用户名: 密码: 验证码:
新型复合光催化剂的构筑、微结构调控及其降解有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着人们对环境问题的日益重视,环境污染处理新技术得到快速发展。其中,光催化技术具有能耗低、无污染等优点受到了广泛关注。Ti02半导体因为具有催化活性高、化学和光稳定性好、安全无毒等优点而被作为一种常用的光催化剂。但是,Ti02较宽的禁带宽度使其只能利用太阳光中少部分的紫外光,且存在难以回收利用问题,限制了其在实际中的应用。因此,有必要寻求新型可见光响应的光催化材料并提高其可回收利用性能。Bi2WO6半导体具有高活性、可见光响应、无毒等特点,近年来备受人们关注。但Bi2WO6催化剂仍然存在光生电子空穴容易复合和吸附性不足问题。为解决此问题,本论文主要进行了金属氧化物或粘土复合Bi2WO6研究,并对其可见光催化降解有机污染物进行研究。
     本文首先采用简单易行的水热法成功合成具有分等级结构CaWO4/Bi2WO6复合光催化剂。通过XRD、TEM、SEM、UV-vis DRS、BET、XPS等多种现代表征手段,分析CaWO4/Bi2WO6复合光催化剂的微结构、相学组成与表面特征之间的构效关系。探讨CaWO4/Bi2WO6复合光催化剂对有机污染物罗丹明B(RhB)和对硝基苯酚(4-NP)的光催化降解活性。与纯的Bi2WO6比较,复合光催化剂对RhB和4-NP的光催化活性分别提高4.5倍和1.8倍。另外,复合光催化剂在4次光降解循环后仍能保持良好的活性。利用催化剂能带结构的估算,揭示复合光催化材料光催化活性增强的原因是电子空穴对的有效分离。
     为了进一步提高Bi2WO6催化剂的光催化活性,本文通过水热法成功合成可见光响应的具有分等级结构α-Fe2O3/Bi2WO6复合光催化剂。采用XRD、SEM、 HRTEM、BET、XPS、UV-vis DRS等多种现代表征手段,分析α-Fe2O3/Bi2WO6复合光催化剂的微结构、相学组成和光吸收等特征。α-Fe2O3/Bi2WO6复合光催化剂对有机污染物罗丹明B(RhB)和酸性红染料呈现出良好的吸附性能和较高的光催化活性。通过各种活性基团的测定结果及催化剂能带结构的估算,发现复合光催化材料具有高活性高吸附性的原因是α-Fe2O3(?)(?)Bi2WO6的协同作用的结果。
     为了进一步增强Bi2WO6催化剂的吸附性,提高固液分离效率及重复利用率,本文选用累托石粘土作为载体,通过溶胶凝胶法成功合成可见光响应的Bi2WO6/累托石复合光催化剂。采用XRD、SEM、HRTEM、BET、XPS、UV-vis DRS等多种现代表征手段,分析Bi2WO6/累托石复合光催化剂的层状结构与表面特征之间的关系。Bi2WO6/累托石复合光催化剂对直接大红(4BS)呈现出良好的较高光催化活性和吸附性能。复合光催化剂性能增强的原因主要归因于Bi2WO6半导体的可见光吸收和累托石吸附的协同作用。
     最后,本文还对新型等离子体光催化材料进行了探索。以硅酸钠和硝酸银作为原料,采用简单易行的微波法-光诱导还原和离子交换法-光诱导还原两种方法分别合成可见光响应的Ag-Ag6Si207等离子体光催化剂。所制备的等离子体光催化剂对目标污染物亚甲基蓝(MB)有良好的催化降解活性,主要归因于金属Ag等离子体共振效应和Ag6Si207极化场作用。从活性自由基实验结果发现空穴(h+)和过氧(O2·-)自由基在Ag-Ag6Si207光催化剂降解污染物中起了非常重要的作用。最后对Ag-Ag6Si207离子体催化材料的稳定性及相关机理进行了探讨。
Recently, as people pay more attention to the environmental issues, the study on treatment technology of environmental pollution is fastly developed. The photocatalysis has attracted great interest for its low energy consumption and innocuity. TiO2is the most widely used photocatalyst due to its high catalytic activity, good chemical stability and non-toxicity, etc. However, it is activated only under UV light irradiation because of its large band gap, moreover, the TiO2powder in suspended system was difficult to separate from aqueous solution, and these questions hindered its practical applications. Therefore, the development of new visible light-driven photocatalyst is essential to improve recyclable performance. Due to its nontoxicity and visible-light responsiveness, Bi2WO6exhibits excellent photocatalytic properties for the decomposition of a great variety of organic pollutants in environmental purification applications. However, the high recombination of photo-generated carriers and low adsorption capacity cause low photo quantum efficiency, resulting in the low photocatalytic performance of Bi2WO6. To overcome the drawback of low photocatalytic efficiency brought by electron holes recombination and low adsorption capacity, we mainly introduced the synthesis and the enhanced photocatalytic activity of the Bi2WO6composite, the clay composite and the plasma composite.
     In this paper, hierarchical structured CaWO4/Bi2WO6composite was successfully synthesized by a facile and low-cost hydrothermal route. The as-prepared composite were characterized by XRD, SEM, TEM, UV-vis DRS, FT-IR, TG-DSC and BET. The relationship between the hierarchical structured, chemical composition and the surface features of the composite was discussed through a various kind's characterization analysis. The photocatalytic activities of the CaWO4Bi2WO6composite were evaluated for the degradation of Rhodamine B (RhB) dye and4-nitrophenol (4-NP) in aqueous solution under visible-light irradiation (>420nm), which were4.5times and2.5times higher than that of the pure Bi2WO6, respectively. The CaWO4/Bi2WO6composite still showed the high photocatalytic activity after four reaction cycles. On the basis of the calculated energy band positions, the mechanism of enhanced photocatalytic activity for the CaWO4/Bi2WO6composite can be attributed to the effective separation of electron-hole pairs.
