用户名: 密码: 验证码:
塑性材料超声振动精密切削技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,在机械工程、微电子工程等领域,对工件的加工精度和表面质量的要求越来越高,特别是在国防工业领域,精密和超精密加工技术起着至关重要的作用,这直接关系着产品的精度,而产品的精度又影响产品的性能。利用高精密机床,加工出高精度零件是实现机械零件精密加工的主要途径,然而通过该途径实现高精度加工耗资巨大,为生产出精密与超精密加工机床需要解决许多技术难题,严重限制了他们的使用。利用现有条件,采用新型的复合加工方法,提高精密机床的加工精度,对提高我国尖端武器性能、打破国外的技术封锁、缩短我国与发达国家在精密工程领域的差距、促进国防事业的发展具有重要意义。本着少花钱多办事的原则,进行特种加工方法的研究,对于解决我国长期以来超精密设备需要进口的问题,也具有重大的经济效益和广阔的应用前景。
     超声波振动切削是一种新型的特种切削加工方法,是一种复合工艺,超声波振动在一定条件下能够有效地解决精密切削加工的问题,但是目前对其机理的研究大都根据各自的试验表象以及所得到的工艺效果分析而得。本文通过建立刀尖对应工件处的内嵌弹性区力学模型,利用断裂动力学原理进行切削区的力学分析,通过求解给定的初始条件、边界条件下的波动方程,给出裂尖区的动态断裂应力强度因子,得出工件在振动切削时由于加入了超声振动而引起的动态效应,提供了工件发生超前应力断裂的条件,从而引起了切削力的下降。
     与此同时,提出了超声波振动切削的弹塑性有限元模型,并综合考虑材料的硬化和应变率相关性的基础上,以切削塑性材料为例,分析了超声波振动车削中工件与刀具之间的相互作用,利用有限元仿真方法对超声振动切削中,对切削区的应力变化进行仿真,给出了刀尖前对应点的应力变化情况,与前面的理论计算进行对比分析。最后进行了SHPB动态冲击试验的验证,得到了令人满意的结果,也在一定程度上验证前面的理论分析的正确性。
     通过分析振动切削中刀具与工件的运动,建立精密振动切削塑性材料的平均切削力的关于振动参数的计算模型,并利用Matlab数值仿真软件给出振动切削中振动参数对平均切削力的影响规律。为振动切削加工中,超声波振动参数的选择提供了理论依据。
     将带有超声振动的切削刀具与切屑的作用面抽象成为一对带有外加超声振动的摩擦幅,对摩擦副表面形貌以及实际接触情况的进行分析,从粗糙峰粘附、粗糙峰犁沟、磨损残留微粒的犁沟等作用的角度入手,对摩擦副间的摩擦力加以分析,从能量的观点出发给出超声振动存在的条件下摩擦系数与表面粗糙度关系的计算模型。在自行研制的动摩擦系数实验台上进行了平面摩擦副的摩擦系数的测定。
     最后,设计建立了一套超声振动切削实验系统,进行超声振动切削与普通切削的对比试验,及振动切削中各参数对工件表面粗糙度等影响的实验研究,得到了较好的效果。
With the development of science and technology, because machining accuracy and surface quality of work piece are more strictly required, precision and ultra-precision technique is very important in the field of mechanical engineering, microelectronic engineering, biology engineering, especially in national defense industry. This technique impacts the accuracy of products and the accuracy impacts performance of it. It is a major approach to product high precision part adopting high precision machine. However, this approach is consumption on financing. Many technique problems must be solved before precision and ultra-precision machine are produced, which restricts its application seriously. Using existing equipment and adopting new-type multiple machining is a new approach to improve machining accuracy of precision machine. It is significant to break foreign technique blocking, improve the performance of advanced weapons, shorten technological gap distancing developed countries, and promote the development of national defense.
     Ultrasonic vibration cutting is a new-type non-traditional machining, a multiple machining. It can resolve precision machining problem effectively under certain condition. But research on cutting mechanism is not mature, study some processing affects from the test representation, mostly. Embedded elastic zone model of cutting zone is established in this paper. By means of solving the wave equation under a given initial condition and boundary condition, making force analysis of cutting zone, dynamic stress intensity factor is showed. Dynamic effect caused by ultrasonic vibration provides condition for leading fracture of work piece, so cutting force falls down.
