用户名: 密码: 验证码:
SiC-TiC(TiB_2)复合粉末的碳热还原合成及烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)陶瓷由于具有高温强度高、高温抗氧化能力强、热导率高、化学稳定性好等一系列优异性能,在机械、化工、能源和军工等领域得到广泛的应用。然而,由于SiC陶瓷存在室温强度与断裂韧性较低以及对缺陷的高度敏感性等方面的不足,限制了它更广泛的应用。在SiC基体中引入过渡金属硼化物或碳化物作为第二相弥散强化是解决这些问题的一个有效方法。通常,SiC-TiC或SiC-TiB2复相陶瓷材料的制备是通过直接将SiC和TiC或TiB2粉末混合后采用热压或常压烧结。然而,机械混合粉末会带来所制备的SiC-TiC(TiB2)复相陶瓷材料中的成分不均匀性,从而会导致对SiC-TiC(TiB2)复相陶瓷材料的性能带来不利的影响。本文针对上述问题,首先开展了SiC-TiC和SiC-TiB2复合粉末的合成与生长机理研究,进而对所合成的SiC-TiC和SiC-TiB2复合粉末进行烧结并对其相关性能进行研究。
     以硅溶胶、炭黑和TiO2为原料,采用碳热还原法在氩气气氛下合成了SiC-TiC复合粉末。研究了反应温度、TiO2添加量对合成SiC-TiC复合粉末的物相组成和显微形貌的影响;对反应过程进行了热力学分析和计算,探讨了SiC-TiC复合粉末的生长机理。结果表明:SiC-TiC复合粉末适宜的合成条件为在1600℃保温1h。在反应过程中,TiC先于SiC形成,TiC的形成抑制了SiC颗粒的生长。当复合粉末中TiC的含量为10%左右时,SiC的合成过程由气-固(V-S)反应转变为V-S和气-气(V-V)反应共同作用,复合粉末主要由球状颗粒、短棒状颗粒以及少量晶须组成。随着复合粉末中TiC含量的增加,SiC晶须的生长受到抑制,其形貌逐步由长纤维状向短棒状和颗粒状过渡。
     以SiC、TiO2和炭黑为原料,在真空条件下合成了SiC-TiC复合粉末。对合成SiC-TiC复合粉末的物相组成和显微形貌进行了表征,同时探讨了合成粉末样品的氧化性能。结果表明:在本实验条件下,SiC-TiC复合粉末适宜的合成条件为在1350℃保温1h。在SiC粉末中生成的TiC以粒径为0.1~0.2μm的小颗粒存在。SiC-TiC复合粉末在氧化过程中,TiC优先与氧发生反应生成TiO2,然后是SiC与氧反应生成SiO2。
     以硅溶胶、炭黑、TiO2和B4C为原料,采用碳热还原法在氩气气氛下合成了SiC-TiB2复合粉末。研究了反应温度、TiO2添加量对合成SiC-TiB2复合粉末的物相组成和显微形貌的影响,探讨了SiC-TiB2复合粉末的生长机理。结果表明:SiC-TiB2复合粉末适宜的合成条件为在1600℃保温1h。在反应过程中,TiB2先于SiC生成,TiB2的生成改变了SiC的生长方式。当复合粉末中TiB2的含量为10%左右时,SiC的合成过程由V-S反应转变为V-S和V-V共同反应,复合粉末主要由少量球状颗粒、短棒状颗粒以及大量的晶须组成。随着复合粉末中TiB2含量的增加,SiC晶须的生长受到抑制,合成产物中球状、片状和短棒状等结构的颗粒明显增多,出现结构多样化并存的现象。
     以SiC、TiO2、B4C和炭黑为原料,在真空条件下合成了SiC-TiB2复合粉末。研究了反应温度对合成SiC-TiB2复合粉末的物相组成和显微形貌的影响,同时对合成的SiC-TiB2粉末样品的氧化性能进行了探讨。结果表明:在真空条件下,合成SiC-TiB2复合粉末的合适反应条件为在1300℃下保温1h。SiC-TiB2复合粉末的氧化机理为:TiB2优先与氧发生反应生成TiO2和B2O3,然后是SiC与氧反应生成SiO2和CO。
     采用AlN和Y2O3作为烧结助剂,对以硅溶胶、炭黑和TiO2为原料合成的SiC-TiC复合粉末的烧结性能进行了研究,探讨了AlN和Y2O3的添加量对所制备的SiC-TiC复相陶瓷的致密度、硬度和显微结构的影响。结果表明:当AlN-Y2O3添加量为10vol%时,所合成的SiC-TiC复合粉末具有良好的烧结性能,该复合粉末经25MPa和1900℃热压烧结1h后,其烧结体的相对密度达到98.9%,洛氏硬度为93.2HRA。
     以TiO2、B4C、炭黑和SiC为原料,以AlN和Y2O3为烧结助剂,通过原位反应制备了SiC-20vol%TiB2复相陶瓷材料。探讨了不同添加量AlN和Y2O3对SiC-TiB2复相陶瓷的致密度、力学性能、电学性能以及显微结构的影响,分析了AlN-Y2O3的助烧结机理。实验结果表明:当烧结助剂的添加量为10vol%时,所制备的SiC-TiB2复相陶瓷的综合性能最佳,烧结样品的相对密度达到99.1%,抗弯强度为641MPa,硬度为91.8HRA,电阻率达到最小值为17.5mΩ·cm。从试样的断口中可看到晶粒拔出留下的痕迹,晶粒与晶粒之间的结合非常紧密,是赋予SiC-TiB2复相陶瓷优异综合性能的前提。
Silicon carbide (SiC) has been widely used in machinery, chemical engineering,energy and many other industries due to its excellent combination of properties suchas high temperature strength, good oxidation resistance, high thermal conductivity,extreme chemical stability, etc. However, the application fields of SiC ceramics islimited by its low room-temperature strength, poor fracture toughness and high flawsensitivity. An effective method to solve the problems is to introduce transition metalboride or carbide into SiC matrix as strengthening phase. Generally, SiC-TiC andSiC-TiB2composites are prepared by directly mixing SiC and TiC or TiB2powdersand then hot-pressing or pressureless sintering. However, mechanical mixing of thepowders makes inhomogeneity of the SiC-TiC(TiB2) composites,resulting in anunfavourable inference on the properties of SiC-TiC(TiB2) composites. Based on theabove, this work intends to prepare SiC-TiC(TiB2) composite powders, andinvestigate synthesis, particle growth and sintering mechanism of SiC-TiC(TiB2)composite powders.
     SiC-TiC composite powders were synthesized in Ar by carbothermal reductionmethod using silica sol, carbon black and titanium oxide as raw materials. The effectsof reaction temperature and titanium oxide content on the phase composition andmorphology of SiC-TiC composite powders were investigated. The thermodynamicanalysis and calculation were performed systematically during the reaction, and thegrowth mechanism of SiC-TiC composite powders was discussed. The results showthat the suitable condition for synthesizing SiC-TiC composite powders is at1600℃for1h. In the reaction process, TiC formed ahead SiC, and the formation of TiCinhibits the grain growth of SiC particles. When TiC content is about10%, theformation of SiC is controlled from vapor-solid mechanism to the combinationvapor-solid and vapor-vapor mechanism. The composite powders are mainlycomposed of round-like particles, short rod-like particles and a small amount ofwhiskers. With the increase of TiC content in the composite powders, the growth ofSiC whiskers is inhibited and the morphology of SiC gradually transfers from longfiber to short rod-like and round-like particles.