     To further improve the photocatalytic activities of the Bi2WO6, the hierarchically structured a-Fe2O3/Bi2WO6composite was synthesized by a hydrothermal route. The as-prepared samples were characterized by XRD, SEM, TEM, FT-IR, XPS and BET. The a-Fe2O3/Bi2WO6composite exhibited a strong adsorption capability and a higher visible light photocatalytic activity than the pure Bi2WO6for the photocatalytic degradation of acid red G dye or RhB dye. On the basis of the experimental results and calculated energy band positions, the enhanced photocatalytic activity of the composite can be attributed to the hierarchical structure and the coupling effect of a-Fe2O3and Bi2WO6in the composite.
     To further improve the adsorption capability of the Bi2WO6, the Bi2WO6/rectorite composites were prepared by a sol-gel method. The relationship between the layer structured and the surface features of the composite was investigated by XRD, SEM, TEM, FT-IR, XPS and BET. The results showed that the composites exhibited a strong adsorption capability and a higher photocatalytic degradation activity for4BS dye, which could be attributed to the synergetic effects of the adsorbability of rectorite and the photocatalytic property of Bi2WO6in it.
     The novel, efficient, plasma photocatalytic materials was also exploring at the last part. The visible-light-responsive Ag-Ag6Si2O7photocatalyst was synthesized using sodium silicate and silver nitrate as raw materials by a facile microwave method or ion-exchange method and subsequently light-induced reduction route. The Ag-Ag6Si2O7spherical composite exhibited a higher visible light photocatalytic activity for the photocatalytic degradation of MB dye in aqueous solution, which was attributed to the surface plasmon and the polarized field of the Ag6Si2O7photocatalyst. The results showed that h+and O2·-were involved as the active species in the photocatalytic reaction. A possible photocatalytic mechanism and the photocatalytic stability were discussed.
引文
[1]陈建新.铁柱撑膨润土催化UV-Fenton降解染料的性能及其机理研究[D].浙江:浙江大学,2007.
    [2]全国人民代表大会常务委员会.中华人民共和国水污染防治法[Z].2008-02-28.
    [3]慕峰.几种有机难降解污染物的光催化氧化技术研究[D].上海:东华大学,2003.
    [4]康海彦.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究[D].天津:南开大学,2007.
    [5]白翠萍.类Fenton高级氧化技术处理染料废水的研究[D].武汉:武汉理工大学,2012.
    [6]钱易,杨鸿霄,水体颗粒物和难降解有机物的特性与控制技术原理(下)[M].北京:中国环境出版社,2000:1-5.
    [7]王韬.电-微生物技术处理含重金属离子及难降解有机物废水[D].天津:天津大学,2005.
    [8]任南琪,周显娇,郭婉茜,等.染料废水处理技术研究进展[J].化工学报,2013,64(1):84-94.
    [9]阳霞.纳米氧化镍的制备及其光催化降解水中有机染料的性能研究[D].武汉:武汉理工大学,2004.
    [10]张蕊,葛滢.稻壳基活性炭制备及其对重金属吸附研究[J].环境污染与防治,2011,2(33):41-51.
    [11]侯贵华,许仲梓.稻壳制备高性能材料研究进展[J].硅酸盐学报,2006,34(2):204-209.
    [12]贺德留,孙晓薇.玉米芯为原料制造颗粒活性炭的研究[J].河南林业科技,2004,24(2):19-25.
    [13]曹青,吕永康,鲍卫仁,等.玉米芯制备高比表面积活性炭的研究[J].林产化学与工业,2005,25(1):66-68.
    [14]张立塔,常建,任学勇,等.落叶松木屑快速热解炭制备活性炭工艺及结构表征[J].东北林业大学学报,2011,39(4):96-98.
    [15]于新意.Sr2Bi2O5的制备、掺La改性及其光催化性能研究[D].武汉:武汉理工大学,2006.
    [16]永泽满,潼泽章.高分子水处理剂[M].化学工业出版社,1985,33-81.
    [17]潘峰,吴家瑶.催化氧化法处理印染废水试验[J].污染防治技术,1999,12(2):109-110.
    [18]张秋波.煤加压气化废水的催化湿式氧化处理[J].环境科学报,1988,8(1):98-105.
    [19]王玉军,贺华阳,骆广生,等.光催化氧化法处理甲醛废水的研究[J].化工环保,2003,6:311-313.
    [20]肖明威.光催化氧化法处理抗生素废水新技术研究[D].广州:广东工业大学,2005.
    [21]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature.1972,238(5358):37-38.
    [22]Carey J H. Lawrence J. Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Coniam. Toxicol.1976,16:697-701.
    [23]孙德智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002,21-212.
    [24]Hoffmann M R. Martin S T., Choi W Y, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [25]Rajeshwar K, Osugi M E, Chanmanee W, et al. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media [J]. J Photochem Photobiol C:Photochem Rev.,2008,9(4): 171-192.
    [26]Linsebigler A L, Lu G Q. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem. Rev.,1995,95(3):735-758.
