了有机-无机杂化膜,对膜的化学结构、形貌及稳定性等进行了表征,并研究了膜的溶胀性及其对水中低浓度有机物的分离性能。同时,为了改善无机粒子与高分子聚合物间的相容性,尝试对ZSM-5沸石粒子进行乙烯基三乙氧基硅烷(VTES)偶联剂改性研究,将改性后的粒子添加到聚二甲基硅氧烷(PDMS)膜中,制备了有机-无机杂化膜,对比研究无机粒子改性对杂化膜特性及渗透汽化性能的影响。通过本文的研究,得到以下结论:
     (1)制备了PEBA/ZSM-5和HTPB-PU/ZSM-5杂化膜,分别对水中乙酸乙酯和乙酸异丙酯体系进行了渗透汽化分离研究,结果表明:添加ZSM-5无机沸石粒子后,膜的热稳定性明显提高,疏水性能有所加强,沸石与膜的相容性较好,且随着添加量的增加,膜的溶胀度降低,分离因子先升后降。PEBA/ZSM-5杂化膜分离水中乙酸乙酯体系时,在30oC、料液浓度为1.63wt%的条件下,ZSM-5添加量为10wt%时,分离因子可达最高101.9,同时随着料液浓度及操作温度的上升,通量和分离因子都增加,在50oC、料液浓度为1.80wt%的条件下,PEBA/ZSM-5-10膜的分离因子可达185.5,而通量会随温度升高持续增加。HTPB-PU/ZSM-5杂化膜分离水中乙酸异丙酯体系时,在30oC、料液浓度为0.37wt%的条件下,ZSM-5添加量为20wt%时,分离因子达到较高值,同时随着料液浓度及操作温度的上升,通量和分离因子都增加。在60oC、料液浓度为0.39wt%的条件下,HTPB-PU/ZSM-5-20膜的分离因子及通量最高可达288.72和53.21g/m2h。
     (2)制备了VTES改性的ZSM-5沸石粒子,通过FT-IR,XRD和TGA对粒子进行表征,结果表明:ZSM-5沸石表面的-OH参与反应,与VTES上的乙氧基发生缩合反应,以化学键相连,改性前后ZSM-5粒子的晶型结构没有发生改变,改性仅在表面进行。
     (3)将ZSM-5沸石粒子和改性后的VTES-ZSM-5沸石粒子分别添加到PDMS聚合物当中,制得杂化膜,对丁醇水溶液进行渗透汽化分离研究,考察VTES改性、沸石添加量、料液浓度及操作温度对分离性能的影响,结果表明:添加VTES-ZSM-5粒子的PDMS/VTES-ZSM-5杂化膜对丁醇的分离效果优于PDMS/ZSM-5杂化膜,具有较高的分离因子,在30oC、料液浓度为1wt%的条件下,当VTES-ZSM-5粒子添加量为10wt%时,分离因子最高可达17.6。随着料液浓度的上升,分离因子呈下降趋势,而随着操作温度的上升,分离因子和通量都增加,在60oC、料液浓度为1wt%的条件下,PDMS/VTES-ZSM-5-10杂化膜对丁醇的分离因子和通量可分别达到22.4和139.8g/m2h。结果也可显示,尽管添加ZSM-5沸石粒子的分离性能不及VTES-ZSM-5粒子,但PDMS/ZSM-5杂化膜的分离性能仍优于纯PDMS膜,表明ZSM-5粒子有利于水中有机物的分离。
During the manufacturing process of foods and beverages, the volatile organic compounds (VOC), generally called aroma compounds, which contribute significantly to the flavor, should be seperated to avoid being lost and then added after the heating process to preserve the taste. During the production process of biofuel by fermentation, the butanol in dilute solution should be recovered to lower the product inhibition and ensure the continuous fermentation. The conventional seperation processes, including distillation, extraction, adsorption and so on, surfer from high engrgy consumption, serious environment pollution, great installation cost and poor economic performance. Pervaporation (PV) is a new membrane separation technique to separate liquid and gas mixtures, especially in the use of the separation of homogeneous mixtures such as azeotropic, closing-boiling and dilute concentration mixtures, which are difficult to separate by conventional methods. PV process is based on the different selectivity of membrane materials towards the various components in the mixtures, so the most researches focus on the preparation and modification of the membrane. Organic-inorganic hybrid membranes possess the advantages of polymer and inorganic materials, arousing more and more attentions. But the poor compatibility between these two kinds of materials limit the development of the hybrid membranes, therefore the most researches focus on the improvement of the compatibility.