     At the same time, an elastic-plastic finite element model of vibration cutting is put forward. Materials harden and strain ration correlation is considered in this model. Interacting between work piece and tool is analyzed by finite element method, and cutting zone stress is simulated. Stress variation of a point corresponding to tool tip is described. At last, SHPB impact test is made to proof above theory analysis results in a finite degree.
     A calculation model about relationship between average cutting force and vibration parameters is established by analyzing the relative movement between tool and work piece in ultrasonic vibration cutting. Using the method of simulation, an effect rule on cutting force is provided. It offers a theory gist for selection of vibration parameters in practical vibration cutting.
     Contact surface between tool and chip is abstracted into a friction pairs with ultrasonic vibration, and the real contacting surface is analyzed. From the viewpoint of coarse peak adhere, furrow and debris furrow, friction force is analyzed. Under the condition of ultrasonic vibration, the calculation model for the relation between coefficient of friction and surface roughness is presented. Finally an experimental device for measuring the kinetic coefficient of friction was design and test is performed.
     In this paper an ultrasonic vibration cutting test system is designed. Some experiments about surface roughness of work piece and vibration cutting forces are made using this test system. Perfect results are given by comparison between test and theory.
引文
1 Choi K.S, John S.T. Diamond Turning: Optimum Machining of Optical Crystals. Mechanical Engineering. 1991 ,(4):68~72
    2 李圣怡,戴一帆.超精密加工机床新进展.机械工程学报.2003,39(8):7~14
    3 袁哲俊,周明,韩向利.超精密机床的新发展.机械工艺师.1994,(11):40 ~42
    4 陈斌.超声精密加工装备与试验研究.上海交通大学硕士学位论文,2001:1~10
    5 袁艺,吕彦明,工纯.超声波振动切削应用范围理论探讨.太原机械学院学报.1994,15(3):189~194
    6 曹风国,张勤俭.超声加工技术的研究现状及其发展趋势.电加工与模具.2005,(s1):25-31
    7 G.-L.Chern, Jia-Ming Liang. Study on boring and drilling with vibration cutting. Machine Tools & Manufacture. 2007,47:131-140
    8 W.Qu.K.Wang, M.H.Miller, Y.Huang, A.Chandra. Using vibration-assisted grinding to reduce subsurface damage. Precision Engineer. 2000,24:329-337
    9 Y.Wu, Y.Fan, M.Kato, T.Kuriyagawa, K.Syoji, T.Tachibana. Development of an ultrasonic elliptic-vibration shoe centerless grinding techniques. Materials Processing Technology. 2004,155:1780-1787
    10 Gwo-Liang Chern, Yuan-Chin Chang. Using two-dimensional vibration cutting for micro-milling. Machine Tools & Manufacture. 2006,46:659-666
    11韩荣第,于启勋.难加工材料切削加工.机械工业出版社.1996:210~215
    12李祥林,薛万夫,张日升.振动切削及其在机械加工中的应用.北京科学技术出版社.1985:88~109
    13 T.Moriwaki, E.Shamoto. Ultra-precision Diamond Turning of Stainless Steel by Applying Ultrasonic Vibration. Annals of the CIRP. 1991,40(1 ):559~562
    14 T.Moriwaki, E.Shamoto, K.Inoue. Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic vibration. Annals of the CIRP. 1992,41(1):141~144
    15 Masahhiko Jin, Masao Murakawa. Development of a practical ultrasonicvibration cutting tool system. Materials Processing Technology. 2001,113:342-347
    16 M.Xiao, K.Sato, S.Karube, T.Soutome. The effect of tool nose radius in ultrasonic cutting of hard metal. MACHINE TOOLS AND MANUFACTURE. 2003,43:1375-1382