    [27]杨艳青.粘土-等离子体复合材料的制备及其光催化性能研究[D].武汉:武汉理工大学,2012.
    [28]Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials:Possibilities and challenges [J]. Adv. Mater.2012,24:229-251.
    [29]Gerisher H, Heller A. Photocatalytic oxidation of organic molecules at TiOi particles by sunlight in aerated water [J]. J. Electrochem. Soc,1992 (139):113-121.
    [30]Noda H, Oikawa K, Kamada H. ESR spin-trapping study of active oxygen radicals from photoexcited semiconductors in aqueous H2O2 solutions [J]. Bull. Chem. Soc. Jpn.,1993 (66): 455-458.
    [31]Grzechulska J, Morawski A W. Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water [J]. Appl.Catal. B,2003,46 (2):415-419.
    [32]Rosenberg I, Brock J R, Heller A. Collection Optics of TiO2 Photocatalyst on Hollow Glass Microbeads floating on oil slicks [J]. J. Phys. Chem.,1992,96 (8):3423-3428.
    [33]Luan J, Zhao W, Feng J, et al. Structural, photophysical and photocatalytic properties of novel Bi2AlVO7 [J]. J Hazard Mater,2009,164 (1):781-789.
    [34]Zhang Y, Wan J, Ke Y. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange [J]. J Hazard Mater,2010,177 (1-3): 750-754.
    [35]Wang W, Huang F, Liu C, et al. Preparation, electronic structure and photocatalytic activity of the In2Ti05 photocatalyst [J]. Mater Sci Eng:B,2007,139 (1):74-80.
    [36]支正良,汪信.环境中有机污染物的半导体光催化降解研究进展[J].环境污染与防治,1998,20(1):42-44.
    [37]Wang Z H, Zhuang Q X. Photocatalytic reduction of pollutant Hg(II) on doped WO3 dispersion [J]. J. Photochem. Photobiol. A:Chem.,1993,75 (2):105-111.
    [38]郑道敏,方善伦,李嘉.含氰废水处理方法[J].无机盐工业,2002,34(4):16-18.
    [39]Mohseni M, David A, Gas phase vinyl chloride(VC) oxidation using TiO2-based photocatalysis [J]. Appl. Catal., B,2003,46 (2):219-228.
    [40]Higashimoto S, Tanihata W, Nakagawa Y, et al. Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO2 modified by vanadium species [J]. Appj Catal A: Gen.,2008,340 (1):98-104.
    [41]Mohamad S, Conchon P, Ferronato C, et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv):towards a better assessment of conversion, reaction intermediates and mineralization [J]. Appl Catal B:Environ.,2009,86 (3-4):159-165.
    [42]郭睿Ag/AgCl/BiMg2VO6复合光催化剂的制备及其可见光光催化性能研究[D].武汉:武汉理工大学,2012.
    [43]于向阳,程继健,杜永娟.TiO2光催化抗菌材料[J].玻璃与搪瓷,2000,28(4):42-47.
    [44]Wang J S, Yin S, Zhang Q W, et al. Influences of the factors on photocatalysisi of fluorine-doped SrTiO3 made by mechanochemical method [J]. Solid State Ionics,2004, (1-4): 191-195.
    [45]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J], Science,2002,297 (5590):2243-2245.
    [46]Maruthamuthu P, Ashokkumar M, Gurunathan K, et al. Hydrogen evolution from water with visible radiation in presence of Cu(Ⅱ)/WO3 and electron relay [J]. Int. J. Hydrogen Energy,1989, 14 (8):525-528.
    [47]Kohtani S, Ohama Y, Ohno Y, et al. Photoreductive Defluorination of Hexafluorobenzene on Metal-doped ZnS Photocatalysts under Visible Light Irradiation [J]. Chem. Lett.,2005,34 (7): 1056-1057.
    [48]Matsumoto Y, Omae M, Sugiyama K, et al. New photocathode materials for hydrogen evolution:calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22) [J]. J.Phys. Chem., 1987,91 (3):577-581.
    [49]Matsumoto Y, Sugiyama K, Sato E. Photocathodic hydrogen evolution reactions at p-type CaFe2O4 electrodes with fermi level pinning [J]. J.Electrochem. Soc.,1988,135:98-104.
    [50]李新勇,李树本,吕功煊.纳米尺寸铁酸锌半导体催化剂的表征及催化必性能研究[J].分子催化,1996,10(3):187-193.
    [51]李春.铌酸盐光催化剂的合成及性能研究[D].淮南:安徽理工大学,2008.
    [52]Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation [J]. Environ. Sci. Technol.2010,44 (17):6843-6848.
    [53]Shang M, Wang W Z, Xu H L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG [J]. Cryst. Growth. Des.,2009,2 (2):991-996.
    [54]Saison T, Chemin N, Chaneac C, et al. Bi2O3, BiVO4, and Bi2WO6:Impact of surface properties on photocatalytic activity under visible Light [J]. J. Phys. Chem. C,2011,115: 5657-5666.
    [55]Li G S, Zhang D Q, Yu J C. Ordered mesoporous BiVO4 through nanocasting:A superior visible light-driven photocatalyst [J]. Chem. Mater.,2008,20 (12):3983-3992.
    [56]Dunkle S S, Helmich R J, Suslick K S. BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis [J]. J. Phys. Chem. C 2009,113 (28):11980-11983.
    [57]Yang Y Q, Zhang G K, Xu W. Facile synthesis and photocatalytic properties of Ag-AgCl-TiO2/rectorite composite [J]. J Colloid Interface Sci.,376 (1):217-223.
