用户名: 密码: 验证码:
自发性高血压大鼠冠状动脉平滑肌细胞大电导钙激活钾离子通道的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:冠状动脉壁张力升高和冠脉循环阻力上升是诱发心绞痛的重要因素。造成冠脉张力上升的因素有多种,其中血压升高是重要因素之一。升高的血压施加于管壁,使血管平滑肌张力上升,机体通过复杂的自适应机制,启动血管舒张机制,以平衡和维持冠状动脉循环的动态平衡。目前,高血压背景下冠状动脉的适应性舒张机制尚未明确。本研究选取自发性高血压大鼠(SHR)为高血压模型,应用电生理膜片钳技术和分子生物学手段,研究高血压大鼠冠状动脉平滑肌细胞(CASMCs)大电导钙激活电压依赖性钾离子通道(BK),以及BK通道的表达,并与正常血压组对照,阐明高血压大鼠CASMCs复极电流是否发生适应性增加,并探讨舒张机制在维持冠脉循环中的重要地位。
     方法:
     (1)、采用“三步”酶消化法,即含0.125%牛血清白蛋白(Bovine serum albumin, BSA)缓冲液室温孵育10分钟,酶液I消化10-20分钟,酶液II消化10-15分钟。
     (2)、分离大鼠冠状动脉平滑肌细胞后,应用膜片钳全细胞记录模式记录高血压和正常SD大鼠冠状动脉平滑肌细胞钾电流,分析大鼠CASMCs上主要的钾流成分及一般特性。
     (3)、记录并比较SHR和WKY大鼠CASMCs上BK电流以及BK尾电流的大小。
     (4)、提取SHR和WKY大鼠冠状动脉平滑肌细胞的RNA,并进行逆转录,利用相对定量和半定量的方法比较高血压大鼠和正常大鼠的BK通道α和β1亚基的mRNA水平。
     (5)、提取并纯化SHR和WKY大鼠的冠状动脉平滑肌膜蛋白,采用免疫组化和western-blot方法对高血压大鼠和正常血压大鼠BK通道α和β1亚基的蛋白水平进行比较。
     结果:
     (1)、电生理结果
     ①WKY大鼠( n=82 )平均体重为310+13.2克,平均尾动脉收缩压为112.39+13.17mmHg, SHR(n=61)平均体重270±15.5克,平均尾动脉收缩压为172.057±20.13mmHg。SHR大鼠和WKY大鼠的平均静息电位大小分别为-31.7±4.53 mV (n =6)和-49.8±5.11 mV (n =6, P <0.05)。
     ②SHR的平均电容为12.4±2.8pf ( n=24 ), WKY大鼠的平均电容为13.8±3.2pf(n=25),两组比较无统计学差异(p=0.117)。
     ③在电压钳模式下,从钳制电压(Holding Potential,HP)-60毫伏(mV)逐步除极至+120mV,阶跃+10mV,维持时间400ms,刺激频率5kHz,在测试电压(Test Potential,TP)+120mv,+110mv,+100mv,+90mv下得到SHR大鼠的电流密度为(pA/pF)213.08±28.14、161.67±19.51,120.24±11.92, 84.45±10.17;WKY大鼠的相应电流密度为(pA/pF)203.82±19.53,150.31±17.26,127.39±14.70,97.54±10.37;两者比较无明显统计学差异(p>0.05)。
     ④在0nM IBTX时,SHR大鼠(n=6)冠脉平滑肌细胞电流密度如前述,在加入100nM IBTX后相同刺激程序记录结果相应为(pA/pF)59.46±8.17,38.19±5.79,29.94±4.46,19.92±1.41,平均下降百分比为72.6%、76.8%、76.8%、78.6%,相比较有显著性差异(p<0.01);WKY(n=7)大鼠加入100nM IBTX后的各组值为(pA/pF)135.52±10.69,97.95±10.15,81.93±9.50,66.42±5.31,平均下降百分比为33.503%、34.834%、35.688%、31.868%,相比有显著差异(p<0.05)。SHR大鼠和WKY大鼠加入100nM IBTX后平均电流密度分别下降69.82±5.25%和34.32±1.87%,SHR组下降幅度是WKY组的2.03±0.62倍,具有显著差异(p<0.01),提示SHR大鼠的CASMCs上外向电流中对IBTX敏感的BK电流增大了。
     ⑤在电极外液先加入3mM4-AP的作用下所记录到的以BK为主要成分的钾离子电流:+120mv, +110mv, +100mv, +90mv时,SHR大鼠的电流密度为(pA/pF)110.55±10.53,88.08±7.27,67.28±5.72,51.48±6.01;WKY大鼠为(pA/pF)54.65±6.11,40.45±2.91,31.29±2.11,21.31±1.93,标准化电流密度SHR组平均值同对应电压下WKY组比较高2.67±1.02倍,有显著差异(p<0.01),与100nM IBTX干预下所测结果相似。也反映了SHR大鼠的BK电流加大。⑥在尾电流研究中,实验发现,在SHR组(n=9),在+30mv, +40mv, +50mv, +60mv, +70mv, +80, +90mv时电流密度值为(pA/pF)31.37±5.61, 44.71±7.58, 62.41±6.78,71.95±9.07,86.23±9.51,97.12±10.07,113.35±11.22,WKY大鼠组(n=8)的对应值分别为(pA/pF)16.41±4.32,23.58±5.11,35.29±4.89,51.67±7.54,66.41±8.12,75.87±8.76,81.01±6.52;SHR组分别比WKY组高47.68%,47.26%,43.44%,28.15%,23.05, 21.93%, 28.54%,具有显著差异(p<0.05),这也反映了SHR大鼠的BK通道活性增加。
     (2)、分子生物学研究结果
     ①通过相对定量PCR产物的溶解和扩增曲线的分析,在mRNA的表达上GAPDH> BKα> BKβ1。应用2?ΔΔCt的计算方法,得出SHR大鼠的BKβ1亚基的mRNA的表达是WKY大鼠的5.534±1.03倍,具有显著差异(n=4,p<0.05 );而SHR大鼠的BKα亚基的mRNA的表达是WKY大鼠的1.266±0.12倍,琼脂糖凝胶电泳结果与定量PCR一致。
     ②免疫组化的结果则提示了BKα的表达在SHR表达略高,但和WKY比无明显差异; SHR大鼠BKβ1表达则升高。
     ③Western-blot结果说明,SHR和WKY大鼠BKα亚基蛋白灰度值比为255.98±19.17:251.36±18.51,没有明显差异,而β1亚基在两组大鼠中表达均很低,SHR大鼠β1亚基同WKY大鼠之比为84.25±12.26 :29.74±5.59,具有显著性差异(p<0.05)。可见从分子生物学角度上也获得SHR大鼠的BK通道表达高于WKY大鼠,由此反映SHR大鼠冠状动脉平滑肌BK通道结构与功能改变相一致。
     结论:
     (1)大鼠冠状动脉平滑肌细胞的钾离子通道主要由BK和Kv组成,分别对IBTX和4-AP敏感。
     (2)SHR大鼠的心脏冠状动脉平滑肌细胞的BK通道电流明显高于WKY大鼠。
     (3)SHR大鼠的心脏冠状动脉平滑肌细胞的静息电位水平高于(负值变小)WKY大鼠,更趋去极化,易引起血管收缩。
     (4)SHR大鼠BK通道β1亚基在转录水平上高于WKY大鼠,α亚基无统计学差异。
     (5)SHR大鼠BK通道β1亚基蛋白表达明显升高,α亚基蛋白表达略高,但无明显差异。
     研究结果表明SHR大鼠冠状动脉平滑肌细胞BK通道蛋白表达增强和电流加大,标志平滑肌细胞舒张功能适应性增强,以平衡高血压时冠脉张力的上升,这种适应机制在维护高血压冠脉循环中起重要作用。
Objective: Hypertension is the major risk factor for cardiovascular agents such as angina pectoris, myocardial infarction and congestive heart failure. The elevated blood pressure can increase the vascular tone leading to vessel contract and a higher resistance of blood flow . Meanwhile ,the physiological auto-regulations are triggered to balance the angiotasis, keep the normal blood flow. K+ channel is an important determinant of vascular tone and vessel diameter. At least 4 different K+ channels are reported in smooth muscle cell (SMC) . In regulation of the artery smooth muscle cells(SMCs) tone, BK channels are the dominant ion channels in the membrane of vascular smooth muscle. So our study will focus on spontaneously hypertensive rats(SHR) BK channel by means of electrophysiology and molecular biology to illustrate BK channel current change and alternation of the channel protein expresstion.