     In the present study, two kinds of amphipathic materials were chosen including polyether block amide (PEBA) and polyurethaneurea (HTPB-PU), and incorporated inorganic fillers ZSM-5 to prepare organic-inorganic hybrid membrane. The chemical structure, morphology and stability of these filled membranes were characterized. The effects of ZSM-5 content on swelling degree and pervaporation separation performance of organic compound from dilute solution were investigated. Meanwhile, in order to improve the compatibility between the polymer and the inorganic particles, the ZSM-5 particles were modified by a silane coupling agent vinyltriethoxysilane (VTES) and incorporated into polydimethylsiloxane (PDMS) for the preparation of hybrid membranes. The effect of modification of ZSM-5 on PV performance and character of hybrid membrane were investigated. The main experimental results and conclusions can be listed as followings:
     (1) The PEBA/ZSM-5 and HTPB-PU/ZSM-5 membranes were prepared for the separation of ethyl acetate and isopropyl acetate from the aqueous solutions by pervaporation respectively. The results indicated that with the incorporation of ZSM-5, the thermal stability and the hydrophobic performance of the membrane increased, while the swelling degree decreased. The ZSM-5 dispersed uniformly in the membrane and the separation factor increased first and then decreased with the increase of the ZSM-5 loading. The PEBA/ZSM-5 membranes containing 10wt% ZSM-5, PEBA/ZSM-5-10, showed the highest separation factor (101.9) at 30 oC with feed concentration of 1.63wt% EA. With the increase of the operating temperature and feed concentration, both the permeation ?ux and separation factor increased. The best PV performance of the PEBA/ZSM-5-10 membranes, separation factor and total ?ux were 185.5 and 199.5g/m2h, respectively with feed concentration of 1.80wt% EA at 50oC. The HTPB-PU/ZSM-5 membranes containing 20wt% ZSM-5, HTPB-PU/ZSM-5-20, showed the highest separation factor at 30oC with feed concentration of 0.37wt% IPAC. With the increase of the operating temperature and feed concentration, both the permeation ?ux and separation factor increased. The best PV performance of the HTPB-PU/ZSM-5-20 membranes, separation factor and total ?ux were 288.7 and 53.2g/m2h, respectively with feed concentration of 0.39wt% IPAC at 60oC.
     (2) The ZSM-5 particles were modified by a silane coupling agent vinyltriethoxysilane (VTES), and examined by FT-IR, XRD and TGA. The results showed that the silane coupling agent was bonded to the surface of silicalite-1 particles through chemical bonds and the modification did not in?uence the framework of silicalite-1 crystals, which occurred at the surface.
     (3) The hybrid membranes incorporated with unmodified ZSM-5 particles and VTES modified ZSM-5 particles were prepared, and the pervaporation performances of the hybrid membranes with dilute butanol solutions was investigated. The effects of VTES modified, ZSM-5 content, feed concentration and temperature were studied, the results indicated that as compared with the unmodified hybrid membranes, the PDMS/VTES-ZSM-5 hybrid membranes improved the pervaporation selectivity of butanol effectively. The PDMS/VTES-ZSM-5 membranes containing 10 wt% VTES-ZSM-5, showed the highest separation factor (17.6) at 30oC with feed concentration of 1wt% butanol. With the increase of the feed concentration, the separation factor decreased, while with the increase of the operating temperature, both the permeation flux and separation factor increased. The best PV performance of the PDMS/VES-ZSM-5-10 membranes, separation factor and total ?ux were 22.4 and 139.8g/m2h, respectively with feed concentration of 1wt% butanol at 60oC. As showed in the results, although the PV performance of PDMS/ZSM-5 membranes were lower than that of PDMS/VTES-ZSM-5 membrane, it was better than the pure PDMS membranes, indicating that ZSM-5 particle was good for the separation of the organic compounds.
引文
1.闫勇.有机废气中挥发性有机物(VOC)的净化回收技术——炭吸附和膜分离[J].化工进展, 1996, (5): 26-28.
    2.李婕,羌宁.挥发性有机物(VOCs)活性炭吸附回收技术综述[J].四川环境, 2007, 26(6): 101-105.
    3.李红艳,李亚新,岳秀萍.离子交换去除饮用水中有机物的研究进展[J].工业水处理, 2009, 29(4): 16-20.
    4. An Q F, Qian J W, Sun H B et al. Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures[J]. Journal of Membrane Science, 2003, 222: 113-122.