    [58]卜显忠.氮掺杂二氧化钛/累托石高吸附性可见光催化剂的制备与表征[D].武汉:武汉理工大学,2011.
    [59]Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chem. Phys. Lett.1986,123,126-128.
    [60]Asahi R., Morikawa T, Ohwaki T, et al. Visible light photocatalysis in nitrogen doped titanium oxides [J]. Science,2001,293:269-271.
    [61]Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. J. Phys. Chem. B,2004,108:15446-15449.
    [62]Chi B, Zhao L, Jin T. One-step template-free route for synthesis of mesoporous N-doped titania spheres [J]. J. Phys. Chem. C,2007,111:6189-6193.
    [63]Qin H, Li W, Xia Y, He T. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO [J]. ACS Appl. Mater. Interfaces,2011,3:3152-3156.
    [64]Shi R, Huang G, Lin J, Zhu Y. Photocatalytic activity enhancing for Bi2WO6 by fluorine substitution [J]. J. Phys. Chem. C,2009,113:19633-19638.
    [65]蒋静.新型光催化剂的表界面调控及其光催化性能增强[D].武汉:华中师范大学,2012.
    [66]Asahi R, Morikawa T. Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis [J]. Chemical Physics,2007,339:57-63.
    [67]Ren W, Ai Z, Jia R, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Appl. Catal. B,2007,69:138-144.
    [68]Choi W, Termin A, Hoffman M R. The role of metal ion dopants in quanyum-sized TiO2 [J]. J. Phys. Chem.,1994,98:13669-13679.
    [69]Anandim S, Vinu A, Mori T, et al. Photcatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension [J]. Catal. Commun.,2007,8 (9):1377-1382.
    [70]刘崎,陈晓青.掺镧纳米Ti02的光催化性能研究[J].工业催化,2004,(12):33-35.
    [71]Yang M, Hume C, Lee S, et al. Correlation between photocatalytic efficacy and electronic band structure in hydrothermally grown nanoparticles [J]. J. Phys. Chem. C 2010,114: 15292-15297.
    [72]沈伟韧,赵文宽,贺飞,方佑龄.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [73]杨合,马兴冠,赵苏.光催化技术在废水处理中的应用[J].环境保护科学,2004,30(121):9-11.
    [74]Subramanian V, Wblf E E, Kamat R V. Catalysis with TiO2/gold nanocomposites effect of metal particle size on the Fermi level equilibration [J]. J. Am. Chem. Soc,2004,126 (15): 4943-4950.
    [75]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chem. Soc. Rev.,2009,38 (1):253-278.
    [76]Hou X, Gu X, Hu Y, et al., Enhanced Pt/TiO2 thin films prepared by electron beam irradiation [J]. Nucl. Instrum. Methods Phys. Res. Sect. B,2006,251:429-434.
    [77]Sato S, Whlte J M. Photodecomposition of water over Pt/TiO2 catalysts [J]. Chem. Phys. Lett.,1980,72,83-86.
    [78]Disdier J, Herrmann J.M. Non-local dielectric response of a polar solvent and Debye screening in ionic solution [J]. J. Chem. Soc. Faraday Tran.,1983,79 (2):651-661.
    [79]Harade K, Hisanaga T, Tanaka K. Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductors suspensios [J]. Water. Res.,1990,24 (11):1415-1417.
    [80]席北斗,孔欣,刘纯新,等.加铂修饰型催化剂光催化氧化五氯苯酚[J].环境化学,2001,20(1):27-30.
    [81]Zhao W, Chen C C, Li X Z, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional Co-catalyst [J]. J. Phys. Chem., B,2002,106 (19):5022-5028.
    [82]Fu X Z, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts [J]. Appl. Catal. B:Environ,1995,6 (3):209-224.
    [83]Malagutti A R, Mourao H A J L, Garbin J R, et al. Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes [J]. Appl. Catal. B,2009,90 (1-2):205-212.
    [84]Zheng Y., Zheng L., Zhan Y., et al. Ag/ZnO heterostructure nanocrystals:Synthesis, characterization, and photocatalysis [J]. Inorg. Chem.,2007,46 (17),6980-6986.
    [85]李园园.铋系光催化剂纳米-徽米结构的制备、修饰及可见光催化性能研究[D].武汉:华中师范大学,2009.
    [86]Amy D, Kamat P V. Semiconductor-Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles [J]. J. Phys. Chem. B,2001, 105(5):960-966.
    [87]向全军.二氯化铁基光催化材料的微结构调控与性能增强[D].武汉:武汉理工大学,2012.
    [88]桂明生.钨酸铋基异质结型催化剂的制备及其光催化性能的研究[D].广州:华南理工大学,2012.
    [89]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展,2009,21(1-2):406-419.
    [90]Das K, De S K. Optical properties of the type-11 core-shell TiO2@CdS nanorods for photovoltaic applications [J]. J. Phys. Chem. C,2009,113:3494-3501.
    [91]Ho W, Yu J C, Lin J, et al. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmiur,2004,20 (14):5865-5869.
    [92]于笑潇.分等级纳米复合光催化材料的制备及共光催化性能研究[D].武汉:武汉理工大学,2010.
    [93]薛斌.分等级三维金属氧化物纳米结构和竹节状碳纳米管的制备和表征[D].杭州:浙江大学,2009.
    [94]Zeng H C. Synthetic arehiteeture of interior spaee for inorganie nanostruetures [J]. J. Mate Chem,2006,16 (7):649-662.