     Methods
     1) We got the SMCs with enzyme digestion using papain and colleagen , incubated in buffer soluition containing 0.125% BSA for about 10min at room temperature, digested in enzyme I for about 20 min and then for about 15 min in enzyme II in a 37°C water bath shaker .
     2) Whole cell current recordings were performed at room temperature (21–23°C). In this way , we got the BK channel current and tail current.
     3) Recorded and compared BK current , rest membrane potential and tail current of SHR and WKY.
     4) Extracted the RNA from SHR and WKY rats coronaries and performed reverse transcription, then compare BKαandβ1 subunit mRNA with real time quantities PCR and agarose gel electrophoresis.
     5) Extracted and purified the SMCs membrane protein, compare the BKαandβ1 subunit protein express in the way of immunohistochemisty and western-blot.
     Results
     1) After the enzyme digestion, the high quality and quantity of SMCs can be acquired.
     2) In the voltage clamp mode, The whole K+ currents was elicited from a holding potential of -60 mV to a testing potential of +120 mV and +150 mV for 400 ms in 10-mV increments, repeated at 5-s intervals. The BK channel openning thresh hold potential was +30mV. The current amplitude clambed with the increased test potential and reached a peak value at+150mV. BK channel can be completely actived within 10ms while inactive time is 168.32±75.18ms(n=8).
     3) In the voltage clamp mode, given a 180ms pre-stimulation from HP-60mV to +120mV and a set pulse stimulation from -60~ +90mV ~-60mv with a +10mV step , the tail current can be elicited. At +90mV,the climax current was 1012.63±97.71pA, the electric current density was 98.17±14.02pA/pF(n=7).
     4) WKY rats(n=82)mean weight was 310±13.2g,average tail artery systolic pressure is 112.39±13.17mmHg, SHR(n=61)mean weight was 270±15.5g,average tail artery systolic pressure was 172.05±20.13mmHg. SHR average resting potential was -31.7±4.5 mV (n =6) and WKYS` was -49.8±5.1 mV (n =6, P <0.05).
     5) SHR average capacitance was 12.4±2.8pf(n=24),WKY rats average capacitance was 13.8±3.2pf(n=25); there was no statistics difference(p=0.117). At the test potential of +120mv、+110mv、+100mv、+90mv, SHR and WKY rats BK channel average current densities were(pA/pF)213.08±28.14、161.67±19.51,120.24±11.92, 84.44±10.17 in SHR and (pA/pF)203.82±19.53,150.31±17.26,127.39±14.71,97.54±10.37 in WKY group. When added 100nM IBTX, the result were(pA/pF) 59.46±8.17,38.19±5.79,29.94±4.46,19.92±1.41 in SHR and 135.52±10.69,97.95±10.15,81.93±9.50,66.42±5.314 in the WKY rats group. The percentage of current density sensitive to IBTX were72.61%、76.82%、76.85%、78.67% in SHR vs 35.03%、34.83%、35.68%、31.86% in WKY rats (p<0.01)which meant the current density of SHR BK channel was 2.03±0.62 times larger than that of WKY rats.
     6) In a bath solution contain 3mM 4-AP, where BK current is contributed to the main component of outflow K+ current. At the step potentials of +120mv,+110mv,+100mv,+90mv, the electric current densities of SHR were (pA/pF)110.55±10.53,88.08±7.27,67.28±5.72,51.48±6.01 vs 54.65±6.10,40.45±2.91,31.29±2.11,21.31±1.93 of WKY rats. SHR took possession of a 2.67±1.02 times larger BK channel current than that of WKY rats(p<0.01).
     7) We also found,in SHR group(n=9),at potentials of +30mv,+40mv,+50mv,+60mv, +70mv,+80,+90mv, the BK tail current densities(pA/pF)were 31.37±5.61,44.7±7.58, 62.41±6.78,71.95±9.07,86.23±9.51,97.12±10.07,113.35±11.22,vs WKY rats group(n=8)(pA/pF)16.41±4.32,23.58±5.11,35.29±4.89,51.67±7.54,66.41±8.12,75.87±8.76,81.01±6.52;SHR group had a larger tail current of 47.68%,47.26%,43.44%,28.15%,23.05,21.93%,28.54% at a potential range from +30mv to +90mv than WKYS`(p<0.05).
     8) The real- time PCR showed the express of mRNA GAPDH> Bkα> Bkβ1。We quantified BK mRNA expression in the coronaries of SHR and WKY rats. The results were normalized by the 2?ΔΔCt , the WKY group as the control(2?ΔΔCt=1). In mRNA study, a dramatic increase in BKβ1 subunits mRNA(5.534±1.03 fold) in SHR (n=4,p<0.05 ) was found ; the average amount ofαsubunits mRNA in SHR seemed also more than WKY group, but there was no significance of difference(1.266±0.12) (n=4,p>0.05 ) .We also examined the qpcr product by agarose gel electrophoresis with ethidium bromide as fluorescence trace. The amplified segment size of BKβ1 is about 230bp, BKαis about 103bp. The outcome was corroborated with our previous finding.
     9) The result of immunohistochemistry experiment on VSMCs were shown. The photomicrograph of myocardium tissue immunostained with polycloned antibody showed that positive stain of BKαand BKβ1 in WKY rats were weaker than that in SHR rats.