     SiC-TiC composite powders were synthesized in vacuum using SiC, TiO2andcarbon black as starting materials. The phase composition and morphology of SiC-TiC composite powders were investigated and the antioxidation performance of SiC-TiCcomposite powders was discussed. Results show that the suitable condition forsynthesizing SiC-TiC composite powders is at1350℃for1h. The size of in-situcreated TiC particles is about0.1~0.2μm. In the oxidation process, TiC reacts inpriority with O2to form TiO2, then SiC reacts with O2to form SiO2.
     SiC-TiB2composite powders were synthesized in Ar by carbothermal reductionusing silica sol, carbon black, TiO2and B4C as raw materials. The effects of reactiontemperature and titanium oxide content on the phase composition and morphology ofSiC-TiB2composite powders were investigated. The growth mechanism of SiC-TiB2composite powders was discussed. The results show that the suitable condition forsynthesizing SiC-TiB2composite powders is at1600℃for1h. In the reaction process,TiB2formed ahead SiC, and the formation of TiB2alters the growth mode of SiC.When TiB2content is about10%, the formation of SiC is controlled from vapor-solidreaction to the combination of vapor-solid and vapor-vapor reaction. The compositepowders are mainly composed of a small amount of round-like particles, shortrod-like particles and lot of whiskers. With the increase of TiB2content in thecomposite powders, the growth of SiC whiskers is inhibited. And the number ofround-like, plate-shaped and short rod-like particles in the composite powdersincreases noticeably, which results in the variety of the morphology.
     SiC-TiB2composite powders were synthesized in vacuum using SiC, TiO2,B4Cand carbon black. The effects of reaction temperature on the phase composition andmorphology of SiC-TiB2composite powders were investigated and the antioxidationperformance of SiC-TiB2composite powders was also discussed. Results show thatthe suitable condition for synthesizing SiC-TiB2composite powders in vacuum is at1300℃for1h. In the oxidation process, TiB2reacts in priority with O2to form TiO2and B2O3,then SiC reacts with O2to form SiO2and CO.
     The sintering behavior of SiC-TiC composite powders synthesized bycarbothermal reduction using silica sol, carbon black and titania powders isinvestigated. The effects of the volume fraction of AlN and Y2O3on density, hardnessand microstructure of SiC-TiC composites were discussed. Results show that theSiC-TiC composite powders reveal good sinterability when the AlN-Y2O3adds isabout10vol%. The sample hot-pressed at1900℃for1h under25MPa, possesses arelative density of98.9%and Rockwell hardness of93.2HRA.
     SiC-TiB2composites with20vol%TiB2were fabricated by in situ reactionbetween TiO2, C and B4C,with AlN-Y2O3as sintering aids. The effects of the volume fraction of AlN and Y2O3on the density, mechanical properties, electrical propertiesand microstructure of the SiC-TiB2composites were determined. Results show thatSiC-TiB2composites possess the good comprehensive performance when the contentof sintering aids is10vol%, showing a relative density of99.1%, flexural strength of641MPa and Rockwell hardness of91.8HRA, respectively. The resistivity of theSiC-TiB2composites reaches17.5mΩ·cm at10vol%AlN-Y2O3. Pull-out of crystalparticles is observed from the fracture morphology of the composites. Tightly bondedgrains contributed to the excellent combination of properties of SiC-TiB2composites.
引文
[1]李世普.特种陶瓷工艺学.武汉:武汉理工大学出版社,2003:112-120
    [2]王零森.特种陶瓷.长沙:中南大学出版社,2005:171-181
    [3]肖汉宁,高朋召.高性能结构陶瓷及其应用.北京:化学工业出版社,2006:156-246
    [4]金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000:161-169
    [5]谢志鹏.结构陶瓷.北京:清华大学出版社,2011:229-485
    [6]郭玉广.再结晶碳化硅陶瓷窑具的特性及生产技术.陶瓷,1998,13(5):37-38
    [7]郭文明.再结晶碳化硅烧结机理及其材料性能改进研究[博士学位论文].长沙:湖南大学,2012:1-20
    [8] Koval íková A, Dusza J, ajgalík P. Thermal shock resistance and fracturetoughness of liquid-phase-sintered SiC-based ceramics. J. Eur. Ceram. Soc.,2009,29:2387-2394
    [9] Borrero-López O, Ortiz A L, Guiberteau F, et al. Microstructural design ofsliding-wear-resistant liquid-phase-sintered SiC: An overview, J. Eur. Ceram.Soc.,2007,27:3351-3357
    [10] Ortiz A L, Mu oz-Bernabé A, Borrero-López O, et al. Effect of sinteringatmosphere on the mechanical properties of liquid-phase-sintered SiC. J. Eur.Ceram. Soc.,2004,24:3245-3249
    [11] Magnani G, Antolini F, Beaulardi L, et al. Sintering, high temperature strengthand oxidation resistance of liquid-phase-pressureless-sintered SiC-AlNceramics with addition of rare-earth oxides. J. Eur. Ceram. Soc.,2009,29:2411-2417
    [12] Watkins T R, Green D J. Fracture behavior of chemically-vapor-depositedSiC-coated graphite: I, experimental results. J. Am. Ceram. Soc.,1993,76:3066-3072
    [13] http://www.cvdmaterials.com/sicprop2.htm
    [14]杨尚锋. SiC转子的制作与应用.有色冶炼,2001,2:39-42
    [15]戴学刚. SiC粉末的制备与应用进展.化工冶金,1996,17(2):181-185
    [16]戴长虹,水丽.碳化硅超细粉的制备新法.中国粉体技术,2001,7(1):10-11
    [17]潘顺龙,杨岩峰,张敬杰,等.水玻璃包覆炭黑直接制备超细SiC粉体.硅酸盐学报,2005,33(8):980-985
    [18]时利民,赵宏生,闫迎辉,等.类球形亚微米碳化硅粉体的制备.硅酸盐学报,2006,34(11):1397-1401
    [19] Lin Y J, Tsang C P. The effects of starting precursors on the carbothermalsynthesis of SiC powders. Ceram. Int.,2003,29(1):69-75
