用户名: 密码: 验证码:
兔雌性胚胎干细胞X染色体活性状态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X染色体的活性状态与雌性胚胎干细胞(embryonic stem cells, ES cells)或诱导多能细胞(iuduced pluripotent stem cells, iPS cells)的多能状态有重要的相关性。双活性X染色体是雌性ES或iPS细胞具有生殖系嵌合能力的一种重要标志。兔是一种常用的实验室动物,虽然已经有较多的兔ES和iPS细胞系建立,但是一直未获得具有生殖系嵌合能力的细胞系,制约了转基因兔和兔胚胎发育等相关研究的进展。至今为止,在兔ES和iPS细胞的研究中,未见有关于X染色体活性状态的报道。
     本课题以B28-6、NJ12、NJ10等3株兔雌性ES细胞为研究对象,对兔雌性ES细胞X染色体活性状态进行研究。在前期研究中发现,兔雌性ES细胞系与人ES细胞类似,X染色体活性状态存在不同类别。3株兔雌性ES细胞在早期传代的条件下(P<10)均已经启动X染色体失活(Xchromosome inactive, XCI)。其中B28-6、NJ12免疫荧光染色H3K27me3点状着色,Xist正常表达,表现为一条活性一条失活的X染色体(XiXistXa)。有趣的是,余下的一株NJ10细胞系,H3K27me3点状着色,表明已经启动XCI,但是未检测到Xist表达(Xiw/oXistXa)。随着传代次数的增加,P12以后,丢失了H3K27me3修饰,表现为XCI受损(XeXa)。SCID小鼠体内分化试验及qRT-PCR检测结果提示,NJ10细胞存在体内分化能力缺陷及癌基因高表达。参考人ES细胞X染色体活性状态的分类,把B28-6、NJ12归为Ⅱ类,NJ10归为Ⅲ类ES细胞。在进一步试验中,证明了慢病毒介导过表达Oct4、Sox2、Klf4、c-Myc等4个转录因子,联合应用N2B27+LIF+2i培养体系,可以重编程NJ10细胞系。获得类似于小鼠ES细胞一样凸起克隆样生长的细胞,称为mESC-like兔ES细胞(mouse ES cell-like rabbit ES cells)。mESC-like兔ES细胞克隆形态凸起,细胞倍增时间缩短,胰酶单细胞消化传代克隆形成率高,自我更新信号通路由bFGF转化为LIF,NJ10Ⅲ类兔ES细胞类似于人ES细胞,而mESC-like兔ES细胞类似于小鼠ES细胞。最重要的是,通过X染色体活性的相关检测,SCID小鼠皮下注射体内分化能力检测,及qRT-PCR癌基因表达检测,证明了重编程不仅可以重新激活失活的X染色体,而且mESC-like兔ES细胞体内分化能力提高,癌基因表达下降。
     本研究不仅证明了兔ES细胞存在多种X染色体活性状态,且与人ES细胞在X染色体活性状态上存在着保守性。也证明通过慢病毒介导过表达Oct4等转录因子,可挽救兔ES细胞存在的体内分化缺陷。这些发现为以后优化兔ES细胞的培养体系,建立具有生殖系传递能力的兔ES细胞系提供了理论依据。
The deficiency of X-inactive specific transcript (Xist) on the inactive X chromosome affects the behavior of female ES cells (Embryonic stem cells) and iPS cells (iuduced pluripotent stem cells, iPS cells). However, X chromosome instability has not been identified in other species.The rabbit is a classical experimeatal animal. Previously established rabbit ES cells and rabbit iPS cells exhibited flat colony morphology and bFGF dependence and displayed many characteristics that were similar to those of human ES cells. Although rabbit ES cells have been previously derived in several laboratories, little is known about the X chromosome status of female rabbit ES cells and its correlation with pluripotency.
     In the present study, we investigated the X chromosome status of three female rabbit ES cell lines and found variations in X chromosome inactivation in early passages. Two of the rabbit ES cell lines B28-6and NJ12can be defined as class Ⅱ because they display a heterochromatic Xi with Xist RNA coating and H3K27me3foci. In contrast, the third cell line NJ10lacked Xist expression and Xist RNA coating. However, unlike the XaXa state, this cell line displayed H3K27me3foci at early passage (P8), did not express Xist during differentiation, thus indicated as Xist-deficient XiXa. Moreover, the H3K27me3foci would further lose in passaging and yield an eroded Xi (P12). Therefore, this cell line is considered to be class Ⅲ. We further found that the class Ⅲ rabbit ES cells exhibited relatively high expression levels of some oncogenes, orthologous genes of which were reported to be highly expressed in class Ⅲ human iPS cells. The class Ⅲ rabbit ES cells also showed poor differentiation in vivo compared to class Ⅱ and male rabbit ES cells. Furthermore, we found that the class Ⅲ rabbit ES cells could be converted into a mESC-like pluripotent state by overexpressing the reprogramming factors: Oct4, Sox2, Klf4and c-Myc. We examined the colony morphology, colony formation ability, transcriptional changes and the activation of signaling pathways associated with pluripotency. We found that the induced rabbit ES cells are more like mouse ES cells, which therefore defined as mESC-like rabbit ES cells. We then confirmed that the mESC-like rabbit ES cells re-obtain two active X chromosomes, meanwhile, the oncogene expression is repressed and the impaired differentiation ability in vivo is rescued.