     10) Western-blot showed, the grey scale odds ratio of SHR and WKY rats BKαsubunit protein was 255.98±19.17:251.36±18.51,no significant difference. The ? subunit protein expressed both at a low level, the ratio of SHR and WKY rats was 84.25±12.26 :29.74±5.59(p<0.05). The results suggested the higher express of SHR BK channel mRNA and protein agreed with the channel current augment.
     Conclusions:
     The K+ channel of rat coronary SMC is primarily composed of BK and Kv channels.The average BK channel current desity of SHR heart coronary SMC is larger than the WKY rats which suggested a higher channel activity in SHR. The higer express of BKβ1 subunit mRNA and protein in SHR coronary SMCs can account for the change. The BK channel provides an endogenous compensatory mechanism to buffer vasoconstriction, particularly the intense myogenic constriction of resistance vessels exposed to high intraluminal pressures to accomplish compensatory vasodilation.
引文
1. Cai Q, Zhu ZL, Fan XL, et al. Whole-cell recordings of calcium and potassium currents in acutely isolated smooth muscle cells .World J Gastroenterol 2006; 12(25): 4086-4088.
    2. Hong Z, Weir EK, Nelson DP, et al. Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol 2004; 31(3): 337-343.
    3. Liu XS, Xu YJ, Zhang ZX, et al. Isoprenaline and aminophylline relax bronchial smooth muscle by cAMP-induced stimulation of large-conductance Ca2+-activated K+ channels. Acta Pharmacol Sin 2003; 24(5): 408-414.
    4. Gurney AM. Electrophysiological recording methods used in vascular biology. Phannacel Toxicol Methods 2000; 44(2):409-420.
    5. Jackson WF, Huebner JM, Rusch NJ. Enzymatic isolation and characterization of single vascular smooth muscle cells from cremasteric arterioles. Microcirculation 1997;4 (1):35-50.
    6.赵岩,吴中海,赵桂玲.大鼠肠系膜细动脉血管平滑肌细胞的分离及其生理特性.南方医科大学学报,2006,26(7):954-958
    7. Knaus HG.Folander K.Garcia-Calvo M.Garcia ML Kaczorowski GJ Smith M Swanson R Primary sequence and immunological characterization of beta-subunit of highconductance Ca2+-activated K+ channel from smooth muscle 1994
    8. Tanaka Y, Koike K, Toro L. Maxi K channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. Smooth Muscle Res. 2004; 40(4-5): 125–153.
    9. Wallner M, Meera P, Toro L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+sensitive K+ channels: An additional transmembrane region at the N terminus. Proc Natl ACad Sci USA 1996; 93(25):14922-14927.
    10. Meera P, Wallner M, Song M, et a1. Large conductance voltage and calcium-dependent K+channels, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane (S0-S6), an extracellular N terminus, and an intracellular(S9-S10) C terminus. Proc Natl Acad Sci USA 1997; 94(25): 14066-14071.
    11. Wallner M.Meera P.Toro L Determinant for beta-subunit regulation in high-conductance voltageactivated and Ca2+-sensitive K+ channels:an additional transmembrane region at the N terminus 1996,Proc Natl Acad Sci U S A 93, 14922– 14927.
    12. Jiang Y.Lee A.Chen J.Cadene M Chait BT MacKinnon R. Crystal structure and mechanism of a calciumgated potassium channel. 2002,Nature 417, 515–522
    13. Papazian DM.Shao XM.Seoh SA.Mock AF Huang Y Wainstock DH Electrostatic interactions of S4 voltage sensor in Shaker K+channel 1995,Neuron 14, 1293–1301
    14. Hu L.Shi J.Ma Z.Krishnamoorthy G Sieling F Zhang G Horrigan FT Cui J Participation of the S4 voltage sensor in the Mg2+-dependent activation of large conductance (BK) K+channels. Proc Natl Acad Sci USA, 2003,100(18):l0488~10493
    15. Jiang Y.Pico A.Cadene M.Chait BT,MacKinnon R Structure of the RCK domain from the E.coli K+channel and demonstration of its presence in the human BK channel 2001,Neuron 29,593–601
    16. Sheng JZ.Weljie A.Sy L.Ling S Vogel HJ Braun AP .Homology modeling identifies C-terminal residues that contribute to the Ca2+sensitivity of a BK channel Biophys J, 2005, 89(5):3079-3092
    17. Bian S.Favrev I.Moczydlowski E, Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation 2001,Proc Natl Acad Sci U S A 98, 4776–4781.
    18. Zhang X.Solaro C.Lingle C Allosteric regulation of BK channel gating by Ca2+and Mg2+ through a non-selective,low affinity divalent cation site . J Gen Physiol, 2001, 118: 607-635
    19. Carre-Pierrat M.Grisoni K.Gieseler K.Mariol MC Martin E Jospin M Allard B Segalat L The SLO-1 BK channel of Caenorhabditis elegans is critical for muscle function and is involved in dystrophin dependent muscle dystrophy. J Mol Biol, 2006, 358(2): 387-395
    20. Brenner R.Jegla TJ.Wickenden A.Liu Y Aldrich RW Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits,hKCNMB3 and hKCNMB4 2000, J Biol Chem 275, 6453– 6461.
    21. Pluznick JL.Sansom SC BK channels in the kidney:role in K+ secretion and localization of molecular components . Am J Physiol Renal Physiol, 2006,291(3): 517-529
    22. Eichhorn B, Dobrev D.Vascular large conductance calcium-activated potassium channels: Functional role and therapeutic potential. Naunyn-Schmiedeberg’s Arch Pharmacol 2007; 376(3): 145–155.
    23. Park WS, Son YK, Kim NR, et al. Direct modulation of Ca2+-activated K+ current by H-89 in rabbit coronary arterial smooth muscle cells. Vascul. Pharmacol. 2007; 46(2): 105–113.
    24. Ledoux J, Werner ME, Brayden JE, et al. Calcium-activated potassium channels and the regulation of vascular tone. Physiol 2006; 21:69–78.
    25. Singer JJ.Walsh JV Characterization of calciumactivated potassium channels in singlesmooth musclecells using the patch-clamp technique . Pfluger Archiv, 1987;(5)408:98- 111
    26. Brenner R, Peréz GJ, Bonev AD, et al Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 2000; 407(6806):870-876.
    27.来丽红,李红霞,蒋文平,二十二碳六烯酸对大鼠冠状动脉平滑肌细胞大电导钙激活性钾通道单通道的作用.江苏医药2009; 4(35): 436
    28.刘泰摓编著.心肌细胞电生理学.人民卫生出版社. 2005; 62-63.
    29. Thorneloe KS, Chen TT, Grier EF, et al. Molecular composition of 4-aminopyridine-sensitive voltage-gated K+ channels of vascular smooth muscle.Circ. Re. 2001; 89(11): 1030–1037.
    30. Bahring R, Milligan C J, Vardanyan V, et al. Coupling of voltage-dependent potassium channel inactivation and oxidoreductase active site of Kv beta subunits. J. Biol. Chem 2001; 276(25): 22923–22929.