    [20] Lin Y J, Chuang C M. The effects of transition metals on carbothermal synthesisof β-SiC powder. Ceram. Int.,2007,33(5):779-784
    [21] Li K Z, Wei J, Li H J, et al. Silicon assistant carbothermal reduction for SiCpowders. J. Univ. Sci. Technol. Beijing,2008,15(4):484-488
    [22]王福,曹文斌,孙加林,等.碳化硅微粉的低温合成与制备.材料导报,2008,22(2):126-128
    [23]朱文振,郑治祥,姜坤,等.碳热还原法低温制备碳化硅微粉.硅酸盐通报,2012,31(1):46-49
    [24] Moshtaghioun B M, Poyato R, Cumbrera F L, et al. Rapid carbothermicsynthesis of silicon carbide nano powders by using microwave heating. J. Eur.Ceram. Soc.,2012,32(8):1787-1794
    [25]林文松.机械合金化过程中的金属相变.粉末冶金技术,2001,19(3):178-180
    [26]张玲洁.颗粒、晶须强韧化碳化硅陶瓷及在密封环中的应用[博士学位论文].杭州:浙江大学,2012:1-20
    [27]朱心昆,林秋实,陈铁力,等.机械合金化的研究及进展.粉末冶金技术,1999,17(4):291-296
    [28]杨晓云,黄震威,吴玉棍,等.球磨Si, C混合粉末合成纳米SiC的高分辨电镜观察.金属学报,2000,36(7):684-688
    [29]揭晓华,程秀,蔡莲淑,等.稀土对SiC纳米粉体机械合金化形成的影响.材料科学与工程学报,2004,22(1):55-58
    [30]王大明.溶胶-凝胶法制备碳化硅研究进展.无机盐工业,2009,41(2):6-9
    [31] Raman V, Bahl O P, Dhawan U. Synthesis of silicon carbide through the sol-gelprocess from different precursors. J. Mater. Sci.,1995,30(10):2686-2693
    [32] Martin H P, Ecke R, Muller E. Synthesis of nanocrystalline silicon carbidepowders by carbothermal reduction. J. Eur. Ceram. Soc.,1998,18(12):1737-1742
    [33]宋永才,李斌.由有机-无机混杂先驱体制备SiC纳米微粉.材料科学与工程学报,2004,22(3):341-343
    [34] Gao J M, Xiao H N, Du H Q. Sol-gel synthesis and pressureless sintering ofnanophase silicon carbide. J. Mater. Sci. Lett.,2002,21(31):1835-1837
    [35]]张宁,龙海波,刘昊,等.碳化硅纳米粉体研究进展.无机盐工业,2007,39(3):1-4
    [36]谢凯,张长瑞,陈朝辉,等.低分子聚碳硅烷气相热裂解制备SiC超微粉的研究.无机材料学报,1997,12(3):291-296
    [37]戴学刚,郑国梁,荣金龙,等.等离子体法制备碳化硅超细粉末研究.化工冶金,1996,17(4):310-315
    [38] Mitchell B S, Zhang H Y, Maljkovic N, et al. Formation of nanocrystallinesilicon carbide powder from chlorine-containing polycarbosilane precursors. J.Am. Ceram. Soc.,1999,82(8):2249-2251
    [39]蔡海荣,陈大英,李江涛.化学激励燃烧合成SiC超细粉末的工艺和机理研究.硅酸盐学报,2002,30(3):393-397
    [40]杨坤,杨筠,林志明,等.机械活化燃烧合成SiC粉体的研究.无机材料学报,2007,22(2):263-267
    [41]张利锋,燕青芝,沈卫平,等.燃烧法合成高纯β-SiC超细粉的工艺参数.硅酸盐学报,2007,35(7):817-821
    [42]苏晓磊,周万城,徐洁,等.燃烧法合成Al掺杂β-SiC粉体的工艺参数对其介电性能的影响.功能材料,2011,42(4):737-740
    [43]韩召,刘光华,李江涛.氮气催化燃烧合成纳米碳化硅粉体,材料热处理学报,2012,33(5):39-43
    [44] Yang Y, Lin Z M, Li J T. Synthesis of SiC by silicon and carbon combustion inair. J. Eur. Ceram. Soc.,2009,29(1):175-180
    [45] Liu Y Q, Zhang L F, Yan Q Z, et al. Preparation of β-SiC by combustionsynthesis in a large-scale reactor. Int. J. Min. Met. Mater.,2009,16(3):322-326
    [46] Li Z M, Zhou W C, Su X L, et al. Effect of boron doping on microwavedielectric properties of SiC powder synthesized by combustion synthesis. J.Alloys. Compd.,2011,509(3):973-976
    [47] Agathopoulos S. Combustion synthesis of ultra-fine SiC powders in lowpressure N2-atmosphere. Ceram. Int.,2012,38(5):4165-4171
    [48] Jin H B, Li J T, Cao M S, et al. Influence of mechanical activation oncombustion synthesis of fine silicon carbide (SiC) powder. Powder Technol.,2009,196(2):229-232
    [49] Mukasyan A S, Lin Y C, Rogachev A S, et al. Direct Combustion Synthesis ofSilicon Carbide Nanopowder from the Elements. J. Am. Ceram. Soc.,2013,96(1):111-117
    [50] Zhu W Z, Yan M. Synthesis of nanometer-sized SiC powders through chemicalvapour deposition: I. Effect of reaction temperature. Mater. Chem. Phys.,1998,53(3):262-266
    [51] Zhu W Z, Yan M. Synthesis of nanometer-sized SiC powders through chemicalvapour deposition II. Effect of C2H4/SiH4mole ratio. Mater. Chem. Phys.,1998,55(1):68-73
    [52] Zhu W Z, Yan M. Synthesis of nanometer-sized SiC powders through chemicalvapour deposition III. Effect of overall cell pressure. Mater. Chem. Phys.,1998,55(1):74-78
    [53]杨修春,韩高荣,杜丕一,等.化学气相反应法合成SiC超细粉的成核和生长过程的研究.硅酸盐学报,1997,25(3):332-338
    [54]俞肇元,贺春林,张滨,等.激光制备碳化硅纳米粉的研究.粉末冶金技术,2001,19(3):162-164
    [55] Padture N P. In situ-toughened silicon carbide. J. Am. Ceram. Soc.,1994,77(2):519-523
    [56] Cao J J, Moberlychan W J, Lutgard C, et al. In situ toughened silicon carbidewith Al-B-C addition. J. Am. Ceram. Soc.,1996,79(2):461-469
    [57]武安华,曹文斌,李江涛,等. SiC烧结的研究进展.粉末冶金工业,2002,12(3):28-32
    [58] MoberlyChan W J, Cao J J, De Jonghe L C. The roles of amorphous grainboundaries and the β–α transformation in toughening SiC. Acta. Mater.,1998,46(5):1625-1635
    [59] Ray D A, Kaur S, Cutler R A. Effect of additives on the activation energy forsintering of silicon carbide. J. Am. Ceram. Soc.,2008,91(4):1135-1140
    [60]肖汉宁.碳化硅超细粉末的制备及热压烧结机理和强化增韧的研究[湖南大学博士学位论文].长沙:湖南大学化学化工系,1991:1-69
    [61] Omori M, Takei H. Method for preparing sintered shapes of silicon carbide[P].U. S. Pat:4564490,1986
    [62] Cutler R A, Jackson T B. In: proc.3rd int. symp. ceramic materials forengines(Tennery K. J. Ed.). Westerville, OH: Am. Ceram. Soc. Inc.,1988,309:3-8
    [63] Mulla M A, Kratic V D. Low temperature pressureless sintering of β-siliconcarbide with aluminum oxide and yttrium oxide additions. J. Am. Ceram. Soc.,1991,70(3):439-443
    [64] Jiménez A H, Ortiz A L, Bajo F S, et al. Determination of lattice parameters ofpolytypes in liquid-phase-sintered SiC using the rietveld method. J. Am. Ceram.Soc.,2004,87(5):943-949