    [95]Ho S Y, Wong W Z, Ho G W. Controllable porosity of Monodispersed Tin Oxide Nanospheres via an Additive-Free Chemica 1Route [J]. Cryst. Growth Des.,2009,9 (2):732-736.
    [96]Zhou L, Wang W Z, Xu H L, et al. Template-free fabrication of CdMo04 hollow spheres and their morphology-dependent photoeatalytic proPerty [J]. Cryst.Growth Des.,2008,8 (10): 3595-3601.
    [97]Zhang Z P, Shao X. Q, Yu H D, et al. Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures [J]. Chem. Mater.,2005,17 (2):332-336.
    [98]Yuan J K, Li W N, Gomez S, et al. Self-controlled synthesis of manganese oxide octahedral moleeular sieve three-dimensional nanostruetures [J]. J. Am. Chem. Soc.,2005.127 (41): 14184-14185.
    [99]Liu J, Zhang G K. Template-free synthesis and high photocatalytic activity of hierarchical Zn2Ge04 microspheres [J]. CrystEngComm,2013,15:382-389.
    [100]Zhang L S, Wang W Z, Zhou L, et al. Bi2WO6 Nano-and microstructures:shape control and associated visible-light-driven photocatalytic activities [J]. Small,2007,3:1618-1625.
    [101]刘升卫.新型光催化纳米材料的分等级组装、改性及其活性[D].武汉:武汉理工大学,2009.
    [102]高春梅.可见光响应Bi2W06光催化剂的合成及其光催化性能研究[D].杭州:浙江大学,2008.
    [103]王文中,尚萌,尹文宗,等.含铋复合氧化物可见光催化材料研究进展[J].无机材料学报,2012,27(1):11-18.
    [104]Yu J G, Xiong J F, Cheng B, et al. Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders [J]. Journalof Solid State Chemistry,2005,178 (6):1968-1972.
    [105]Kim N, Vannier R N, Grey C P. Detecting different oxygen-ion jump pathways in Bi2WO6 with 1-and 2-dimensional 170 MAS NMR spectroscopy [J]. Chem. Mater.,2005,17:1952-1958.
    [106]Zhang G K, Lu F, Li M, et al. Synthesis of nanometer Bi2WO6 synthesized by sol-gel method and its visible-light photocatalytic activity for degradation of 4BS [J]. Journal of Physics and Chemistry of Solids,2010,71:579-582.
    [107]丁雪军,安太成,傅家谟,等.柱撑粘土复合材料的研究进展及其在环境污染物治理 方面的应用[J].地球化学,2005,34(6):626-634.
    [108]Sterte J. Synthesis and properties of titanium oxide cross-linked montmorillonite [J]. Clays Clay Miner.1996,34 (6):658-664.
    [109]孙家寿,陈金毅,刘宇,等.累托石/Ti02复合材料的制备及其光催化性[J].武汉工程大学学报,2010,32(9):58-62.
    [110]Miao S D, Liu Z M, Han B X, et al. Synthesis and characterization of TiOr-montmorillonite nanocomposites and their application for removal of methylene blue. J. Mater. Chem.,2006,16: 579-584.
    [111]Garrido-Ramirez E G, Theng B K G, Mora M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions A review [J]. Applied Clay Science,2010,47:182-192.
    [112]Bu X Z, Zhang G K, Gao Y Y, et al. Preparation and photocatalytic properties of visible light responsive N-doped Ti02/rectorite composite [J]. Microporous and Mesoporous Mater.,2010, 136(1-3):132-137.
    [113]Zhang G K, Ding X M, Hu Y J, et al. Photocatalytic degradation of 4BS dye by N,S-codoped TiO2 pillared montmorillonite photocatalysts under visible-light irradiation [J]. J. Phys. Chem. C,2008,112 (46):17994-17997.
    [114]谢毅.Ti02/累托石复合材料的制备及光降解酸性红B染料废水研究[D].武汉:武汉理工大学,2004.
    [115]Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide [J]. J. Am. Chem. Soc.,2008,130 (5):1676-1680.
    [116]Liu Y P, Fang L, Lu H D, et al. One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag3PO4 [J]. Applied Catalysis B:Environmental,2012,115-116:245-252.
    [117]王朋.表面等离子体增强AgX(X=Cl,Br,Ⅰ)及其复合材料的制备、表征和光催化性能研究[D].济南:山东大学,2010.
    [118]Dai G P, Yu J G, Liu G. A new approach for photocorrosion inhibition of Ag2CO3 photocatalyst with highly visible-light-responsive reactivity [J]. J. Phys. Chem. C,2012,116: 15519-15524.
    [119]Wang P, Huang B B, Qin X Y, et al. Ag@AgCl:a highly efficient and stable photocatalyst active under visible light [J]. Angew. Chem., Int. Ed.,2008,47:7931-7933.
    [120]Wang P, Huang B B, Zhang X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr [J]. Chem. Eur. J.,2009,15:1821-1824.
    [121]Hu C, Peng T W, Hu X X, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation [J]. J. Am. Chem. Soc.,2010,132 (2):857-862.
    [122]Yi Z G, Ye J H, Kikugawa N, et al. An orthophosphate semiconductor with photooxidation properties under visible light irradiation [J]. Nat. Mater.,2010,9:559-564.
    [123]Bi Y P, Ouyang S X, Umezawa N T, et al. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J]. J. Am. Chem. Soc.,2011,133:6490-6492.
    [124]罗善霞.Bi2W06和掺杂与负载型TiO2光催化剂的制备与表征及其活性评价[D].天津:天津大学,2010.