    1. Cheung DW. Membrane potential of vascular smooth muscle and hypertension in spontaneously hypertensive rats. Can J Physiol Pharmacol.1984;62:957-960.
    2. Shoemaker RL, Overbeck HW. Vascular smooth muscle membrane potential in rats with early and chronic one-kidney, one-clip hypertension. Proc Soc Exp Biol Med. 1986;181:529-534.
    3. Hermsmeyer K, Harder DR. Membrane ATPase mechanism of K+-return relaxation in arterial muscles of stroke-prone SHR and WKY.Am J Physiol. 1986;250:C557-C562.
    4. Friedman SM, Tanaka M. Increased sodium permeability and transport as primary events in the hypertensive response to deoxycorticosterone acetate (DOCA) in the rat. J Hypertens. 1987;5:341-345.
    5. Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y,Fujishima M. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res. 1992;70:660- 669.
    6. Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Br JPharmacol. 1999;126:709-716.
    7. Borges ACR, Feres T, Vianna LM, Paiva TB. Effect of cholecalciferol treatment on the relaxant responses of spontaneously hypertensive ratarteries to acetylcholine. Hypertension. 1999;34:897-901.
    8. Harder DR, Smeda J, Lombard J. Enhanced myogenic depolarization in hypertensive cerebral arterial muscle. Circ Res. 1985;57:319-322.
    9. Falcone JC, Granger HJ, Meininger GA. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats. Am J Physiol. 1993;265: H1847-H1855.
    10. Martens JR, Gelband CH. Alterations in rat interlobar artery membrane potential and K+ channels in genetic and nongenetic hypertension. Circ.Res. 1996;79:295-301.
    11.王国勇,郑永芳,屈金河,等SHRSP大鼠阻力血管平滑肌IK(Ca)对[Ca2+]的敏感性改变;基础医学与临床,1994,14(3:59-60)
    12. Cox, R.H., Folander, K., Swanson, R., 2001a. Differential expression of voltage-gated K+channel genes in arteries from spontaneously hypertensive and Wistar–Kyoto rats. Hypertension 37, 1315–1322.
    13. Cox, R.H., Lozinskaya, I.M., Dietz, N.J., 2001b. Differences in K+ Current componentsin mesenteric artery myocytes from WKY and SHR. Am. J.Hypertens. 14, 897– 907.
    14. Liu, Y., Pleyte, K., Knaus, H.G., Rusch, N.J., 1997. Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats. Hypertension 30, 1403– 1409
    15. Liu, Y., Hudetz, A.G., Knaus, H.G., Rusch, N.J., 1998. Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protectionagainst cerebral vasospasm. Circ. Res. 82, 729– 737.
    16. Cox, R.H., 1996. Comparison of K+ channel properties in freshly isolated myocytes from thoracic aorta of WKY and SHR. Am. J. Hypertens. 9,884– 889.
    17. 17、Rusch, N.J., DeLucena, R.G., Wooldridge, T.A., England, S.K., Cowley,A.W. Jr., 1992. A Ca2+-dependent K+current is enhanced inarterial membranes of spontaneously hypertensive rats. Hypertension 19, 301–307
    18. England, S.K., Wooldridge, T.A., Stekiel, W.J., Rusch, N.J., 1993.Enhanced single-channel K+ current in arterial membranes from genetically hypertensive rats. Am. J. Physiol. 264, H1337– H1345.
    19. Amberg, G.C., Santana, L.F., 2003. Downregulation of the BK channel ?1 subunit in genetic hypertension. Circ. Res. 93, 965– 971.
    20. Yongde Zhang,Yu-Jing Gao,Jianmin Zuo,Luke J. Janssen.Alteration of arterial smooth muscle potassium channel composition and BK current modulation in hypertension。European Journal of Pharmacology 514 (2005) 111– 119
    1. Nishimaru K, Eghbali M, Stefani E, and Toro L. Function and clustered expression of MaxiK channels in cerebral myocytes remain intact with aging. Exp Gerontol 39: 831-839, 2004
    2. MacMahon , s ;et al .1990. Blood pressure, stroke,and coronary heart disease. Part
    1. Prolonged differences in blood pressure prospective observational studies corrected for the regression dilution bias. Lancet 335:765-771
    3. He ,J and Whelton,P.K.1999. elevated systolic blood pressure and risk of cardiovascular and renal disease: overview of evidence from observational epidemiologic studies and randomized controlled trials. Am .heart J.138:211-219.
    4. Folkow, B.1982. Physiological aspects of primary hypertension. Physiol. Rev 62:347-504
    5. Dunn, W.R; Wallis,S.J,and Gardiner,S.M.1998. Remodeling and enhanced myogenic tone in cerebral resistance arteries isolated from genetically hypertensive Brattlebororats, J.Vas. Res.35:18-26
    6. Harder ,D.R;Smeda,J, and Lombard,J.1985. enhanced myogenic depolarization in hypertensive cerebral arterial muscle.Circ,Res,57:319-322.
    7. Wellman,G,C;etal.2001. Membrane depolarization ,elevated Ca2+ entry, and gene expression in cerebral arteries of hypertensive rats. Am .J, Physiol. 281:2559-2567.
    8. Harder ,D.R1984. Pressure-dependent membrane depolarization in cat middle cerebral artery. Circ . Res.55:197-202.
    9. Knot ,H.J; and Nelson,M.T.1998. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J .Physiol. 508:199-209
    10.杨艳,曾晓荣,血管平滑肌钙激活钾通道及其在高血压发病中的功能异常。四川生理科学杂志2006;28(3)115-118.
    11. Meera P,WallnerM,Jiang z,et a1.A calcium switchforthefunctional coupling between(hslo)and p subunits(KV。c )of maxi K channels .FEBS Lett。1996,382(1-2):84-88.
    12.周述芝,魏宗德;血管平滑肌钾通道与原发性高血压,中国病理生理杂志2003,19(4):562-566
    13. Brenner, R., Perez, G. J., Bonev, A. D., Eckman, D. M., Kosek, J. C., Wiler,S. W., et al. (2000). Vasoregulation by the beta1 subunit of the calciumactivatedpotassium channel. Nature 407, 870– 876.
    14. Jiang, Z., Wallner, M., Meera, P., & Toro, L. (1999). Human and rodent MaxiK channel beta-subunit genes: cloning and characterization. Genomics 57–67.
    15. McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R., &Leonard, R. J. (1995). Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14, 645– 650.
    16. Meera, P., Wallner, M., Jiang, Z., & Toro, L. (1996). A calcium switch for thefunctional coupling between alpha (hslo) and beta subunits (Kv,cabeta) of maxi K channels. FEBS Lett 385, 127– 128.
    17. Cox ,DH and Aldrich,RW.1997.Allosteric gating of a large conductance Ca2+-activated K+ channel.J. Ge. Physiol.110:257-281.
    18. Gollasch ,M et sl. The BK channel ?1 subunit gene is associated with human baroreflex and blood pressure regulation.J. Hypertens.20:927-933.