    5. Barret D M, Somogyi L P, Ramaswamy H. Processing Fruits: Science and Technology[J]. Journal of Agricultural and Food Information, 2006, 7: 180-190.
    6. Lipnizki F, Olsson J, Tragardh G. Scale-up of pervaporation for the recovery of natural aroma compounds in the food industry. Part 1: simulation and performance[J]. Journal of Food Engineering, 2002, 54: 183-195.
    7. Diban N, Ruiz G, Urtiaga A et al. Granular activated carbon for the recovery of the main pear aroma compound: Viability and kinetic modelling of ethyl-2,4-decadienoate adsorption[J]. Journal of Food Engineering, 2007, 78: 1259-1266.
    8. Souchon I, Athes V, Pierre F X et al. Liquid-liquid extraction and air stripping in membrane contactor: application to aroma compounds recovery[J]. Desalination, 2004, 163: 39-46.
    9. Olsson J, Tragardh G. In?uence of feed velocity on pervaporative aroma recovery from a model solution of apple juice aroma compounds[J]. Journal of Food Engineering, 1999, 39: 107-115.
    10. Cassano A, Figoli A, Tagarelli A et al. Integrated membrane process for the production of highly nutritional kiwifruit juice[J]. Desalination, 2006, 189: 21-30.
    11. Figoli A, Donato L, Carnevale R et al. Bergamot essential oil extraction by pervaporation[J]. Desalination, 2006, 193: 160-165.
    12. Isci A, Sahin S, Sumnu G. Recovery of strawberry aroma compounds by pervaporation[J]. Journal of Food Engineering, 2006, 75: 36-42.
    13. Pereira C C, Rufino J R M, Habert A C et al. Aroma compounds recovery of tropical fruit juice by pervaporation: membrane material selection and process evalution[J]. Journal of Food Engineering, 2005, 66: 77-87.
    14. Sampranpiboon P, Jiraratananon R, Uttapap D et al. Separation of aroma compounds from aqueous solutions by pervaporation using polyoctylmethyl siloxane (POMS) and polydimethyl siloxane (PDMS) membranes[J]. Journal of Membrane Science, 2000, 174: 55-65.
    15. Shepherd A, Habert A C, Borges C P. Hollow fiber modules for orange juice aroma recovery using pervaporation[J]. Desalination, 2002, 148: 111-114.
    16. Rajagopalan N, Cheryan M. Pervaporation of grape juice aroma[J]. Journal of MembraneScience, 1995, 104: 243-250.
    17. Fadeev A G, Selinskaya Y A, Kelley S S et al. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne)[J]. Journal of Membrane Science, 2001, 186: 205-217.
    18. Qureshi N, Meagher M M, Huang J et al. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone compositemembrane from fed-batch reactor of Clostridium acetobutylicum[J]. Journal of Membrane Science, 2001, 187: 93-102.
    19. Fouad E A, Feng X. Use of pervaporation to separate butanol fromdilute aqueous solutions: effects of operating conditions and concentration polarization[J]. Journal of Membrane Science, 2008, 323: 428-435.
    20. El-Zanati E, Abdel-Hakim E, El-Ardi O et al. Modeling and simulation of butanol separation from aqueous solutions using pervaporation[J]. Journal of Membrane Science, 2006, 280: 278-283.
    21. Guo W F, Chung T S, Matsuura T. Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of ?ux vs. permeance, separation factor vs. selectivity[J]. Journal of Membrane Science, 2004, 245: 199-210.
    22. Qiao X, Chung T S, Guo W F et al. Dehydration of isopropanol and its comparison with dehydration of butanol isomers from thermodynamic and molecular aspects[J]. Journal of Membrane Science, 2005, 252: 37-49.
    23. Sridhar S, Ganga D, Smitha B et al. Dehydration of 2-butanol by pervaporation through blend membranes of chitosan and hydroxy ethyl cellulose[J]. Separation Science and Technology, 2005, 40: 2889-2908.
    24. Sridhar S, Smitha B, Reddy A A. Separation of 2-butanol-water mixtures by pervaporation through PVA-NYL 66 blend membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280: 95-102.
    25. Awang G M, Jones G A, Ingledew W M. The acetone-butanol-ethanol fermentation[J]. Critical Reviews in Microbiology, 1988, 15: S33-S67.
    26. Elsayed A, Fouad L, Feng X S. Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes[J]. Journal of Membrane Science, 2009, 339: 120-125.