    [125]Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s(2) configuration and d(0) transition metal ions [J]. Chem. Lett.,1999, 28(10):1103-1104.
    [126]Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation [J]. Catal. Lett.,2004,92 (1-2):53-56.
    [127]Fu H B, Zhang L W, Yao W Q, et al. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process [J]. Appl Catal B:Environ.,2006,66 (1-2): 100-110.
    [128]Zhang C, Zhu Y F, et al.. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts [J]. Chem. Mater.,2005,17:3537-3545.
    [129]Shang M, Wang W Z, Sun S M, et al. Bi2WO6 nanocrystals with high photocatalytic activities under visible light [J]. J. Phys. Chem. C,2008,112 (28):10407-10411.
    [130]Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts [J]. J. Mater. Chem.,2007,17 (24): 2526-2532.
    [131]Guo Y D, Zhang G K, Gan H H, et al. Micro/nano-structured CaWO4/Bi2WO6 composite: synthesis, characterization and photocatalytic properties for degradation of organic contaminants [J]. Dalton Trans.,2012,41:12697-12703.
    [132]Kima D W, Cho 1 S, Shin S S, et al. Electronic band structures and photovoltaic properties of MW04(M=Zn, Mg, Ca, Sr) compounds [J]. J. Solid State Chem.,2011,184:2103-2107.
    [133]Zhang Q, Yao W T, Chen X Y, et al. Nearly monodisperse tungstate MW04 microspheres (M= Pb, Ca):surfactant-assisted solution synthesis and optical properties [J]. Cryst. Growth Des.. 2007,7(8):1423-1431.
    [134]Wang X J, Chang L L, Wang J R, et al. Facile hydrothermal synthesis of Bi2WO6 microdiscs with enhanced photocatalytic activity [J]. Applied Surface Science,2013,270:685-689.
    [135]Lee C K, Sim L T, Coats A M, et al. On possible Cu doping of Bi2WO6 [J]. J. Mater. Chem., 2001,11 (4):1096-1099.
    [136]Reshak A H. Chen X, Kityk 1 V, et al. X-ray photoelectron spectra and the electronic band structure for non-centrosymmetric Bi2ZnB2O7 nonlinear single crystal [J]. Curr. Opin. Solid State Mater. Sci.,2008,12,26.
    [137]Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity [J]. J. Phys. Chem. C 2007,111 (34): 12866-12871.
    [138]Ryu J H, Bang S Y, Kim W S, et al. Microstructure and optical properties of nanocrystalline CaWO4 thin films deposited by pulsed laser ablation in room temperature [J]. J. Alloys Compd. 2007,441,146-151.
    [139]Hamann T W, Martinson A B F, Elam J W, et al. Atomic layer deposition of TiO2 on aerogel templates:new photoanodes for dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112 (27): 10303-10307.
    [140]Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation [J]. Environ. Sci. Technol.,2007,41,6234-6239.
    [141]Zhang S C, Zhang C, Man Y, Zhu Y F. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties [J]. J. Solid State Chem.,2006,179(1),62-69.
    [142]Tang J W, Zou Z G, Ye J H. Photophysical and photocatalytic properties of AgInW2O8 [J]. J. Phys. Chem. B,2003,107(51):14265-14269.
    [143]施红雁.几种无机功能纳米材料的合成、组装及性能研究[D].合肥:中国科学技术大学,2011.
    [144]Amano F, Nogami K, Ohtani B. Visible-responsive bismuth tungstate of hierarchical architecture on photocatalytic activity [J]. J. Phys. Chem. C,2009,113:1536-1542.
    [145]Feng J Y, Hu X J, Yue P L. Discoloration and Mineralization of Orange II using different heterogeneous catalysts containing Fe:A comparative study [J]. Environ. Sci. Technol.2004,38: 5773-5778.
    [146]Chong M N, Jin B, Chow Chri stopher W K. Recent developments in photocatalytic water treatment technology:A review [J]. Water Rese arch,2010,44:2997-3027.
    [147]Zhao G, Liu S W, Lu Q F, et al. Controllable synthesis of Bi2WO6 nanofibrous mat by electrospinning and enhanced visible photocatalytic degradation performances [J]. Ind. Eng. Chem. Res.,2012,51:10307-10312.
    [148]Ishibashi K, Fujishima A, Watanabe T, et al. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique [J]. Electrochem. Commun.,2000,2 (3):207-210.
    [149]Zhang Z J, Wang W Z, Wang L, et al. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor:a case study on Bi2S3/Bi2WO6 [J]. ACS Appl. Mater. Inter.,2012,4(2):593-597.
    [150]Ge M, Li Y F, Liu L, et al. Bi2O3-Bi2WO6 composite microspheres:hydrothermal synthesis and photocatalytic performances [J]. J. Phys. Chem. C,2011,115:5220-5225.
    [151]Li W J, Li D Z, Meng S G, et al. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites [J]. Environ. Sci. Technol.,2011,45 (7):2987-2993.
    [152]Bandara J, Kiwi J. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dyes orange Ⅱ [J]. New J. Chem.,1999,23 (7): 717-724.
    [153]Li W, Zhao S, Qi B, et al. Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition [J]. Appl. Catal. B,2009.92 (3-4):333-340.
    [154]Long M. Cai W M, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation [J]. J. Phys. Chem. B,2006,110 (41): 20211-20216.