    19. Gregory C. Amberg, L. Fernando Santana Downregulation of the BK Channel ?1 Subunit in Genetic Hypertension. Circ Res. 2003;93:965-971.
    20. Amberg, G. C., Bonev, A. D., Rossow, C. F., Nelson, M. T., & Santana, L. F.(2003). Modulation of the molecular composition of large conductance,Ca(2+) activated K(+) channels in vascular smooth muscle duringhypertension. J Clin Invest 112, 717–724.
    21. 21、Kotlikoff M,Hall L Hypertension:beta testing.J Clin Invest,2003,112(5):654-656.
    22. Mark T. Nelson, Adrian D.Bonev. The ?1 subunit of the Ca2+-sensitive K+ channel protects against hypertention J.Clin,Invest,113:933-957.
    23. Fegila Fernandez FM,Fomas M,Vazquez E,et a1.Gain of-function muta-tion in the KCNMBl potassium channel subunit is associated with low prevalence of diastolic hypertension.J Clin Invest,2004,13 (7):1032—1039.
    24. Liu Y, Hudetz AG, Knaus H-G, Rusch NJ. Increased expression of Ca2+-sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res. 1998;82:729–737.
    25. Christopher G. Sobey. Potassium Channel Function in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2001;21;28-38.
    26. Liu YP, Pleyte K, Knaus HG, Rusch NJ. Increased expression of Ca2+-sensitive K+ channels in aorta of hypertensive rats. Hypertension. 1997;30:1403–1409.
    27. Chang T, Wu L, Wang R.Altered expression of BK channel beta1 subunit in vascular tissues from spontaneously hypertensive rats Am J Hypertens. 2006 Jul;19(7):678-85.
    28. Marie-Lory Ambroisine, Julie Favre, Patricia Oliviero,Aldosterone-Induced Coronary Dysfunction in Transgenic Mice Involves the Calcium-Activated Potassium (BK) Channels of Vascular Smooth Muscle Cells. Circulation 2007;116;2435-2443.
    1. Platoshyn O, Yu Y, Golovina VA et al. Chronic hypoxia decreases Kv channel expression and function in pulmonary artery myocytes. Am. J.Physiol. LungCell Mol. Physiol. 2001; 280: L801–12
    2. Brayden JE. Potassium channels in vascular smooth muscle. Clin. Exp.Pharmacol. Physiol. 1996; 23: 1069–76
    3. Victoria P Korovkina and Sarah K England MOLECULAR DIVERSITY OF VASCULAR POTASSIUM CHANNEL ISOFORMS Clinical and Experimental Pharmacology and Physiology (2002) 29, 317–323
    4. Leblanc N, Wan X, Leung PM. Physiological role of Ca2+-activated and voltage-dependent K+ currents in rabbit coronary myocytes. Am J Physiol. 1994;266:C1523–C1537.
    5. Clement-Chomienne O, Walsh MP, Cole WC. Angiotensin II activation of protein kinase C decreases delayed rectifier K+ current in rabbit vascular myocytes. J Physiol (Lond). 1996;495(pt 3):689–700.
    6. Berger MG, Vandier C, Bonnet P, Jackson WF, Rusch NJ. Intracellular acidosis differentially regulates Kv channels in coronary and pulmonary vascular muscle. Am J Physiol. 1998;275:H1351–H1359.
    7. Martens JR, Gelband CH. Alterations in rat interlobar artery membrane potential and K+channels in genetic and nongenetic hypertension. Circ Res. 1996;79:295–301.
    8. Gelband CH, Hume JR. [Ca2+]i inhibition of K+ channels in canine renal artery: novel mechanism for agonist-induced membrane depolarization.Circ Res. 1995;77:121–130.
    9. Quan L, Sobey CG. Selective effects of subarachnoid hemorrhage on cerebral vascular responses to 4-aminopyridine in rats. Stroke. 2000;31:2460–2465.
    10. Ren J, Zhang L, Benishin CG. Parathyroid hypertensive factor inhibits voltage-gated K+ channels in vascular smooth muscle cells. Can J Physiol Pharmacol. 1999;77:860–865.
    11. Yuan X-J, Aldinger AM, Juhaszova M, Wang J, Conte JVJ, Gaine SP,Orens JB, Rubin LJ. Dysfunctional voltage-gated K1 channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation. 1998;98:1400–1406.
    12. Jiang J, Thoren P, Caliguri G, Hansson GK, Pernow J. Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of BK channels: relation to Kv channels and nitric oxide. Br J Pharmacol. 1999;128:637– 646.
    13. Ghanam K, Javellaud J, Ea-Kim L, Oudart N. Effects of treatment with 17b-estradiol on the hypercholesterolemic rabbit middle cerebral artery.Maturitas. 2000;34:249–260.
    14. Tanaka Y, Koike K, Toro L. MaxiK channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J Smooth Muscle Res. 2004;40:125–153.
    15. Saito T, Fujiwara Y, Fujiwara R, Hasegawa H, Kibira S, Miura H, MiuraM. Role of augmented expression of intermediate-conductance Ca2+ -activated K+ channels in postischaemic heart. Clin Exp Pharmacol Physiol. 2002;29(4):324–9.
    16. Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH. Molecular cloning and characterization of the intermediate-conductance Ca2+-activated K+ channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res. 1999;85: e33–e43.
    17. Burnham MP, Bychkov R, Feletou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G. Characterization of an apamin-sensitive small conductance Ca2+-activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol. 2002;135: 1133–1143.
    18. Crane GJ, Garland CJ. Thromboxane receptor stimulation associated with loss of SBK activity and reduced EDHF responses in the rat isolated mesenteric artery. Br J Pharmacol. 2004;142:43–50.
    19. Adelman, J. P., Shen, K. Z., Kavanaugh, M. P., Warren, R. A., Wu, Y. N., Lagrutta, A., Bond, C. T. and North, R. A. (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209–216.
    20. Atkinson, N. S., Robertson, G. A. and Ganetzky, B. (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253, 551–555.
    21. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. and Salkoff,L. (1993) mSlo, a complex mouse gene encoding maxi calcium-activated potassium channels. Science 261, 221–224.
    22. Pallanck, L. and Ganetzky, B. (1994) Cloning and characterization of human and mouse homologs of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum. Mol. Genet. 3, 1239–1243.
    23. McCobb DP, Fowler NL, Featherstone T, Lingle CJ, Saito M, Krause JE, Salkoff L. A human calcium-activated potassium channel gene expressed in vascular smooth muscle.Am J Physiol. 1995;269(3 Pt2):H767–H777.
    24. Weiger TM, Hermann A, Levitan IB. Modulation of calcium-activated potassium channels. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002;188:79–87.
    25. morrow JP, Zakharov SI, Liu G, Yang L,Sok AJ, Marex SO: Defining the BKchannel domains requireed for beta-subunit modulation.Proc Natl Acad Sci USA 103:5096-5101,2006
    26. OrioP,Torres Y,Rojas P,Carvacho I,Garcia ML,Toro L,Valverde MA, Latorre R: Structural determinants for functional coupling between the the alpha subunts in the Ca2+-activated K+ channel. J Gen Physiol127:191-204,2006
    27. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., & MacKinnon, R. (2002).Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522.