    17 M.Xiao, S.Karube, T.Soutome, K.Sato. Analysis of chatter suppression in vibration cutting. MACHINE TOOLS AND MANUFACTURE. 2002,42:1677-1685
    18 M.Xiao, Q.M.Wang, K.Sato, S.Karube, T.Soutome, H.Xu. The effect of tool geometry on regenerative instability in ultrasonic vibration cutting. MACHINE TOOLS AND MANUFACTURE. 2006,46:492-499
    19 Norikazu SUZUKI, Akihiro NAKAMURA, Eiji SHAMOTO, Kazuhiro HARADA, Makoto MATSUO,Michio OSADA.Ultrapresion Micromachining of Hardened Steel by Applying Ultrasonic Elliptical Vibration Cutting.2003 INTERNATIONAL SYMPOSIUM ON MICROMECHATRONICS AND HUMAN SCIENCE.2003:221-226
    20 Shamoto.E, Suzuki.N, Moriwaki.T, Naio.Y. Development of Ultrasonic Elliptical Vibration Controller for Elliptical Vibration Cutting. Annals of the CIRP.2002,90(l):327~330
    21 Shamoto.E, Suzuki.N. Ultraprecision Machining of Hard Materials by Applying Ultrasonic Elliptical Vibration Cutting. International Progress on Advanced Optics and Sensors.2003,10:195-201
    22 Shu Karube, Wataru Hoshino, Tatsuo Soutome, Keijin Sato. The non- linear phenomena in vibration cutting system The establishment of dynamic model. NON-LINEAR MECHANICS.2002,(37):541~564
    23张云电.超声加工及其应用.国防工业出版社.1995:1~3
    24林晶.超声波振动切削机理的微观研究.哈尔滨工程大学硕士论文. 2000:1~7
    25 J.Schmutz, E,Brinksmeier, E.Bischoff. Sub-surface deformation in vibration cutting of copper. PRECISION ENGINEERING.2001,25:218-223
    26 V.I.Babitsky, A.V.Mitrofanov, V.V.Silberschmidt. Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics. 2004,42:81-86
    27 V.I.Babitsky, A.N.Kalashnikov, A.Meadows, A.A.H.P.Wijesundara. Ultrason-ically assisted turning of aviation materials. Materials Processing Technology. 2003, 132:157-167
    28 N.Ahmed, A.V.Mitrofanov, V.I.Babitsky, V.V.Silberschmidt. Analysis of material response to ultrasonic vibration loading in turning Inconel 718. 2006,424:318-325
    29 V. I. Babitsky, A. N. Kalashnikov, F. V. Molodtsov. Autoresonant control of ultrasonically assisted cutting. MECHATRONICS.2004(14):91-114
    30 V.I.Babitsky. Theory of Vibro-impact System and Application. Springer, Belin.l998:25~50
    31 VK.Astashev, V.I.Babitsky. Ultrasonic cutting as a nonlinear (vibro-impact) process.Ultrasonics. 1998,36:89-96
    32 V.I.Babitsky. Autoresonant mechatronic systems. Mechatronics.l995(5):483~ 495
    33 V.I.Babitsky, V.K.Astashev, A.N.Kalashnikov. Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications. Ultrasonics. 2004,42:29-35
    34 A.V.Mitrofanov, V.I.Babitsky, V.V.Silberschmidt. Finite element simulations of ultrasonically assisted turning. COMPUTATIONAL MATERIALS SCIENCE. 2003(28): 645-653
    35 Jeong-Du Kim, In-Hyu Choi. Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. Material Processing Technology. 1997,68:89-98
    36 Jun-Seok Lee, Deug-Woo Lee, Young-Ho Jung, Woo-Seop.Chung.A study on micro-grooveing characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting. Matericals Processing Technology. 2002,130: 396-400
    37 Gi Dae Kim, Byoung Gook Loh. An ultrasonic elliptical vibration cutting device for micro V-groove machining:Kinematical analysis and micro V-groove machining characteristics. Materials Processing Technology.2007, 151:221-229