    27. Kober P A. Pervaporation, perstillation and percrystallization[J]. Journal of the American Chemical Society, 1917, 39: 944-948.
    28. Bining R C, James F E. New sepatate by membrane permeate[J]. Petroleum Refinerance, 1958, 37: 214-215.
    29. Neel J, Nguyen Q T, Clement R et al. Fractionation of a binary liquid mixture by continuous pervaporation[J]. Journal of Membrane Science, 1983, 15: 43-62.
    30. Rautenbach R, Albrecht R. Separation of Organic Binary Mixtures by Pervaporation[J]. Journal of Membrane Science, 1980, 7: 203-223.
    31.施璇.渗透汽化透醇膜制备及乙醇/水体系的分离研究[D].江南大学, 2008.
    32. Wang X Y, Somenath M. Development of a total analytical system by interfacing membrane extraction, pervaporation and high-performance liquid chromatography[J]. Journal of Chromatography A, 2005, 1068: 237-242.
    33. Lonsdale H K. The growth of membrane technology[J]. Journal of Membrane Science, 1982, 10: 81-181.
    34. Binning R, Lee R, Jennings J et al. Separation of liquid mixtures by permeation[J]. Industrial and Engineering Chemistry, 1961, 53: 45-50.
    35. Shao P, Huang R Y M. Polymeric membrane pervaporation[J]. Journal of Membrane Science, 2007, 287: 162-179.
    36.潘岚,周志军,刘茉娥.渗透汽化膜材料的选择[J].高分子材料科学与工程, 1997, 13(5): 3-8.
    37. Nguyen T Q, Nobe K. Extraction of organic contaminants in aqueous solutions by pervaporation[J]. Journal of Membrane Science, 1987, 30: 11-22.
    38. Blume I P, Schwering J F, Mulder M H V et al. Vapor sorption and permeation properties of poly(dimethyl-siloxane) films[J]. Journal of Membrane Science, 1991, 61: 85-97.
    39. Yoem C K, Kim H K, Rhim J W et al. Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors[J]. Journal of Applied Polymer Science, 1999, 73: 601-611.
    40. Catarinoa M, Ferreirab A, Mendes A. Study and optimization of aroma recovery from beer by pervaporation[J]. Journal of Membrane Science, 2009, 341: 51-59.
    41. Trifunovic C, Tragardh G. Mass transport of aliphatic alcohols and esters through hydrophobic pervaporation membranes[J]. Separation and Purification Technology, 2006, 50: 51-61.
    42. Djebbar M K, Nguyen Q T, Clement R et al. Pervporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes[J]. Journal of Membrane Science, 1998, 146: 125-133.
    43. Jiraratananon R, Sampranpiboon P, Uttapap D et al. Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes[J]. Journal of Membrane Science, 2002, 210: 389-409.
    44. Sampranpiboon P, Jiraratananon R, Uttapap D et al. Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes[J]. Journal of Membrane Science, 2000, 173: 53-59.
    45. Bai Y X, Qian J W, Yin J et al. HTPB-based polyurethaneurea membranes for recovery of aroma compounds from aqueous solution by pervaporation[J]. Journal of Applied Polymer Science, 2007, 104: 552-559.
    46. Bai Y X, Qian J W, Zhang C F et al. Cross-linked HTPB-based polyurethaneurea membranes for recovery of ethyl acetate from aqueous solution by pervaporation[J]. Journal of Membrane Science, 2008, 325: 932-939.
    47. Pereira C C, Rufino J R M, Habert A C et al. Aroma compounds recovery of tropical fruit juice by PV: membrane material selection and process evaluation[J]. Journal of Food Engineering, 2005, 66: 77-87.
    48. Liu X L, Li Y S, Liu Y et al. Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for biobutanol recovery[J]. Journal of Membrane Science, 2011, 369: 228-232.
    49. Ji W, Hwang S T. Modeling of multicomponent pervaporation for removal of volatileorganic compounds from water[J]. Journal of Membrane Science, 1994, 93: 1-19.
    50. Boddeker K W, Bengston G, Bode E. Pervaporation of low volatility aromatics from water[J]. Journal of Membrane Science, 1990, 53: 143-158.
    51. Brun J P, Larchet C, Bulvestre G et al. Sorption and pervaporation of dilute aqueous solutions of organic compounds through polymer membranes[J]. Journal of Membrane Science, 1985, 25: 55-100.
    52. Li S G, Tuan V A, Falconer J L et al. Properties and separation performance of Ge-ZSM-5 membranes[J]. Microporous and Mesoporous Materials, 2003, 58: 137-154.