    28. Seoh, S. A., Sigg, D., Papazian, D. M., & Bezanilla, F. (1996). Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16,1159– 1167.
    29. Papazian, D. M., Shao, X. M., Seoh, S. A., Mock, A. F., Huang, Y., &Wainstock, D. H. (1995). Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14, 1293–1301.
    30. Papazian, D. M., Timpe, L. C., Jan, Y. N., & Jan, L. Y. (1991). Alteration ofvoltage-dependence of Shaker potassium channel by mutations in the S4 equence. Nature 349, 305–310.
    31. Bezanilla, F., Perozo, E., Papazian, D. M., & Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels.Science 254, 679– 683.
    32. Stefani, E., Ottolia, M., Noceti, F., Olcese, R., Wallner, M., Latorre, R., et al.(1997). Voltage-controlled gating in a large conductance Ca2+-activated K+ channel (hslo). Proc Natl Acad Sci U S A 94, 5427– 5431.
    33. Magidovich, E., & Yifrach, O. (2004). Conserved gating hinge in ligand-and voltage-dependent K+ channels. Biochemistry 43, 13242–13247.
    34. Jiang, Y., Pico, A., Cadene, M., Chait, B. T., & MacKinnon, R. (2001).Structure of theRCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29,593–601.
    35. Wei, A., Solaro, C., Lingle, C., & Salkoff, L. (1994). Calcium sensitivity of BK-type BK channels determined by a separable domain. Neuron 13,671–681.
    36. Tian, L., Coghill, L. S., MacDonald, S. H., Armstrong, D. L., & Shipston, M. J.(2003). Leucine zipper domain targets cAMP-dependent protein kinase to mammalian BK channels. J Biol Chem 278, 8669– 8677.
    37. Schreiber, M., & Salkoff, L. (1997). A novel calcium-sensing domain in the BK channel. Biophys J 73, 1355– 1363.
    38. Piskorowski, R., & Aldrich, R. W. (2002). Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature 420, 499–502.
    39. Xia, X. M., Zeng, X., & Lingle, C. J. (2002). Multiple regulatory sites in large conductance calcium-activated potassium channels. Nature 418, 880– 884.
    40. Zeng, X. H., Xia, X. M., & Lingle, C. J. (2005). Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites.J Gen Physiol 125, 273–286.
    41. Knaus, H. G., Folander, K., Garcia-Calvo, M., Garcia, M. L., Kaczorowski,G. J., Smith, M., et al. (1994a). Primary sequence and immunologicalcharacterization of beta-subunit of high conductance Ca2+-activated K+ channel from smooth muscle. J Biol Chem 269, 17274– 17278.
    42. Wallner, M., Meera, P., & Toro, L. (1999). Molecular basis of fast inactivationin voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A 96, 4137–4142.
    43. Brenner, R., Perez, G. J., Bonev, A. D., Eckman, D. M., Kosek, J. C., Wiler,S. W., et al. (2000). Vasoregulation by the beta1 subunit of the calciumactivated potassium channel. Nature 407, 870– 876.
    44. Meera, P., Wallner, M., & Toro, L. (2000). A neuronal beta subunit (KCNMB4)makes the large conductance, voltage-and Ca2+-activated K+ channel resistant tocharybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97, 5562– 5567.
    45. McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R., &Leonard, R. J. (1995). Functional role of the beta subunit of highconductance calcium-activated potassium channels. Neuron 14, 645– 650.
    46. Jiang, Z., Wallner, M., Meera, P., & Toro, L. (1999). Human and rodent MaxiKchannel beta-subunit genes: cloning and characterization. Genomics 55,57–67.
    47. Hanner, M., Vianna-Jorge, R., Kamassah, A., Schmalhofer, W. A., Knaus,H. G., Kaczorowski, G. J., et al. (1998). The beta subunit of the high conductance calcium-activated potassium channel. Identification of residues involved in charybdotoxin binding. J Biol Chem 273, 16289–16296.
    48. Cox, D. H., & Aldrich, R. W. (2000). Role of the beta1 subunit in largeconductance Ca2+-activated K+ channel gating energetics. Mechanisms of enhanced Ca2+ sensitivity. J Gen Physiol 116, 411–432.
    49. Xia, X. M., Ding, J. P., & Lingle, C. J. (1999). Molecular basis for the inactivation of Ca2+-activated K+ BK channels in adrenalchromaffin cells and rat insulinoma tumor cells. J Neurosci 19, 5255– 5264.
    50. Xia, X. M., Ding, J. P., & Lingle, C. J. (2003). Inactivation of BK channels bythe NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121,125– 148.
    51. Zeng, X. H., Xia, X. M., & Lingle, C. J. (2003). Redox-sensitive extracellulargates formed by auxiliary beta subunits of calcium-activated potassiumchannels. Nat Struct Biol 10, 448– 454.
    52. Jin, P., Weiger, T. M., & Levitan, I. B. (2002a). Reciprocal modulation between the alpha and beta 4 subunits of hSlo calcium-dependent potassium channels. J Biol Chem 277, 43724– 43729.
    53. Stefani, E., Ottolia, M., Noceti, F., Olcese, R., Wallner, M.,Latorre, R. and Toro, L. (1997) Voltage-controlled gating in alarge conductance Ca2+-sensitive K+ channel (hslo) Proc.Natl. Acad. Sci. USA 94, 5427–5431.
    54. Horrigan, F. T. and Aldrich, R. W. (1999) Allosteric voltage gating of potassium channels II. Mslo channel gating chargemovement in the absence of Ca2+. J. Gen. Physiol. 114, 305–336.
    55. Diaz, L., Meera, P., Amigo, J., Stefani, E., Alvarez, O., Toro,L. and Latorre, R. (1998) Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J. Biol. Chem. 273, 32430–32436.
    56. Cui, J. and Aldrich, R. W. (2000) Allosteric linkage between voltage and Ca2+dependent activation of BK-type mslo1 K+ channels. Biochemistry (Mosc) 39, 15612–15619.
    57. Ma, Z., Lou, X. J. and Horrigan, F. T. (2006) Role of chargedresidues in the S1–S4 voltage sensor of BK channels. J. Gen.Physiol. 127, 309–328.
    58. Horrigan, F. T., Cui, J. and Aldrich, R. W. (1999) Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+. J. Gen. Physiol. 114, 277–304.
    59. Ledwell, J. L. and Aldrich, R. W. (1999) Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation. J. Gen. Physiol. 113, 389–414.
    60. Soler-Llavina, G. J., Chang, T. H. and Swartz, K. J. (2006) Functional interactions at the interface between voltage sensing and pore domains in the Shaker Kv channel. Neuron 52, 623–634.
    61. Yang, H., Hu, L., Shi, J., Delaloye, K., Horrigan, F. T. and Cui,J. (2007) Mg2+ mediates interaction between the voltage sensor and cytosoli domain to activate BK channels. Proc.Natl. Acad. Sci. USA 104, 18270–18275.