    [65] Magnani G, Beaulardi L, Pilotti L. Properties of liquid phase pressurelesssintered silicon carbide obtained without sintering bed. J. Eur. Ceram. Soc.,2005,25:1619-1627
    [66] Rodríguez M C, Mu oz A, Rodríguez A D. Correlation between microstructureand creep behavior in liquid-phase-sintered α-silicon carbide. J. Am. Ceram.Soc.,2006,89(3):960-967
    [67] Can A, Herrmann M, Mclachlan D S, et al. Densifcation of liquid phasesintered silicon carbide. J. Eur. Ceram. Soc.,2006,26:1707-1713
    [68] Herrmann M, Neher R, Brandt K, et al. Micro-segregations in liquid phasesintered silicon carbide ceramics. J. Eur. Ceram. Soc.,2010,30:1495-1501
    [69] Guo X Z, Yang H, Zhang L J, et al. Sintering behavior, microstructure andmechanical properties of silicon carbide ceramics containing different nano-TiNadditive. Ceram. Int.,2010,36:161-165
    [70]毛小东,沈卫平,白玲.液相烧结SiC陶瓷的研究进展.材料导报,2008,22:194-197
    [71]周伟,蔡智慧,曾军,等.烧结助剂对SiC液相烧结行为的影响.厦门大学学报(自然科学版),2006,45(4):530-534
    [72] Grande T, Sommerset H, Hagen E, et a1. Effect of weight loss onliquid-phase-sintered silicon carbide. J. Am. Ceram. Soc.,1997,80(4):1047-1052
    [73]陈宇红,吴澜尔,江涌,等.不同AlN含量对液相烧结SiC陶瓷的影响.中国陶瓷,2009,45(7):14-16
    [74] Samanta A K, Dhargupta K K, Ghatak S. Decomposition reactions in theSiC-Al-Y-O system during gas pressure sintering. Ceram. Int.,2001,27:123-133
    [75]蔡智慧,周伟,曾军,等.烧结工艺对SiC-Y2O3-A2O3液相烧结的影响.厦门大学学报(自然科学版),2006,45(4):525-529
    [76]黄政仁,赵诚宰,谭寿洪,等.原位增韧SiC-YAG复相陶瓷的致密化.无机材料学报,1999,14(5):726-732
    [77]陈宇红,韩凤兰,吴澜尔.液相烧结碳化硅陶瓷.矿产综合利用,2003,(2):33-36
    [78] Ortiz A L, Bhatia T, Padture N P, et al. Microstructural evolution inliquid-phase-sintered SiC: part III, effect of nitrogen-gas sintering atmosphere.J. Am. Ceram. Soc.,2002,85(7):1835-1840
    [79]吴澜尔,陈宇红,江涌,等. AlN-Re2O3液相烧结碳化硅.硅酸盐学报,2008,36(5):593-596
    [80]陈宇红,吴澜尔,韩凤兰,等.水基喷雾液相烧结SiC陶瓷造粒粉制备工艺.中国粉体技术,2010,16(2):42-44
    [81]陈忠明,谭寿洪,江东亮.高性能SiC-AlN复相陶瓷.无机材料学报,1997,12(5):763-767
    [82] Biswas K, Schneider J, Rixecker G, et al. Comparative bending creep behaviourof silicon carbide sintered with oxynitride additives. Scripta Mater.,2005,53:591-596
    [83] Weidenmann K A, Rixecker G, Aldinger F. Liquid phase sintered silicon carbide(LPS-SiC) ceramics having remarkably high oxidation resistance in wet air. J.Eur. Ceram. Soc.,2006,26:2453-2457
    [84] Magnani G, Brillante A, Bilotti I, et al. Effects of oxidation on surface stressesand mechanical properties of liquid phase pressureless-sintered SiC-AlN-Y2O3ceramics. Mater. Sci. Eng. A,2008,486(1-2):381-388
    [85] Magnani G, Beaulardi L, Brentari A, et al. Crack healing in liquid-phase-pressureless-sintered silicon carbide-aluminum nitride composites. J. Eur.Ceram. Soc.,2010,30:769-773
    [86] Rojas F R, Ortiz A L, Guiberteau F, et al. Oxidation behaviour of pressurelessliquid-phase-sintered α-SiC with additions of5Al2O3+3RE2O3(RE=La, Nd, Y,Er, Tm, or Yb), J. Eur. Ceram. Soc.,2010,30(15):3209-3217
    [87] Kim Y W, Lim K Y, Kim K J. Electrical resistivity of silicon carbide ceramicssintered with1wt%aluminum nitride and rare earth oxide. J. Eur. Ceram. Soc.,2012,32(16):4427-4434
    [88] Mandal S, Dhargupta K K, Ghatak S. Gas pressure sintering of SiC-AlNcomposites in nitrogen atmosphere. Ceram. Int.,2002,28(2):145-151
    [89] Magnani G, Beaulardi L. Long term oxidation behaviour of liquid phasepressureless sintered SiC-AlN ceramics obtained without powder bed. J. Eur.Ceram. Soc.,2006,26(15):3407-3413
    [90] Yang Y, Guo Q G, He X D, et al. Effect of nano-AlN content on themicrostructure and mechanical properties of SiC foam prepared bysiliconization of carbon foam. J. Eur. Ceram. Soc.,2010,30(1):113-118
    [91] Duan X M, Jia D C, Yuan B, et al. Effect of solid contents on the mechanicalproperties of SiC-10wt.%AlN ceramic composites prepared by gelcasting, J.Alloys Compd.,2013,546:275-279
    [92]徐晓虹,赵芳,吴建锋,等.太阳能热发电用Al2O3/SiC复相陶瓷的研究.武汉理工大学学报,2009,31(13):8-11
    [93]徐晓虹,焦国豪,吴建锋,等.注凝成型工艺制备Al2O3-ZrO2(3Y)-SiC复相陶瓷及其性能.硅酸盐学报,2010,38(10):1953-1958
    [94]马战红,任凤章.烧结温度对碳化硅-氧化铝陶瓷过滤器性能的影响.材料热处理学报,2013,34(2):19-22
    [95] Sharif M A, Sueyoshi H. Preparation and properties of C/SiC/ZrO2porouscomposites by hot isostatic pressing the pyrolyzed preforms. Ceram. Int.,2009,35(1):349-358
    [96] Zhao Y, Wang L J, Zhang G J, et al. Effect of holding time and pressure onproperties of ZrB2–SiC composite fabricated by the spark plasma sinteringreactive synthesis method. Int. J. Refract. Met. Hard Mater.,2009,27(1):177-180
    [97] Xie J, Li K Z, Li H J, et al. Ablation behavior and mechanism of C/C–ZrC–SiCcomposites under an oxyacetylene torch at3000°C. Ceram. Int.,2013,39(4):4171-4178
    [98]左凤娟,成来飞,张立同. ZrB2-SiC多层陶瓷的抗氧化性.硅酸盐学报,2012,40(8):1174-1178
    [99]王生学,李伟,陈朝辉.先驱体转化制备ZrO2改性SiC陶瓷的氧化行为研究.材料工程,2012,(5):45-50
    [100]周海军,张翔宇,高乐,等. ZrB2-SiC超高温陶瓷涂层的抗烧蚀性能研究.无机材料学报,2013,28(3):256-260
    [101] Bamford M, Florian M, Vignoles G L, et al. Global and local characterization ofthe thermal diffusivities of SiCf/SiC composites with infrared thermographyand flash method. Compos. Sci. Technol.,2009,69(7-8):1131-1141
    [102] Toyoshima K, Hino T, Hirohata Y, et al. Crack propagation analysis of SiCf/SiCcomposites by gas permeability measurement. J. Eur. Ceram. Soc.,2011,31(6):1141-1144