    53. Fadeev A G, Kelley S S, Volkov V V et al. Fouling of poly[-1-(trimethylsilyl)-1-propyne] membranes in pervaporative recovery of butanol from aqueous solutions and ABE fermentation broth[J]. Journal of Membrane Science, 2000, 173: 133-144.
    54. Fadeev A G, Selinskaya Y A, Kelley S S et al. Extraction of butanol from aqueous solutions by pervaporation through poly(1-trimethylsilyl-1-propyne)[J]. Journal of Membrane Science, 2001, 186: 205-217.
    55. Srinivasan K, Palanivelu K, Gopalakrishnan A N. Recovery of 1-butanol from a model pharmaceutical aqueous waste by pervaporation[J]. Chemical Engineering Science, 2007, 62: 2905-2914.
    56. Huang J C, Meagher M M. Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes[J]. Journal of Membrane Science, 2001, 192: 231-242.
    57. Boddeker K W, Bengtson G, Pingel H. Pervaporation of isomeric butanols[J]. Journal of Membrane Science, 1990, 54: 1-12.
    58. Qureshi N, Blaschek H P. Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance[J]. Biomass Bioenergy, 1999, 17: 175-184.
    59. Van Bekkum H, Geus E R, Kouwenhoven H W. Supported zeolite systems and applications[J]. Studies in Surface Science and Catalysis, 1994, 85: 509-514.
    60. Chon H, Woo S I, Park S E. Recent Advances and New Horizons in Zeolite Science and Technology[M]. New York: Elsevier, 1996.
    61. Hennepe H J C, Smolders C A, Bargeman D et al. Exclusion and tortuosity effects for alcohol/water separation by zeolite filled PDMS membranes[J]. Separation Science and Technology, 1991, 26: 585-596.
    62. Dotremont C, Brabants B, Geeroms K et al. Sorption and diffusion of chlorinated hydrocarbons in silicalite filled PDMS membranes[J]. Journal of Membrane Science, 1995, 104: 109-117.
    63. Chandak M V, Lin Y S, Ji W et al. Sorption and diffusion of VOCs in DAY zeolite and silicalite-filled PDMS membranes[J]. Journal of Membrane Science, 1997, 133: 231-243.
    64. Adnadjevi B, Jovanovi J, Gajinov S. Effect of different physicochemical properties of hydrophobic zeolites on the pervaporation properties of PDMS membranes[J]. Journal of Membrane Science, 1997, 136: 173-179.
    65. Lu S Y, Chiu C P, Huang H Y. Pervaporation of acetic acid/wate mixtures through silicalite filled polydimethylsiloxane membranes[J]. Journal of Membrane Science, 2000,176: 159-167.
    66. Ersolmaz S B T, Senorkyan L, Kalaonra N et al. n-Pentane/i-pentane separation by using zeolite-PDMS mixed matrix membranes[J]. Journal of Membrane Science, 2001, 189: 59-67.
    67. Li L, Xiao Z, Zhang Z et al. Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes[J]. Chemical Engineering Journal, 2004, 97: 83-86.
    68. Qi R, Wang Y, Chen J et al. Removing thiophenes from n-octane using PDMS-AgY zeolite mixed matrix membranes[J]. Journal of Membrane Science, 2007, 295: 114-120.
    69. Panek D, Konieczny K. Preparation and applying the membranes with carbon black to pervaporation of toluene from the diluted aqueous solutions[J]. Separation and Purification Technology, 2007, 57: 507-512.
    70. Peng F B, Jiang Z Y, Hu C L et al. Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes[J]. Separation and Purification Technology, 2006, 48: 229-234.
    71. Kittur A A, Choudhari S K, Kariduraganavar M Y. Preparation of zeolite-incorporated PDMS membranes for pervaporation separation of isopropanol-water mixtures[J]. Composite Interfaces, 2006, 13: 507-521.
    72. Vane L M, Namboodiri M M, Bowen T C. Hydrophobic zeolite-silicone rubber mixed matrix membranes for ethanol-water separation: effect of zeolite and silicone component selection on pervaporation performance[J]. Journal of Membrane Science, 2008, 308: 230-241.
    73. Jonquieres A, Fane A. Filled and unfilled composite GFT PDMS membranes for the ecovery of butanols from dilute aqueous solutions: influence of alcohol polarity[J]. Journal of Membrane Science, 1997, 125: 245-255.