    38 Ming Zhou, XJ.Wang, B.K.A.Ngoi, J.GK.Gan. Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. Materials Processing Technology.2002,121:243~251
    39 J.Gan, X.Wang, M.Zhou, B.Ngoi, Z.Zhong. Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration. Advanced Manufacturing Technology. 2003,21:952-955
    40 X.Wang,M.Zhou.J.G.-K.Gan,B.Ngoi.Theoretical and Experimental Studies of Ultrapercision Machining of Brittle Materials with Ultrasonic Vibration. Advanced Manugacturing Technology.2002,20:99~102
    41 K.Liu, X.P.Li, M.Rahman, X.D.Liu. A study of the cutting modes in the grooving of tungsten carbide. Advanced Manufacturing Technology. 2004, 24: 321-326
    42 K.Liu, X.P.Li, M.Rahman, X.D.Liu. Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. Advanced Manufacturing Technology.2004,24:389-394
    43 SeongMin Son, HanSeok Lim, JungHwan Ahn. The effect of vibration cutting on minimum cutting thickness. Machine Tools & Manufacture. 2006, 46:2066-2072
    44 SeongMin Son, HanSeok Lim, JungHwan Ahn. Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Machine Tools & Manufacture. 2005,45:529-535
    45周正干,王春生,张波,张德远,李和平.超声波振动加工中的自动调谐技术研究.制造业自动化.2000,(4):20~23
    46季远,李勋,张德远.超声椭圆振动精密切削.航空制造技术.2005,(4):92~95
    47李勋,张德远.单激励超声椭圆振动车削薄壁筒实验研究.航空学报.2006,27(4):720-723
    48 LI Xun, JI Yuan, ZHANG Deyuan. Research on the transducer of the ultrasonic elliptical vibration cutting based on the finite element method. 7th International Conference on Progress of Machining Technology. Suzhou. 2004: 452-457
    49李华,张德远.新型单激励椭圆超声振动切削系统的研究.中国机械工程.2005,16(22):1983~1990
    50陈斌,徐可伟,朱训生.超声振动切削薄壁镜简零件的研究.机械工程 师.2001,(1):40~42
    51 Chunxiang Ma, E.Shamoto.T, Moriwaki, Lijiang Wang. Study of machiningaccuracy in ultrasonic elliptical vibration cutting. MACHINE TOOLS AND M ANUFACTURE.2004,44:1305-1310
    52马春翔,胡德金.超声波椭圆振动切削技术.机械工程学报.2003,39(12):67~70
    53 Chunxiang Ma, E.Shamoto, T.Moriwaki, Yonghong Zhang, Lijiang Wang. Suppression of burrs in turning with ultrasonic elliptical vibration cutting. MACHINE TOOLS AND MANUFACTURE.2005,45:1295~1300
    54马春翔,社本英儿,森肋俊道.超声波椭圆振动切削提高加工系统稳定性的研究.兵上学报.2004,25(6):752~756
    55马春翔,潘铭跃,王海丽.弱刚度零件的超声波椭圆振动切削加工.南京航空航天大学学报.2005,37:121~124
    56 Ma Chunxiang, E Shamoto, T Moriwaki. Chatter Suppression with Ultrasonic Elliptical Vibration Based on Energy Principle. JOURNAL OF CHINA ORDNANCE SOCIETY. 2005,l(2):229~232
    57马春翔,王艳,社本英儿,森肋俊道.超声波振动金刚石刀具对脆性材料临界切削深度的影响.机械工程学报.2005,41(6):198~202
    58 GF.Gao, B.Zhao, F.Jiao, C.S.Liu. Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic cutting. Materials Processing Technology.2002,129:66~70
    59 Gao Guofu, ZHAO Bo, JIAO Feng, LIU Chuanshao. Research on influence of cutting conditions on micro surface feature of ultra-thin wall parts in ultrasonic vibration cutting. Proceedings of the 10th International Manufacturing Conference in China, Xiamen, 2002,139
    60 JIAO Feng, ZHAO Bo, LIU Chuanshao, GAO Guofu. Research on the influence of cutting conditions on roundness of ultra-thin wall parts in ultrasonic vibration cutting. Proceedings of the 10th International Manufacturing Conference in China, Xiamen, 2002,147
    61 ZHAO Bo, ZHU Xunsheng, XU Kewei. Research on surface micro-configuration in vibration cutting metallic matrix particulate reinforced composites SiCp/Al. Proceedings of the 10th International Manufacturing Conference in China, Xiamen, 2002,143