    [155]Zhang Y, Holzwarth N A W, Williams R T. Electronic band structures of the scheelite materials-CaMoO4, CaWO4, PbMo04, and PbWO4 [J]. Physical Review B.,1998,57: 12738-12750.
    [156]Yao S S, Wei J Y, Huang B B, et al. Morphology modulated growth of bismuth tungsten oxide nanocrystals [J]. J. Solid State Chem.,2009,182:236-239.
    [157]Zhang L. S, Wang H L, Chen Z G, et al. Bi2WO6 micro/nano-structures:Synthesis, modifications and visible-light-driven photocatalytic applications [J]. Appl. Catal. B:Environ., 2011,106:1-13.
    [158]Cheng H F, Huang B B, Dai Y, et al. Visible-light photocatalytic activity of the metastable Bi20TiO32synthesized by a high-temperature quenching method [J]. J. Solid State Chem.,2009, 182:2274-2278.
    [159]Lai K R, Zhu Y T, Lu J B, et al. N- and Mo- doping Bi2WO6 in photocatalytic water splitting [J]. Computational Materials Science,2013,67,88-92.
    [160]许兵.α-Fe2O3纳米材料的微结构调控及其光催化性能研究[D].济南:山东大学,2012.
    [161]Kang J, Kuang Q, Xie Z X, et al. Fabrication of the SnO2/α-Fe2O3 hierarchical heterostructure and its enhanced photocatalytic property [J]. J. Phys. Chem. C,2011,115 (16): 7874-7879.
    [162]Kay A, Cesar I, Gratzel M. New benchmark for water photooxidation by nanostructured a-Fe2O3 films [J].J. Am. Chem. Soc.,2006,128(49):15714-15721.
    [163]Almeida T P, Fay M, Zhu Y Q, et al. Process map for the hydrothermal synthesis of a-Fe2O3 nanorods [J]. J. Phys. Chem. C,2009,113 (43),18689-18698.
    [164]Sivula K, Zboril R, Formal F L, et al. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach [J]. J. Am. Chem. Soc.,2010,132: 7436-7444.
    [165]Goncalves R H, Lima B H R, Leite E R. Magnetite colloidal nanocrystals:a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting [J]. J. Am. Chem. Soc.,2011,133 (15):6012-6019.
    [166]Murugan A V, Muraliganth T, Manthiram A. Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage [J]. Chem. Mater.,2009,21 (21):5004-5006.
    [167]Cong Y Q, Li Z, Zhang Y, et al. Synthesis of a-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol [J]. Chem. Eng. J,2012,191:356-363.
    [168]Yan W, Fan H Q, Yang C. Ultra-fast synthesis and enhanced photocatalytic properties of alpha-Fe2O3/ZnO core-shell structure [J]. Mater. Lett.,2011,65:1595-1597.
    [169]Zhang X W, Zhou M H, Lei L C. Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD [J]. Catal. Commun.,2006,7,427-431.
    [170]邹龙生,欧光川,张敏,等.印染废水处理技术及进展[J].山东化工,2005,34(6):15-18.
    [171]Zou Y Q, Kan J, Wang Y. Fe2O3-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage [J]. J. Phys. Chem. C,2011,115 (42):20747-20753.
    [172]Niu M T, Huang F, Cui L F, et al. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures [J]. ACS Nano, 2010,4 (2):681-688.
    [173]Fu X Q, Bei F L, Wang X, et al. Surface-enhanced Raman scattering of 4-mercaptopyridine on sub-monolayers of a-Fe2O3 nanocrystals (sphere, spindle, cube) [J]. Mater. Lett.,2009,63, 185.
    [174]Scherrer P. Bestimmung der GroBe und der inneren Struktur von Kolloidteilchen mittels RSntgenstrahlen [J]. Nachrichten von der Gesellschaft der Wissenschaften zu GSttingen Mathematisch-Physikalische Klasse.1918,2:98.
    [175]高春梅.可见光响应Bi2WO6光催化剂的合成及其光催化性能研究[D].杭州:浙江大学,2008.
    [176]Bagus P S, Brundle C R, Chuang T J, et al. Width of the d-level final-state structure observed in the photoemission spectra of FexO [J]. Phys. Rev. Lett.,1977,39:1229-1232.
    [177]Gao Y, Chambers S A. Heteroepitaxial growth of a-Fe2O3, y-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy [J]. J. Cryst. Growth,1997,174:446-454.
    [178]Yu H G, Liu R, Wang X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst [J]. J.Appl. Catal. B Environ.,2012,326:111-112.
    [179]Zhang Y L, Guo Y D, Zhang G K, et al. Stable TiO2/rectorite:preparation, characterization and photocatalytic activity [J]. Applied Clay Science,2011,51 (3):335-340.
    [180]Zhou Y, Tian Z P, Zhao Z Y, et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible Light [J] ACS Appl. Mater. Interfaces,2011,3:3594-3601.
    [181]Bi D Q, Xu Y M. Synergism between Fe2O3and WO3 particles:Photocatalytic activity enhancement and reaction mechanism [J]. Journal of Molecular Catalysis A:Chemical,2013,367: 103-107.
    [182]曾德芳.改性累托石/壳聚糖复合絮凝剂的研制与应用研究[D].武汉:武汉理工大学,2006.
    [183]姚琦,汪昌秀,赵连强.世界稀有矿物“累托石”介绍[J].矿产与地质,2001,15(4):264-267.
    [184]贾清秀.粘土/橡胶纳米复合材料的界面设计及高性能纳米复合材料的制备[D].北京: 北京化工大学,2007.