    74. Moermans B, Beuckelaer W, Vankelecom I et al. Incorporation of nano-sized zeolites in membranes[J]. Chemical Communications, 2000, 2467-2468.
    75. Yi S L, Su Y, Wan Y H. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution[J]. Journal of Membrane Science, 2010, 360 341-351.
    76. Sano T, Hasegawa M, Ejiri S et al. Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent[J]. Microporous Materials, 1995, 5: 179-184.
    77. Yong H H, Park N C, Kang Y S et al. Zeolite-filled polyimide membrane containing
    2,4,6-triaminopyrimidine[J]. Journal of Membrane Science, 2001, 188: 151-163.
    78. Khayet M, Villaluenga J P G, Valentin J L et al. Filled poly(2,6-dimethyl-1,4-phenylene oxide) densemembranes by silica and silanemodified silica nanoparticles: characterization and application in pervaporation[J]. Polymer, 2005, 46: 9881-9891.
    79. Fu Y L, Hu C C, Lee K R et al. Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-aminopropyltrimethoxysilane[J]. Desalination, 2006, 193: 119-128.
    80. Hu C C, Liu T C, Lee K R et al. Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties[J]. Desalination, 2006, 193: 14-24.
    81. Li Y, Guan H M, Chung T S et al. Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes[J]. Journal of Membrane Science, 2006, 275: 17-28.
    82. Yi S L, Su Y, Wan Y H. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution[J]. Journal of Membrane Science, 2010, 360: 341-351.
    83. Tretinnikov O N. Selective accumulation of functional groups at the film surfaces fo stereo regular poly(methyl methacrylate)s[J]. Langmuir, 1997, 13: 2988-2992.
    84. Ma X C, Hu C L, Guo R L et al. HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures[J]. Separation and Purification Technology, 2008, 59: 34-42.
    85. Fakirov S. Handbook of Condensation Thermoplastic Elastomers[M]. Rapra Technology Limited, 2005.
    86. Mandal M K, Bhattacharya P K. Poly(ether-block-amide) membrane for pervaporative separation of pyridine present in low concentration in aqueous solution[J]. Journal of Membrane Science, 2006, 286: 115-124.
    87. Baudot A, Matin M. Dairy aroma compounds recovery by pervaporation[J]. Journal of Membrane Science, 1996, 120: 207-220.
    88.刘琨,陈松.碳分子筛填充聚醚共聚乙酰胺膜渗透汽化分离水溶液中的醋酸正丁酯[J].膜科学与技术, 2010, 30(2): 45-57.
    89. Hasanoglu A, Salt Y, KeleSer S et al. The esterification of acetic acid with ethanol in a pervaporation membrane reactor[J]. Desalination, 2009, 245: 662-669.
    90.邹昀,杨超,刘琨等.醋酸丁酯酯化反应体系组分在PEBA膜中的吸附性能[J].高校化学工程学报, 2009, 23(1): 18-22.
    91.刘琨,杨超,陈松等.聚醚共聚酰胺(PEBA)膜的溶胀和渗透汽化行为研究[J].高校化学工程学报, 2010, 24(1): 16-21.
    92.白云翔,杨乐,顾瑾等. ZSM-沸石填充聚氨酯膜的制备及渗透汽化分离水中乙酸异丙酯[J].化工进展, 2011, 30(9): 1919-1925.
    93. Polotskaya G A, Penkova A V, Toikka A M et al. Transport of small molecules through polyphenylene oxide membranes modified by fullerene[J]. Separation Science and Technology, 2007, 42: 333-347.
    94. Uragami T, Meotoiwa T, Miyata T. Effects of the addition of calixarene to microphase-separated membranes for the removal of volatile organic compounds from dilute aqueous solutions[J]. Macromolecules, 2001, 34: 6806-6811.
    95. Wu P, Field R W, England R et al. A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams[J]. Journal of Membrane Science, 2001, 190: 147-157.
    96. Bai Y X, Qian J W, An Q F et al. Pervaporation characteristics of ethylene-vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution[J]. Journal of Membrane Science, 2007, 305: 152-159.
    97. Wijmans J G, Baker R W. The solution-diffusion model: a review[J]. Journal of Membrane Science, 1995, 107: 1-21.
    98. Chen X, Ping Z G, Long Y C. Separation Properties of Alcohol-Water Mixture through Silicalite-I-Filled Silicone Rubber Membranes by Pervaporation[J]. Journal of Applied Polymer Science, 1998, 67: 629-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700