    [103] He X B, Yang H. Preparation of SiC fiber-reinforced SiC composites. J. Mater.Process. Tech.,2005,159(1):135-138
    [104] Ding D H, Luo F, Zhou W C. Effects of thermal oxidation on electromagneticinterference shielding properties of SiCf/SiC composites. Ceram. Int.,2013,39(4):4281-4286
    [105]罗绍华,毕晓露,武聪,等. Y2O3对反应烧结Si3N4/SiC复相陶瓷组织和性能的影响.材料热处理学报,2012,33(7):13-18
    [106] Gain A K, Han J K, Jang H D, et al. Fabrication of continuously porousSiC-Si3N4composite using SiC powder by extrusion process. J. Eur. Ceram.Soc.,2006,26(13):2467-2473
    [107] Guo T, Jin H B, Lin Y H. Preparation of SiC/Si3N4composites with rod-likemicrostructure by combustion synthesis. Powder Technol.,2012,224:410-414
    [108]森维,徐宝强,杨斌,等.碳化钛粉末制备方法的研究进展.轻金属,2010,(12):44-48
    [109]刘平安,曾令可,税安泽,等.超细碳化钛粉体的制备及应用研究进展.兵器材料科学与工程,2006,29(5):82-85
    [110]董占祥,孔祥鹏,王俊文.超细TiC粉体的制备方法及应用研究进展.山西化工,2011,31(3):19-22
    [111]宋桂明,王玉金,周玉,等. TiC和ZrC颗粒增强钨基复合材料.固体火箭技术,1998,21(4):54-59
    [112]王海涛,黄继华,朱警雷.反应等离子喷涂TiC/Fe-Ni复合涂层及其耐冲蚀性能.复合材料学报,2009,26(1):74-79
    [113]张勇,林均品,陈国良,等.碳化钛泡沫陶瓷的筋内组织.材料科学与工艺,1996,4(2):62-64
    [114]林均品,张勇,陈国良.制备工艺对TiC泡沫陶瓷结构及性能影响.粉末冶金技术,2000,18(1):12-15
    [115]高勇,徐兴祥,杨振明,等. TiC/Ti3SiC2泡沫陶瓷的制备和性能.材料研究学报,2011,25(5):539-544
    [116] Razavi M, Rahimipour M R, Kaboli R. Synthesis of TiC nanocomposite powderfrom impure TiO2and carbon black by mechanically activated sintering. J.Alloys Compd.,2008,460(1-2):694-698
    [117] Ali M, Basu P. Mechanochemical synthesis of nano-structured TiC from TiO2powders. J. Alloys Compd.,2010,500(2):220-223
    [118] Cetinkaya S, Eroglu S. Chemical vapor deposition of carbon on particulate TiO2from CH4and subsequent carbothermal reduction for the synthesis ofnanocrystalline TiC powders. J. Eur. Ceram. Soc.,2011,31(5):869-876
    [119]陈怡元,邹正光,龙飞.碳源对自蔓延高温合成TiC粉末的影响.桂林工学院学报,2006,26(4):534-537
    [120] Yin C Q, Zou Z G, Li X M, et al. Formation of ultrafine titanium carbide powderby combustion synthesis. Rare Metal Mat. Eng.,2011,40(S2):80-83
    [121]李奎,潘复生,汤爱涛. TiC、TiN、Ti(C、N)粉末制备技术的现状及发展.重庆大学学报,2002,25(6):135-138
    [122]汪华林,李海林,吴东棣.自蔓延高温合成碳化钛粉末.稀有金属材料与工程,1995,24(2):8-17
    [123]庄健,刘勇兵,曹占义,等.磨球直径对机械合金化合成TiC反应过程的影响.吉林大学学报(工学版),2009,39(1):61-65
    [124]张亚萍,鲁玉祥,郭进.球磨环境对机械合金化合成纳米TiC的影响.石油大学学报(自然科学版),2005,29(2):136-140
    [125] Ghosh B, Pradhan S K. Microstructure characterization of nanocrystalline TiCsynthesized by mechanical alloying. Mater. Chem. Phys.,2010,120(2-3):537-545
    [126] Zhu X K, Zhao K Y, Cheng B C, et al. Synthesis of nanocrystalline TiC powderby mechanical alloying. Mater. Sci. Eng. C,2001,16(1-2):103-105
    [127] Bavbande D V, Mishra R, Juneja J M. Studies on the kinetics of synthesis of TiCby calciothermic reduction of TiO2in presence of carbon. J. Therm. Anal.Calorim.,2004,78(3):775-780
    [128] Razavi M, Rahimipour M R, Rajabi-Zamani A H. Synthesis of nanocrystallineTiC powder from impure Ti chips via mechanical alloying. J. Alloys Compd.,2007,436(1-2):142-145
    [129] Li B, Cui L S, Zheng Y J, et al. Synthesis of TiC Powder by MechanicalAlloying of Titanium and Asphalt. Chinese J. Chem. Eng.,2007,15(1):138-140
    [130] Rahaei M B, Yazdanirad R, Kazemzadeh A, et al. Mechanochemical synthesis ofnano TiC powder by mechanical milling of titanium and graphite powders.Powder Technol.,2012,217:369-376
    [131]郭海明,舒武炳,乔生儒,等.化学气相沉积碳化钛的热力学和动力学研究.材料工程,1998,(10):25-29
    [132] Pan J S, Cao R X, Yuan Y W. A new approach to the mass production oftitanium carbide, nitride and carbonitride whiskers by spouted bed chemicalvapor deposition. Mater. Lett.,2006,60(5):626-629
    [133] Tong L, Reddy R G. Synthesis of titanium carbide nano-powders by thermalplasma. Scripta Mater.,2005,52:1253-1258
    [134] Mohapatra S, Mishra D K, Singh S K. Microscopic and spectroscopic analysesof TiC powder synthesized by thermal plasma technique. Powder Technol.,2013,237:41-45
    [135] Preiss H, Berger L M, Schultze D. Studies on the carbothermal preparation oftitanium carbide from different gel precursors. J. Eur. Ceram. Soc.,1999,19(2):195-206
    [136] Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from acomposite of TiO2nanoparticles/methyl cellulose by carbothermal reduction.Mater. Res. Bull.,2001,36(13-14):2263-2275
    [137] Chandra N, Sharma M, Singh D K, et al. Synthesis of nano-TiC powder usingtitanium gel precursor and carbon particles. Mater. Lett.,2009,63(12):1051-1053
    [138] Lee D W, Alexandrovskii S, Kim B K. Mg-thermal reduction of TiCl4+CxCl4solution for producing ultrafine titanium carbide. Mater. Chem. Phys.,2004,88(1):23-26
    [139] Ma J H, Wu M N, Du Y H, et al. Synthesis of nanocrystalline titanium carbidewith a new convenient route at low temperature and its thermal stability. Mater.Sci. Eng. B,2008,153(1-3):96-99
    [140] Peelamedu R D, Fleming M, Agrawal D K, et al. Preparation of titaniumnitride:microwave-induced carbothermal reaction of titanium dioxide. J. Am.Ceram. Soc.,2002,85(1):117-122
    [141] Zhang H J, Li F L, Jia Q L, et al. Preparation of titanium carbide powders bysol-gel and microwave carbothermal reduction methods at low temperature. J.Sol-Gel. Sci. Technol.,2008,46(2):217-222.