     This experiments first indicated that the X chromosome instability and the impact of Xist-deficiency in Xi might be conserved between human and rabbit. These data also revealed that forced expression of reprogramming factors under optimized culture condition can reprogram the rabbit ES cells to mESC-like state which is XaXa state. Futher these data may be informative to other groups who will attempt to derive fully pluripotent rabbit ES cells or rabbit iPS cells.
引文
Anguera, M.C., Sadreyev, R., Zhang, Z., Szanto, A., Payer, B., Sheridan, S.D., Kwok, S., Haggarty, S.J., Sur, M., Alvarez, J., et al. (2012). Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11,75-90.
    Bao, S., Tang, F., Li, X., Hayashi, K., Gillich, A., Lao, K., and Surani, M.A. (2009). Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292-1295.
    Barakat, T.S., Gunhanlar, N., Pardo, C.G., Achame, E.M., Ghazvini, M., Boers, R., Kenter, A., Rentmeester, E., Grootegoed, J.A., and Gribnau, J. (2011). RNF12 activates Xist and is ess ential for X chromosome inactivation. PLoS Genet, (DOI:10.1371/journal.pgen.1002001).
    Batlle-Morera, L., Smith, A., and Nichols, J. (2008). Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis 46,758-767.
    Belmont, J.W. (1996). Genetic control of X inactivation and processes leading to X-inactivation skewing. Am J Hum Genet 58,1101-1108.
    Bermejo-Alvarez, P., Ramos-Ibeas, P., and Gutierrez-Adan, A. (2012). Solving the "X" in embryos and stem cells. Stem Cells Dev 21,1215-1224.
    Bertolini, F., Schiavo, G., Scotti, E., Ribani, A., Martelli, P.L., Casadio, R., and Fontanesi, L. (2014). High-throughput SNP discovery in the rabbit (Oryctolagus cuniculus) genome by next-generation semiconductor-based sequencing. Anim Genet 45,304-307.
    Blelloch, R., Venere, M., Yen, J., and Ramalho-Santos, M. (2007). Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1,245-247.
    Bock, A.S., Leigh, N.D., and Bryda, E.C. (2014). Effect of Gsk3 inhibitor CHIR99021 on aneu ploidy levels in rat embryonic stem cells. In Vitro Cell Dev Biol Anim, (DOI:10.1007/s11 626-014-9734-5).
    Brockdorff, N., Ashworth, A., Kay, G.F., McCabe, V.M., Norris, D.P., Cooper, P.J., Swift, S., and Rastan, S. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71,515-526.
    Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448,191-195.
    Brook, F.A., and Gardner, R.L. (1997). The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A 94,5709-5712.
    Buecker, C., Chen, H.H., Polo, J.M., Daheron, L., Bu, L., Barakat, T.S., Okwieka, P., Porter, A., Gribnau, J., Hochedlinger, K., et al. (2010). A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6,535-546.
    Buehr, M., Meek, S., Blair, K.., Yang, J., Ure, J., Silva, J., McLay, R., Hall, J., Ying, Q.L., and Smith, A. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell 135,1287-1298.
    Burdon, T., Stracey, C., Chambers, I., Nichols, J., and Smith, A. (1999). Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210,30-43.
    Byrne, J.A., Pedersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, D.P., and Mitalipov, S.M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450,497-502.
    Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113,643-655.
    Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10,615-624.
    Chen J, Guo L, Zhang L, Wu H, Yang J, Liu H, Wang X, Hu X, Gu T, Zhou Z, et al. (2013).Vitamin C modulates TET1 function during somatic cell reprogramming. Nat Genet 45,1504-1509.
    Cheung, A.Y., Horvath, L.M., Grafodatskaya, D., Pasceri, P., Weksberg, R., Hotta, A., Carrel, L., and Ellis, J. (2011). Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20,2103-2115.