    [185]王益庆.层状硅酸盐-橡胶纳米复合材料制备机理及工业化技术研究[D].北京:北京化工大学,2005.
    [186]Ma X Y, Liang G Z, Lu H J, et al. Novel intercalated nanocomposites of polypropylene, organic rectorite, and poly(ethylene octene) elastomer:Morphology and mechanical properties [J]. J. Appl Polym Sci.,2005,97 (5):1907-1914.
    [187]Ma X Y, Qu X H, Zhang Q L, et al. Analysis of interfacial action of rectorite/thermoplastic polyurethane nanocomposites by inverse gas chromatography and molecular simulation [J]. Polymer,2008,49 (16):3590-3600.
    [188]Baily S W. Nomenclature for regular interstratifications [J]. Am. Miner.,1982,61 (3-4): 394-398.
    [189]江涛.累托石[M].武汉:湖北科学技术出版社,1989:49-50.
    [190]张乃娴,王连成,杨雅秀,等.广西巴吉地区全新世累托石粘土岩的发现及其矿物学研究[J].矿物学报,1996,16(1):8-13.
    [191]杜冬云.铝交联累托石的制备与应用研究[D].武汉:华中科技大学,2004.
    [192]张蕾,石眺霞,孙家寿,等.Ti/Cu交联累托石光催化氧化处理硝基苯废水研究[J].环境工程学报,2007,1(6):35-38.
    [193]Shimizu K I, Kaneko T, Fujishima T, et al. Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays [J]. Appl. Catal. A:Gen.,2002,225 (1-2):185-191.
    [194]Xiao J R, Peng T Y, Dai K, et al. Hydrothermal synthesis, characterization and its photoactivity of CdS/rectorite nano-composites [J]. J. Solid State Chem.,2007,180 (11): 3188-3195.
    [195]Hong H L, Jiang W T, Zhang X L, et al. Adsorption of Cr(Ⅵ) on STAC-modified rectorite [J]. Applied Clay Science,2008,42:292-299.
    [196]An T C, Chen J X, Li G Y, et al. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts:degradation of decabromodiphenyl ether (BDE 209) [J]. J. Catal., Today 2008 139:69-76.
    [197]Nishiyama T, Shimoda S. Ca-bearing rectorite from Tooho Mine [J]. J. Clays Clay Miner., 1981,29:236-240.
    [198]Liu S W, Yu J G. Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers [J]. J. Solid State Chem.,2008,181: 1048-1055.
    [199]Praus P, Kozak O., Koci K., et al. CdS nanoparticles deposited on montmorillonite: preparation, characterization and application for photoreduction of carbon dioxide [J]. J. Colloid Interface Sci.,2011.360:574-579.
    [200]洪汉烈,铁丽云,边秋娟,等.累托石-铬离子的相互作用研究[J].矿物岩石,2005,25(4):1-5.
    [201]Dumrongrojthanath P, Thongtem T, Phuruangrat A, et al. Hydrothermal synthesis of Bi2WO6 hierarchical flowers with their photonic and photocatalytic properties [J]. Superlattices and Microstructures,2013,54:71-77.
    [202]Anandkumar J, Mandal B. Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste:Kinetic, mechanistic and thermodynamic studies [J]. J. Hazard. Mater., 2011,186(2-3):1088-1096.
    [203]Sawalha M F, Peralta-Videa J R, Romero-Gonzalez Jaime, et al. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass:Thermodynamic and isotherm studies [J]. J. Colloid Interface Scl.,2006,300:100-104.
    [204]Duan F, Zhang Q H, Shi D J, et al. Enhanced visible light photocatalytic activity of Bi2WO6 via modification with polypyrrole [J]. Applied Surface Science,2013,268:129-135.
    [205]Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer [J]. J. Phys. Chem. B,2002, 106:12227-12230.
    [206]Chen Y L, Cao X X, Kuang J D, et al. The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres [J]. Catal. Commun.,2010,12: 247-250.
    [207]Cheng H. Huang B, Wang P. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants [J]. Chem. Commun.,2011,47 (25): 7054-7056.
    [208]姚书山.新型可见光催化剂的制备与评价[D].济南:山东大学,2009.
    [209]Linke C, Jansen M. Die Tieftemperaturmodifikationen von Ag6SiO7 und Ag,Ge,O, Darstellung, Kristallstruktur und Vergleich der Ag-Ag-Abstande [J]. Z. anorg. allg. Chem.,1996, 622:486-493.
    [210]Wang X F, Li S F, Ma Y Q, et al. H2WO4·H2O/Ag/AgCl composite nanoplates:a plasmonic z-scheme visible-light photocatalyst [J]. J. Phys. Chem. C,2011,115 (30):14648-14655.
    [211]Cheng B, Le Y, Yu J G. Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires [J]. J. Hazard. Mater.,2010,177 (1-3):971-977.
    [212]He J, Ichinose L, Kunitake T, et al. Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO2-gel films:nanoparticle morphology and catalytic activity [J]. J. Am. Chem. Soc, 2003,125:11034-11040.
    [213]Honma I, Sano T, Komoyama H. Surface-enhanced Raman scattering (SERS) for semiconductor microcrystallites observed in silver-cadmium sulfide hybrid particles [J]. J. Phys. Chem. A,1993,97 (25):6692-6695.
    [214]刘勇平.磷酸银及其异质结高效可见光催化剂的制备及性能研究[D].南宁:广西大学,2012.
    [215]黄利君,磷酸银的制备及其光催化性能的研究[D].吉林:吉林大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700