    [142]刘明泉,刘阳,曾令可.微波合成碳化钛粉体的热分析.陶瓷学报,2010,31(4):565-567.
    [143] Zhang X H, Hu P, Han J C, et al. Ablation behavior of ZrB2–SiC ultra hightemperature ceramics under simulated atmospheric re-entry conditions. Compos.Sci. Technol.,2008,68(7-8):1718–1726.
    [144]颜建辉,张厚安,李益民. TiC-TiB2增强MoSi2复合材料的力学性能及抗氧化行为.中国有色金属学报,2009,19(8):1424-1430
    [145] Endo H, Ueki M, Kubo H. Microstructure and mechanical properties ofhot-pressed SiC-TiC composites. J. Mater. Sci.,1991,26:3769-3774
    [146] An H G, Kim Y W, Lee J G. Effect of initial α-phase content of SiC onmicrostructure and mechanical properties of SiC-TiC composites. J. Eur. Ceram.Soc.,2001,21:93-98
    [147] Cho K W, Choi H J, Lee J G, et al. Microstructure and fracture toughness ofin-situ toughened SiC-TiC composites. J. Mater. Sci. Lett.,1998,17:1081-1084
    [148]佘继红,江东亮,谭寿洪,等. SiC-TiC复相陶瓷的热等静压改性.粉末冶金技术,1993,11(1):3-7
    [149]穆柏春. TiC颗粒增韧SiC基复合材料及其冷处理研究.复合材料学报,1997,14(4):38-41
    [150]高濂,洪金生.放电等离子体超快速烧结Al2O3力学性能和显微结构研究.无机材料学报,1998,13(6):904-907
    [151] Luo Y M, Li S Q, Pan W, et al. Fabrication and mechanical evaluation ofSiC-TiC nanocomposites by SPS. Mater. Lett.,2003,58:150-153
    [152] Wang L J, Jiang W, Chen L D, et al. Rapid reactive synthesis and sintering ofsubmicron TiC/SiC composites through spark plasma sintering. J. Am. Ceram.Soc.,2004,87(6):1157-1160
    [153] Chen J, Li W J, Jiang W. Characterization of sintered TiC-SiC composites.Ceram. Int.,2009,35:3125-3129
    [154] Shimada S, Onuma A. Reaction of TiC with SiCl4vapor with formation ofSiC-TiC composites. J. Eur. Ceram. Soc.,2009,29:2403-2409
    [155] Cabrero J, Audubert F, Pailler R. Fabrication and characterization of sinteredTiC-SiC composites. J. Eur. Ceram. Soc.,2011,31:313-320
    [156] Kim Y W, Lee S G, Lee Y I. Pressureless sintering of SiC-TiC composites withimproved fracture toughness. J. Mater. Sci.,2000,35:5569-5574
    [157] Touanen M, Teyssandier F, Ducarroir M, et al. SiC-TiC multiphased materialsobtained by CVD. Mater. Sci. Eng. A,1991,147(2):239-247
    [158]赵宝荣,王建军, Sasaki M,等. SiC-TiC陶瓷韧化机制探讨.兵器材料科学与工程,1996,19(1):3-9
    [159] Lin T T, Chang J F, Hon M H. The growth and characteristics of CVDSiC-TiC in-situ composites. Ceram. In.,1998,24:265-272
    [160]向新,秦岩. TiB2及其复合材料的研究进展.陶瓷学报,1999,20(2)112-117
    [161]马爱琼,王臻.硼化钛及其单相陶瓷的制备.陶瓷,2005,(5):10-14
    [162] Munro R G. Material properties of titanium diboride. Journal of Research of theNational Institute of Standards and Technology,2000,105(5):709-720
    [163]向军辉,肖汉宁. TiB2材料的研究现状及其应用.陶瓷工程,1996,29(4):40-44
    [164]李庆余,赖延清,李劼.应用新一代常温固化TiB2阴极涂层技术提高我国预焙铝电解槽寿命.轻金属,2004,10:34-37
    [165] Li J L, Li F, Hu K A, et al. TiB2/TiC nanocomposite powder fabricated via highenergy ball milling. J. Eur. Ceram. Soc.,2001,21(16):2829-2833
    [166]王业亮,傅正义,王皓,等. TiB2-TiC复合粉的自蔓延高温还原合成.复合材料学报,2003,20(1):16-21
    [167] Wang H H, Wu W Y, Sun S C, et al. Characterization of the structure ofTiB2/TiC nanocomposite powders fabricated by high-energy ball milling. Ceram.Int.,2011,37(7):2689-2693
    [168]何凤鸣,许海飞,郭凯,等.共沉淀法原位合成TiB2/B4C陶瓷复合粉体.东北大学学报(自然科学版),2006,27(12):1339-1342
    [169] Pei L Z, Xiao H N. B4C/TiB2composite powders prepared by carbothermalreduction method. J. Mater. Process. Tech.,2009,209(4):2122-2127
    [170]于志强,杨振国.燃烧合成TiB2-Al2O3陶瓷复合粉体及其表征.稀有金属材料与工程,2005,34(11):1818-1822
    [171] Khaghani-Dehaghani M A, Ebrahimi-Kahrizsangi R, Setoudeh N, et al.Mechanochemical synthesis of Al2O3-TiB2nanocomposite powder fromAl-TiO2-H3BO3mixture. Int. J. Refract. Met. Hard Mater.,2011,29(2):244-249
    [172] Mohammad-Sharifi E, Karimzadeh F, Enayati M H. Preparation of Al2O3-TiB2nanocomposite powder by mechanochemical reaction between Al, B2O3and Ti.Adv. Powder Technol.,2011,22(4):526-531
    [173] Li J L, Hu K A, Zhou Y. Formation of TiB2/TiN nanocomposite powder by highenergy ball milling and subsequent heat treatment. Mater. Sci. Eng. A,2002,326(2):270-275
    [174] Shim J H, Byun J S, Cho Y W. Mechanochemical synthesis of nanocrystallineTiN/TiB2composite powder. Scripta Mater.,2002,47(7):493-497
    [175] Camurlu H E, Maglia F. Self-propagating high-temperature synthesis of ZrB2orTiB2reinforced Ni-Al composite powder. J. Alloys Compd.,2009,478:721-725
    [176] Saito T, Fukuda T, Maeda H, et al. Synthesis of ultrafine titanium diborideparticles by rapid carbothermal reduction in a particulate transport reactor. J.Mater. Sci.,1997,32:3933-3938
    [177] Kang S H, Kim D J. Synthesis of nano-titanium diboride powders bycarbothermal reduction. J. Eur. Ceram. Soc.,2007,27:715-718
    [178]马爱琼,蒋明学. TiO2-B2O3-C系统反应热力学初步探讨.硅酸盐通报,2008,27(5):957-962
    [179]马爱琼,蒋明学.碳热还原法合成TiB2的热力学分析与研究.耐火材料,2009,43(2):96-99
    [180]马爱琼,王臻,蒋明学.碳热还原法合成TiB2的反应动力学研究.轻金属,2010,(5):60-64
    [181]马爱琼,蒋明学.碳热还原TiO2与B2O3合成硼化钛粉体.硅酸盐通报,2012,31(6):1571-1575