    62. Bao, L., Rapin, A. M., Holmstrand, E. C. and Cox, D. H.(2002) Elimination of the BK channels high-affinity Ca2+ sensitivity. J. Gen. Physiol. 120, 173–189.
    63. Xia, X. M., Zeng, X. and Lingle, C. J. (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884.
    64. Moss, G. W., Marshall, J. and Moczydlowski, E. (1996) Hypothesis for a serineproteinase-like domain at the COOH terminus of Slowpoke calcium-activated potassium channels. J. Gen. Physiol. 108, 473–484
    65. Bian, S., Favre, I. and Moczydlowski, E. (2001) Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation. Proc. Natl. Acad. Sci. USA 98, 4776–4781.
    66. Niu, X. and Magleby, K. L. (2002) Stepwise contribution of each subunit to the cooperative activation of BK channels by Ca2+. Proc. Natl. Acad. Sci. USA 99, 11441–11446.
    67. Yusifov, T., Savalli, N., Gandhi, C. S., Ottolia, M. and Olcese,R. (2008) The RCK2 domain of the human BK channel is a calcium sensor. Proc. Natl. Acad. Sci. USA 105, 376–381.
    68. Schreiber, M., Yuan, A. and Salkoff, L. (1999) Transplantable sites confer calcium sensitivity to BK channels. Nat. Neurosci.2, 416–421.
    69. Horrigan, F. T. and Aldrich, R. W. (2002) Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. J. Gen.Physiol. 120, 267–305.
    70. Cui, J., Cox, D. H. and Aldrich, R. W. (1997) Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca2+-activated K+ channels. J. Gen. Physiol. 109, 647–673.
    71. Moczydlowski, E. and Latorre, R. (1983) Gating kinetics of Ca2+-activated K+channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J. Gen. Physiol. 82, 511–542.
    72. Pluznick, J. L., Wei, P., Carmines, P. K., & Sansom, S. C. (2003). Renal fluid and electrolyte handling in BK-beta1_/_ mice. Am J Physiol Renal Physiol 284, F1274– F1279.
    73. Pluznick, J. L., Wei, P., Grimm, P. R., & Sansom, S. C. (2005). BK-?1 subunit: immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 288, F846–F854.
    74. Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y., & Aldrich, R. W. (2000). Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275, 6453– 6461.
    75. Sausbier, M., Arntz, C., Bucurenciu, I., Zhao, H., Zhou, X. B., Sausbier, U., et al. (2005). Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112, 60–68.
    76. Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O. Mice with disrupted BK channel ?1 subunit gene feature abnormal Ca2+ spark/STOC coupling and elevated blood pressure. Circ Res. 2000;87:E53–E60
    77. Hagen, B. M., Bayguinov, O., & Sanders, K. M. (2003). ?1 subunits are required for regulation of coupling between Ca2+ transients and Ca2+-activated K+ (BK) channels by protein kinase C. Am J Physiol Cell Physiol. 285, C1270– C1280.
    78. Biagi, G., Giorgi, I., Livi, O., Nardi, A., Calderone, V., Martelli, A., et al.(2004b). Synthesis and biological activity of novel substitutedbenzanilides as potassium channel activators: V. Eur J Med Chem .39, 491– 498.
    79. Bolotina, V. M., Najibi, S., Palacino, J. J., Pagano, P. J., & Cohen, R. A. (1994).Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368, 850–853.
    80. Mistry, D. K., & Garland, C. J. (1998). Nitric oxide (NO)-induced activation of large conductance Ca2+- dependent K+ (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124, 1131– 1140.
    81. Sun, C. W., Alonso-Galicia, M., Taheri, M. R., Falck, J. R., Harder, D. R., &Roman, R. J. (1998). Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circ Res 83, 1069– 1079.
    82. Alioua, A., Huggins, J. P., & Rousseau, E. (1995). PKG-I alpha phosphorylates the alpha-subunit and upregulates reconstituted GBK channels from tracheal smooth muscle. Am J Physiol 268, L1057– L1063.
    83. Fukao, M., Mason, H. S., Britton, F. C., Kenyon, J. L., Horowitz, B., & Keef, K. D. (1999). Cyclic GMP-dependent protein kinase activates cloned BK channels expressed in mammalian cells by direct phosphorylation at serine1072. J Biol Chem 274, 10927– 10935.
    84. Wang, R., Wu, L., & Wang, Z. (1997). The direct effect of carbon monoxide on BK channels in vascular smooth muscle cells. Pflugers Arch 434, 285–291.
    85. Benham CD, Bolton TB. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of rabbit. J Physiol (Lond).1986;381:385– 406.
    86. Tom B. Bolton Calcium events in smooth muscles and their interstitial cells; physiological roles of sparks. J Physiol 570.1 (2006) pp 5–11 5
    87. Rusch NJ, De Lucena RG, Wooldridge TA, England SK, Cowley AWJ.A Ca2+-dependent K+ current is enhanced in arterial membranes of hypertensive rats. Hypertension. 1992;19:301–307.
    88. Rusch NJ, Runnells AM. Remission of high blood pressure reverses arterial potassium channel alterations. Hypertension. 1994;23:941–945.
    89. Silva EG, Frediani-Neto E, Ferreira AT, Paiva ACM, Paiva TB. Role of Ca2+-dependent K+ in the membrane potential and contractility of aorta from spontaneously hypertensive rats. Br J Pharmacol. 1994; 113:1022–1028.
    90. Liu Y, Jones AW, Sturek M. Ca2+-dependent K+ current in arterial smooth muscle cells from aldosterone-salt hypertensive rats. Am J Physiol. 1995;269:H1246–H1257.
    91. Asano M, Masuzawa-Ito K, Matsuda T, Imaizumi Y, Watanabe M, ItoK. Functional role of Ca2+-activated K+channels in resting state of carotid arteries from SHR. Am J Physiol. 1993;265:H843–H851.
    92. Asano M, Masuzawa-Ito K, Matsuda T, Charybdotoxin-sensitive K+ channels regulate the myogenic tone in the resting state of arteries from spontaneously hypertensive rats. Br J Pharmacol. 1993;108:214–222.
    93. Kolias TJ, Chai S, Webb RC. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats. Am J Hypertens. 1993;6:528–533.
    94. Asano M, Nomura Y, Ito K, Uyama Y, Imaizumi Y, Watanabe M. Increased function of voltage-dependent Ca2+ channels and Ca2+ -activated K+ channels in resting state of femoral arteries from sponta spontaneouslyhypertensive rats at prehypertensive stage. J Pharmacol Exp Ther. 1995;275:775–783.
    95. Paterno R, Heistad DD, Faraci FM. Functional activity of Ca2+-dependent K+ channels is increased in basilar artery during chronic hypertension. Am J Physiol. 1997;272:H1287–H1291.
    96. Liu Y, Hudetz AG, Knaus H-G, Rusch NJ. Increased expression of Ca2+-sensitive K+channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm. Circ Res. 1998;82:729–737.