    62 ZHAO Bo, ZHU Xunsheng, XU Kewei. Research on vibration cutting performance of metallic matrix particulate reinforced composites SiCp/Al.Proceedings of the 10th International Manufacturing Conference in China, Xiamen, 2002,142
    63 LIU Chuanshao, ZHAO Bo, ZHU Xunsheng, Xu Kewei. Research on the features of cutting force in vibration cutting particulate reinforced metallic matrix composites SiCp/Al. Proceedings of the 10th International Manufacturing Conference in China, Xiamen, 2002,146
    64左武斤,鲍剑斌,陈永洁.超声波精密切削基本特性的研究.华中理工大学学报.1994,(2):49—53
    65叶邦彦,周泽华.超声振动切削改善硬脆材料加工性的研究.华南理工大学学报.1994,(5):132~137
    66王立江,赵继,王立群,贾志新,刘群.超声波振动切削系统幅载特性的研究.兵工学报.1994,(4):48~52
    67张雷,王立江,赵继.超声波振动切削产生超越性加工现象的研究.光学精 密工程.1998,(2):49~55
    68高印寒,于向军,王连武,李东旭,王立江.超声波振动精密切削GFRP 的实验研究.光学精密工程.2003,11(6):591~595
    69阮世勋.超声波振动切削刀具磨损的研究.电加工.1995,(4):20~22,43
    70夏靖宇,朱训生,徐可伟,王鸿华.超声振动切削金属基复合材料的刀具磨损.航空精密制造技术.2002,38(2):l-4
    71丁黎光,李建光.超声振动切削夹片的应用研究.电加工与磨具.2005, (6):15~16
    72陈光军,顾立志.振动切削技术及最新进展.机械工程师.2005,(10):25~27
    73 Maeno T, Tsukimoto T, Miyake A. Finite element analysis of the rotor/stator contact in a ring-type ultrasonic motor. IEEE Trans. UFFC. 1992,39(6): 668-674
    74 Maeno T, Eavid B Bogy. Effect of the hydrodynamic bearing on rotor/stator contact in a ring-type ultrasonic motor. IEEE Trans. UFFC. 1992,39(6): 675-682
    75 J.Gradisek, E.Govekar, I.Grabec. A Chaotic Cutting Process and Determining Optimal Cutting Parameter Values Using Neural Networks. Machine Tools & Manufacture. 1996,36( 10): 1161 ~ 1172
    76 S.Chatterjee, T.K.Singha. Controlling chaotic instability of cutting process by high-frequency excitation: a numerical investigation. Sound and Vibration.2003,267:1184-1192
    77 Grzegorz Litak. Chaotic vibrations in a regenerative cutting process. Chaos Solitons & Fractals. 2002,13:1531-1535
    78 M.Wiercigroch. Chaotic and Stochastic Dynamics of Orthogonal Metal Cutting. Chaos Solitons & Fractals. 1997,8(4):715-726
    79 Jingchuan Pan, Chun-Yi Su. Chatter Suppression With Adaptive Control in Turning Metal Via Application of Piezoactuator. Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida USA, 2001: 2436-2441
    80 J.R.PRATT, A.H.NAYFEH. Design and Modeling for Chatter Control. Nolinear Dynamics. 1999,19:49-69
    81 M.E.Merchant. Basic Mechanics of the Metal Cutting Process. Applied Mechanics, 1944,11:A168-A175
    82 M.E.Merchant. Mechanics of the Metal Cutting Process. Applied Physics. 1945,16:267-318
    83 E.H.Lee, B.W.Shaffer. Theory of Plasticity Applied to a Problem of Machining. Applied Mechanics.1951,18:405-413
    84 E.Usui,T.Shirakashi. Mechanics of Machining-from Descriptive to Predictive Theory. On the Art of Cutting Metals-75 Years Later, ASME PED. 1982, 7: 13-35
    85罗旋.β-SiC表面及A1/SiC界面结构的分子动力学模拟.哈尔滨工业大学 博士论文.1997:15-20
    86 A.G.Mamalis, M.Horvath, A.S.Branis. Finite element simulation of chip formation in orthogonal metal cutting. Journal of Materials Processing Technology. 2001,110:19-27
    87 J.S.Strenkowski, K.J.Moon. Finite Element Prediction of Chip Geometry and Tool/Workpiece Temperature Distribution in Orthogonal Metal Cutting. TranASME J Eng Ind, 1990,127:313-318