    [182] Welham N J. Formation of TiB2from rutile by room temperature ball milling.Miner. Eng.,1999,12(10):1213-1224
    [183] Ricceri R, Matteazzi P. A fast and low-cost room temperature process for TiB2formation by mechanosynthesis. Mater. Sci. Eng. A,2004,379:341-346
    [184] Calka A, Oleszak D. Synthesis of TiB2by electric discharge assisted mechanicalmilling. J. Alloys Compd.,2007,440:346-348
    [185] Bilgi E, Camurlu H E, Akgün B, et al. Formation of TiB2by volume combustionand mechanochemical process. Mater. Res. Bull.,2008,43:873-881
    [186] Kim J W, Shim J H, Ahn J P, et al. Mechanochemical synthesis andcharacterization of TiB2and VB2nanopowders. Mater. Lett.,2008,62:2461-2464
    [187]傅正义,袁润章, Munir Z A. TiB2的SHS合成过程理论分析.硅酸盐学报,1993,21(6):541-547
    [188]傅正义,袁润章, Munir Z A. TiB2的自蔓延高温合成过程研究.硅酸盐学报,1995,23(1):27-32
    [189]王为民,傅正义,金明姬,等.自蔓延高温还原合成法制备TiB2陶瓷粉末.硅酸盐学报,1996,24(1):53-57
    [190]张廷安,杨欢,牛丽萍,等.镁热还原自蔓延高温合成硼化钛微粉的动力学.中国有色金属学报,2001,11(4):567-570
    [191] Radev D D, Marinov M. Properties of titanium and zirconium diboridesobtained by self-propagated high-temperature synthesis. J. Alloys Compd.,1996,244(1-2):48-51
    [192] Radev D D, Klissurski D. Mechanochemical synthesis and SHS of diborides oftitanium and zirconium. J. Mater. Synth. Process.,2001,9(3):131-136
    [193] Vadchenko S G, Filimonov I A. Combustion modes of a strongly diluted Ti+2B system. Combust., Explo. Shock+,2003,39(2):159-166
    [194] Ba a L, Stelzer N. Adapting of sol-gel process for preparation of TiB2powderfrom low-cost precursors. J. Eur. Ceram. Soc.,2008,28:907-911
    [195] Chen L Y, Gu Y L, Shi L, et al. A reduction-boronation route to nanocrystallinetitanium diboride. Solid State Commun.,2004,130(3-4):231-233
    [196] Gu Y L, Qian Y T, Chen L Y, et al. A mild solvothermal route tonanocrystalline titanium diboride. J. Alloys Compd.,2003,352(1-2):325-327
    [197] Shi L, Gu Y L, Chen L Y, et al. A convenient solid-state reaction route tonanocrystalline TiB2. Inorg. Chem. Commun.,2004,7(2):192-194
    [198] Ferber M K, Becher P F, Finch C B. Effect of microstructure on the propertiesof TiB2ceramics. J. Am. Ceram. Soc.,1983,66(1):C-1-C4
    [199] Zhang G J, Yue X M, Jin Z Z, et al. In-situ synthesized TiB2toughened SiC. J.Eur. Ceram. Soc.,1996,16:409-412
    [200]张国军,何余,金宗哲.原位生成TiB2颗粒增韧SiC基复相陶瓷研究.硅酸盐学报,1995,23(2):134-140
    [201] Zhang G J, Jin Z Z, Yue X M. Reaction synthesis of TiB2-SiC composites fromTiH2-Si-B4C. Mater. Lett.,1995,25:97-100
    [202] Zhang G J, Jin Z Z, Yue X M. Effects of Ni addition on mechanical properties ofTiB2/SiC composites prepared by reactive hot pressing (RHP). J. Mater. Sci.,1997,32:2093-2097
    [203] Cho K S, Kim Y W, Choi H J, et al. SiC-TiC and SiC-TiB2composites densifiedby liquid-phase sintering. J. Mater. Sci.,1996,31:6223-6228
    [204] Cho K S, Choi H J, Lee J G, et al. Effects of additive amount onmicrostructure and fracture toughness of SiC-TiB2composites. Ceram.Int.,1998,24:299-305
    [205] Cho K S, Choi H J, Lee J G, et al. In situ enhancement of toughness of SiC-TiB2composites. J. Mater. Sci.,1998,33:211-214
    [206] Ordan’yan S S, Vikhman S V, Prilutskii é V. Investigation of the structure andproperties of materials in the SiC-TiB2system. Powder Metall. Met. C+,2002,41:42-46
    [207]周松青,肖汉宁,李贵毓.原位合成碳化硅-硼化钛复相陶瓷的高温摩擦性能及其磨损机理.硅酸盐学报,2006,34(2):152-157
    [208] Ohya Y, Hoffmann M J, Petzow G. Sintering of in-situ synthesized SiC-TiB2composites with improved fracture toughness. J. Am. Ceram. Soc.,1992,75(9):2479-2483
    [209] Kuo D H, Kriven W M. Mechanical behavior and microstructure of SiC andSiC/TiB2ceramics. J. Eur. Ceram. Soc.,1998,18:51-57
    [210] Blanc C, Thevenot F, Goeuriot D. Microstructural and mechanicalcharacterization of SiC-submicron TiB2composites. J. Eur. Ceram. Soc.,1999,19:561-569
    [211] Blanc C, Thevenot F, Treheux D. Wear resistance of αSiC-TiB2compositesprepared by reactive sintering. J. Eur. Ceram. Soc.,1999,19(5):571-579
    [212] Bucevac D, Boskovic S, Matovic B, et al. Toughening of SiC matrix with in-situcreated TiB2particles. Ceram. Int.,2010,36:2181-2188
    [213] Bucevac D, Matovic B, Boskovic S, et al. Pressureless sintering of internallysynthesized SiC-TiB2composites with improved fracture strength. J. AlloysCompd.,2011,509:990-996
    [214] Bucevac D, Matovic B, Babic B, et al. Effect of post-sintering heat treatment onmechanical properties and microstructure of SiC-TiB2composites. Mater. Sci.Eng. A,2011:528:2034-2041
    [215]凌兴珠,徐振民.原材料特性对SiC-TiB2复合陶瓷性能的影响.中南工业大学学报,1998,29(2):149-152
    [216]陈宇红,杨和平,贾雪荭,等.碳化硅-二硼化钛复合材料烧结工艺研究.陶瓷学报,2010,3(1):29-31
    [217]王伟,连景宝,茹红强. TiB2/SiC陶瓷复合材料制备工艺的研究.材料与冶金学报,2011,10(1):23-29
    [218]王伟,连景宝,岳新艳,等.原位合成TiB2颗粒增韧SiC的显微组织与断裂韧性.东北大学学报(自然科学版),2011,32(11):1578-1582