    97. Wellman GC, Nelson MT. Signaling between SR and plasmalemma insmooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium. 2003;34:211–229.
    98. The BK Channel: Protective or Detrimental in Genetic Hypertension? Lucie H. Clapp and Rita I. Jabr .Circ. Res 2003;93;893-895
    99. Amberg GC, Santana LF. Downregulation of the BK channel ? subunit in genetic hypertension. Circ Res. 2003;93:965–971.
    100.Differences in K+ Current Components inMesenteric Artery Myocytes From WKY and SHR Robert H. Cox, Irina Lozinskaya, and Nancy J. Dietz AJH 2001; 14:897–907
    101.Fukami, Y., Toki, Y., Numaguchi, Y., Nakashima, Y., Mukawa, H., Matsui, H.,et al. (1998). Nitroglycerin-induced aortic relaxation mediated by calcium activated potassium channel is markedly diminished in hypertensive rats. Life Sci 63, 1047–1055.
    102.Pluger, S., Faulhaber, J., Furstenau, M., Lohn, M., Waldschutz, R., Gollasch,M., et al. (2000). Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca2+spark/STOC coupling and elevated blood pressure. Circ Res 87, E53–E60.
    103.Shesely, E. G., Maeda, N., Kim, H. S., Desai, K. M., Krege, J. H, Laubach, V. E., et al. (1996). Elevated blood pressures in mice lacking endothelial nitric oxide synthase.Proc Natl Acad Sci U S A 93,13176– 13181.
    104.Fernandez-Fernandez, J. M., Tomas, M., Vazquez, E., Orio, P., Latorre, R., Senti, M., et al. (2004). Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. J Clin Invest 113, 1032–1039.
    105.Liu Q, Flavahan NA. Hypoxic dilatation of porcine small coronary arteries: role of endothelium and KATP-channels. Br J Pharmacol 1997;120:728–34
    106.Kinoshita H, Azma T, Nakahata K, Iranami H, Kimoto Y, Dojo M, Yuge O, Hatano Y. Inhibitory effect of high concentration of glucose on relaxations to activation of ATP-sensitive K channels in human omental artery. Arterioscler Thromb Vasc Biol 2004;24:2290–5
    107.Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP IV, Boyd AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the _-cell high-affinity sulphonylurea receptor: a regulator of insulin secretion. Science 268:423–426.
    108.Quayle JM, Bonev AD, Brayden JE, Nelson MT (1994) Calcitonin gene-related peptide activated ATP-sensitive K+currents in rabbitarterial smooth muscle via protein kinase A. J Physiol 475:9–13.
    109.Tong Lu, Dan Ye, XiaoliWang, John M. Seubert, Joan P. Graves, J. Alyce Bradbury, Darry,C. Zeldin2and Hon-Chi Lee Cardiac and vascular KATP channels in rats are activated by endogenous epoxyeicosatrienoic acids through different mechanisms. J Physiol 575.2 (2006) pp 627–644
    110.Teramoto N. Physiological roles of ATP-sensitive K+ channels in smooth muscle. Physiol.(Lond.) 2006; 572(Pt 3): 617–624.
    111.Brayden J E. Functional roles of KATP channels in vascular smooth muscle. Clin. Exp. Pharmacol Physiol 2002; 29(4): 317–323.
    112.Cao K, Tang G, Hu D el a1. Molecular basis of ATP-sensitive K+ channels i rat vascular smooth muscles.Biochem Biophy Res Commun 2002; 296(2) 463-469.
    113.Cui Y, Tran S, Tinker A, et al. The molecular composition of KATP channels in human pulmonary artery smooth muscle cells and their modulation by growth. Am J Respir Cell Mol Biol 2002; 26(1):135–143.
    114.Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev 1997; 77(4): 1165–1232.
    115.Kitazono T, Heistad DD, Faraci FM. ATP-sensitive potassium channels in the basilar artery during chronic hypertension. Hypertension. 1993; 22:677– 681.
    116.Sobey CG, Heistad DD, Faraci FM. Effect of subarachnoid hemorrhage on cerebral vasodilatation in response to activation of ATP-sensitive K+ channels in chronically hypertensive rats. Stroke. 1997;28:392–397.
    117.Takaba H, Nagao T, Ibayashi S, Kitazono T, Fujii K, Fujishima M. Altered cerebrovascular response to a potassium channel opener in hypertensive rats. Hypertension. 1996;28:143–146.
    118.Ohya Y, Setoguchi M, Fujii K, Nagao T, Abe I, Fujishima M. Impaired action of levcromakalim on ATP-sensitive K+channels in mesenteric artery cells from spontaneously hypertensive rats. Hypertension. 1996;
    119.Miyata N, Tsuschida K, Otomo S. Functional changes in potassium channels in carotid arteries from stroke-prone spontaneously hypertensive rats. Eur J Pharmacol. 1990;182:209–210.
    120.Toyoda K, Fujii K, Ibayashi S, Kitazono T, Nagao T, Takaba H, Fujishima M. Attenuation and recovery of brain stem autoregulation in spontaneously hypertensive rats. J Cereb Blood Flow Metab. 1998;18:305–310.
    121.Hutri-Kahonen N, Kahonen M, Sand J, Nordback I, Taurio J, Porsti I. Control of vascular tone in isolated mesenteric arterial segments from hypertensive patients. Br J Pharmacol. 1999;127:1735–1743.
    122.Hongo K, Tsukahara T, Kassell NF, Ogawa H. Effect of subarachnoid hemorrhage on calcitonin gene-related peptide-induced relaxation in rabbit basilar artery. Stroke. 1989;20:100–104.
    123.Nozaki K, Okamoto S, Uemura Y, Kikuchi H, Mizuno N. Vascular relaxation properties of calcitonin gene-related peptide and vasoactive intestinal peptide in subarachnoid hemorrhage. J Neurosurg. 1990;72:792–797.
    124.Edvinsson L, Delgado-Zygmunt T, Ekman R, Jansen I, SvendgaardN-A, Uddman R. Involvement of perivascular sensory fibers in the pathophysiology of cerebral vasospasm following subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1990;10:602– 607.
    125.Frank Reimann and Frances M Ashcroft. Inwardly rectifying potassium channels. Current Opinion in Cell Biology 1999, 11:503-508
    126.Lee JK, John SA, Weiss JN: Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. J Gen Physiol 1999,113:555-563.
    127.Smith, Pamela D; Brett, Suzanne E; Luykenaar, Kevin D; Sandow, Shaun L; Marrelli, Sean P ; Vigmond, Edward J; Welsh, Donald G. KIR channels function as electrical amplifiers in rat vascular smooth muscle. Journal of Physiology. 586(4):1147-1160, February 15, 2008.
    128.陆彤蒋彬,内向整流性钾离子通道家族。中国心脏起搏与心电生理杂志2009年第23卷第3期·189·
    129.Christopher G. Sobey. Potassium Channel Function in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2001;21;28-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700