    88 J.Hasshemi, P.C.Chow, A.A.Tseng. Thermomechanical Behavior of Adiabatic Shear Band in High Speed Forming and Machining. In: XXII ICHMT International Symposium on Manufacturing and Material processing, Dubrovnik, Yugoslavi,27 August 1990:10-14
    89 Y.Furukawa, N.Moronuki. Effect of Material Properties on Ultra- preciseCutting Process. Ann CIRP. 1998,37:113-120
    90 N.Kawa,S.Shimadeaed.Chip Morphology and Minimum Thickness of Cut in Micromachining. JSPE.1993,59:141-147
    91 T.Moriwaki, N.Sugimura, S.Luan. Combined Stress, Material Flow and Heat Analysis of Orithogonal Micromachining of Copper. Annals of the CIRP.1993,42(l):75-84
    92 H.Sasahara, T.Obikawa, T.Shirakashi. FEM Analysis of Cutting Sequence Effect on Mechanical Characteristics in Machined Layer. Journal of Materials Processing Technology. 1996,62:448-453
    93 E.Ceretti, P.Fallbohmer, W.T.Wu, T.Altan. Application of 2D FEM to Chip Formation in Orthogonal Cutting.Journal of Materials Processing Technology. 1996,59:169-180
    94 E.Ceretti, M.Lucchi,T.Altan.FEM Simulation of Orthogonal Cutting:Serrated Chip Formation. Journal of Materials Processing Technology. 1999,95:17-26
    95 E.Ceretti, C.Lazzaroni, L.Menegardo, T.Altan. Turning Simulation Using a Three-dimension FEM Code. Journal of Materials Processing Technology. 2000,98:99-103
    96 E.Ceretti, E.Taupin, T.Altan. Simulation of Metal Flow and Fracture Application in Orthogonal Cutting, Blanking and Cold Extrusion. Annal of CIRP.1997,46(l):187-190
    97王道林.断裂力学在金属切削中的应用.机械制造与自动化.2003,(6):55-56
    98 A.GAtkins. Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. International Journal of Mechanical Sciences. 2003,45:373-396
    99 A.GAtkins. Toughness and cutting: a new way of simultaneously determining ductile fracture toughness and strength. Engineering Fracture Mechanics. 2005,72:849-860
    100徐可伟,朱训生,赵波,陈斌,王鸿华.硬脆材料延性域切削的断裂力学有限元分析.上海交通大学学报.2001,12:1834-1841
    101 O.B.Aluko, H.W.Chandler. Characterisation and Modelling of Brittle Fracture in Two-dismensional Soil Cutting. Biosystems Engineering. 2004, 88(3): 369-381
    102 A.R.Shahani, M.Seyyedian. Simulation of glass cutting with an impinginghot air jet. International Journal of Solids and Structures. 2004,41: 1313-1329
    103 L.B.Freund.Imhoff.A.B.Dynamic Fracture Mechanics. Cambridge University Press. 1998
    104 C.LIU, W.G.KNAUSS, A.J.ROSAKIS. Loading rates and the dynamic initiation toughness in brittle solids. International Journal of Fracture. 1998, 90:103-118
    105谢水生,王祖唐.金属塑性变形工步的有限元数值模拟.冶金工业出版社, 1997:33-52
    106 J.E. Dunkin, D.E. Kim, Measurement of static friction coefficient between flat surfaces. Wear. 1996,193 (2): 186-192
    107温诗铸.摩擦学原理.清华大学出版社,1990
    108 Chou Cang-leh. Wave effects of ultrasonic vibration on machining. The Pennsylvania State University Doctor Thesis. 1994:95-100
    109(苏)克拉盖尔斯基著.汪一麟等译.摩擦磨损汁算原理.机械工业出版社,1982:51~104
    110 I. Sherrington, P. Hayhurst. Simultaneous observation of the evolution of debris density and friction coefficient in dry sliding steel contacts. Wear. 2001,249: 182-187
    111 J. Zhang, F. A. Moslehy, S. L. Rice. A model for friction in quasi-steady-state sliding: Part I. Derivation. Wear. 1991,149:1-12
    112郑林庆.摩擦学原理.高等教育出版社.1994:162~199
    113电机工程手册编辑委员会.机械工程手册.机械设计基础卷,第二版.机械工业出版社,1996:4-1~4-191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700