    [219] Zhu D G, Liu S K, Yin X D, et al. In-situ HIP Synthesis of TiB2/SiC CeramicComposites. J. Mater. Process. Tech.,1999,89-90:457-461
    [220] Tani T. Processing, Microstructure and Properties of in-situ Reinforced SiCMatrix Composites. Compos. Part. A,1999,30(4):419-423
    [221]冉松林,汪德文, Huang S G,等.以MH2(M=Ti, Zr)为原料反应烧结制备MB2-SiC复相陶瓷.人工晶体学报,2013,42(4):732-736
    [222] Chase Jr M W, NIST-JANAF Thermochemical Tables Fourth Edition. J. Phys.Chem. Ref. Data, Monograph9,1998
    [223] Gadzira M, Gnesin G, Mykhaylyk O, et al. Synthesis and structural peculiaritiesof nonstoichiometric β-SiC. Diamond Related Mater.,1998,7(10):1446-1470
    [224]翟蕊,杨光义,吴仁兵,等. FeSi熔体中SiC晶须的VLS生长.复合材料学报,2007,24(5):97-102
    [225] Sharma N K, Williams W S, Zangvil A. Formation and structure of siliconcarbide whiskers from rice hulls. J. Am. Ceram. Soc.,1984,67(11):715-720
    [226] Biernacki J J, Wotzak G P. Stoichiometry of the C+SiO2reaction. J. Am.Ceram. Soc.,1989,72(1):122-129
    [227] Hassine N A, Binner J G P, Cross T E. Synthesis of refractory metal carbidepowders via microwave carbothermal reduction. Int. J. Refract. Met. HardMater.,1995,13(6):353-358
    [228] Raman V, Bhatia G, Bhardwaj S, et al. Synthesis of silicon carbide nanofibersby sol-gel and polymer blend techniques. J. Mater. Sci.,2005,40(6):1521-1527
    [229] Silva P C, Figueiredo J L. Production of SiC and Si3N4whiskers in C+SiO2solid mixtures. Mater. Chem. Phys.,2001,72(3):326-331
    [230] Mestral F.de, Thevenot F. Ceramic composites:TiB2-TiC-SiC PartⅠPropertiesand microstructures in the ternary system. J. Mater. Sci.,1991,26:5547-5560
    [231] Mestral F.de, Thevenot F. Ceramic composites: TiB2-TiC-SiC PartⅡOptimization of the composite20%TiB2-55%(mol%)TiC-25%SiC. J. Mater.Sci.,1991,26:5561-5565
    [232] Zhang G J, Yue X M, Jin Z Z. Preparation and microstructure of TiB2-TiC-SiCplatelet-reinforced ceramics by reactive hot-pressing. J. Eur. Ceram. Soc.,1996,16:1145-1148
    [233]朱德贵,尹显东,肖传春.原位合成TiB2-TiC-SiC陶瓷复合材料.西南交通大学学报,1999,34(1):71-75
    [234] Guo W M, Zhang G J. Reaction processes and characterization of ZrB2powderprepared by boro/carbothermal reduction of ZrO2in vacuum. J. Am. Ceram.Soc.,2009,92(1):264-267
    [235] Huang F P, Li H J, Li K Z, et al. Prefabrication of SiC whiskers throughinduction of carbon fiber. Trans. Nonferrous. Met. Soc. China.,2006,16:483-487
    [236] Peng Y Y, Meng Z Y, Zhong C, et al. Growth of5H-type silicon carbidewhisker. Mater. Res. Bull.,2001,36:1659-1663
    [237] Fahrenholtz W G. The ZrB2volatility diagram. J. Am. Ceram. Soc.,2005,88(12):3509-3512
    [238]谭寿洪,陈忠明,江东亮.液相烧结SiC陶瓷.硅酸盐学报,1998,26(2):191-197
    [239] Nader M, Aldinger F, Hoffmann M J. Influence of the α/β-SiC phasetransformation on microstructural development and mechanical properties ofliquid phase sintered silicon carbide. J. Mater. Sci.,1999,34:1197-1204
    [240] Biswas K. Liquid phase sintering of SiC ceramics with rare earth sesquioxides
    [D]. Stuttgart: University of Stuttgart,2002
    [241] Huang Z K, Rosenflanz A, Chen I W. Pressureless sintering of Si3N4ceramicusing AlN and rare earth oxides. J. Am. Ceram. Soc.,1997,80(5):1256-1363
    [242] Ye H H, Georg R, Siglinde H, et al. Compositional identification of theintergranular phase in liquid phase sintered SiC. J. Eur. Ceramic. Soc.,2002,22:2379-2387
    [243] Falk L K L. Imaging and mecroanalysis of liquid phase sintered silicon-basedceramic microstructures. J. Mater. Sci.,2004,39:6655-6673
    [244] Keiichiro S, Mikio S. Microstructure and mechanical properties of liquid-phase-sintered SiC with AlN and Y2O3additions. Ceram. Int.,2005,31:749-755
    [245] Strecker K, Hoffmann M J. Effect of AlN-content on the microstructure andfracture toughness of hot-pressed and heat-treated LPS-SiC ceramics. J. Eur.Ceramic. Soc.,2005,25(6):801-807
    [246] Biswas K, Rixecker G, Wiedmann I, et al. Liquid phase sintering andmicrostructure-property relationships of silicon carbide ceramics withoxynitride additives. Mater. Chem. Phys.,2001,67:180-191
    [247]胡志强.无机材料科学基础教程.北京:化学工业出版社,2003:242-255
    [248] Jiang D L, Wang J H, Li Y L, et al. Studies on the strengthening of siliconcarbide-based multiphase ceramics I: The SiC-TiC system. Mater. Sci. Eng. A,1989,109:401-406
    [249] Zangvil A, Ruh R. Phase relationships in the silicon carbide-aluminum nitridesystem. J. Am. Ceram. Soc.,1988,71(10):884-890
    [250] Kim Y W, Mitomo M, Nishimura T. Heat-resistant silicon carbide withaluminum nitride and erbium oxide. J. Am. Ceram. Soc.,2001,84(9):2060-2064
    [251]何新波,张新明,张长瑞,等.先驱体转化—热压烧结法制备Cf/SiC复合材料.宇航材料工艺,1999,(6):16-21
    [252]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,2001:213-255
    [253]蒋文忠.炭素工艺学.北京:冶金工业出版社,2009:450-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700