    Cockburn, K., and Rossant, J. (2010). Making the blastocyst:lessons from the mouse. J Clin Invest 120, 995-1003.
    De Los Angeles, A., Loh, Y.H., Tesar, P.J., and Daley, G.Q. (2012). Accessing naive human pluripotency. Curr Opin Genet Dev 22,272-282.
    Diaz Perez, S.V., Kim, R., Li, Z., Marquez, V.E., Patel, S., Plath, K., and Clark, A.T. (2011). Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Hum Mol Genet 21,751-764.
    Dietrich, J.E., and Hiiragi, T. (2007). Stochastic patterning in the mouse pre-implantation embryo. Development 134,4219-4231.
    Dimos, J.T., Rodolfa, K.T., Niakan, K.K., Weisenthal, L.M., Mitsumoto, H., Chung, W., Croft, G.F., Saphier, G., Leibel, R., Goland, R., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321,1218-1221.
    Donohoe, M.E., Silva, S.S., Pinter, S.F., Xu, N., and Lee, J.T. (2009). The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460,128-132.
    Dvash, T., Lavon, N., and Fan, G. (2010). Variations of X chromosome inactivation occur in ea rly passages of female human embryonic stem cells. PloS one, (DOI:10.1371/journal.pone. 0011330).
    Ebert, A.D., Yu, J., Rose, F.F., Jr., Mattis, V.B., Lorson, C.L., Thomson, J.A., and Svendsen, C.N. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457,277-280.
    Esteban, M.A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284,17634-17640.
    Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell.6, 71-9.
    Ezashi, T., Telugu, B.P., Alexenko, A.P., Sachdev, S., Sinha, S., and Roberts, R.M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106, 10993-10998.
    Fan, J., and Watanabe, T. (2003). Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacol Ther 99,261-282.
    Fang, Z.F., Gai, H., Huang, Y.Z., Li, S.G., Chen, X.J., Shi, J.J., Wu, L., Liu, A., Xu, P., and Sheng, H.Z. (2006). Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos. Exp Cell Res 312,3669-3682.
    Fujimoto, A., Mitalipov, S.M., Kuo, H.C., and Wolf, D.P. (2006). Aberrant genomic imprinting in rhesus monkey embryonic stem cells. Stem Cells 24,595-603.
    Gao, Y., Chen, J., Li, K., Wu, T., Huang, B., Liu, W., Kou, X., Zhang, Y., Huang, H., Jiang, Y, et al. (2013). Replacement of Oct4 by Tetl during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12,453-469.
    Gardner, R.L. (1998). Contributions of blastocyst micromanipulation to the study of mammalian development. Bioessays 20,168-180.
    Giarratana, M.C., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M.C., Wajcman, H., and Douay, L. (2005). Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23,69-74.
    GR, M. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78,7634-7638
    Graham, A., Francis-West, P., Brickell, P., and Lumsden, A. (1994). The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372,684-686.
    Greber, B., Wu, G., Bernemann, C., Joo, J.Y., Han, D.W., Ko, K., Tapia, N., Sabour, D., Sterneckert, J., Tesar, P., et al. (2010). Conserved and divergent roles of FGF signaling in mouse epiblast stem cells and human embryonic stem cells. Cell Stem Cell 6,215-226.
    Guo, G., Yang, J., Nichols, J., Hall, J.S., Eyres, I., Mansfield, W., and Smith, A. (2009). Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063-1069.
    Hall, L.L., Byron, M., Butler, J., Becker, K.A., Nelson, A., Amit, M., Itskovitz-Eldor, J., Stein, J., Stein, G., Ware, C., et al. (2008). X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216,445-452.
    Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., Cassady, J.P., Muffat, J., Carey, B.W., and Jaenisch, R. (2010). Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci U S A 107,9222-9227.
    Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318,1920-1923.
    Hemberger, M., Dean, W., and Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment:digging Waddington's canal. Nat Rev Mol Cell Biol 10,526-537.
    Hirabayashi, M., Tamura, C., Sanbo, M., Kato-Itoh, M., Kobayashi, T., Nakauchi, H., and Hochi, S. (2013). A retrospective analysis of germline competence in rat embryonic stem cell lines. Transgenic Res 22,411-416.
    Hirano, K., Nagata, S., Yamaguchi, S., Nakagawa, M., Okita, K., Kotera, H., Ainscough, J., and Tada, T. (2012). Human and mouse induced pluripotent stem cells are differentially reprogrammed in response to kinase inhibitors. Stem Cells Dev 21,1287-1298.
    Hockemeyer, D., Soldner, F., Cook, E.G., Gao, Q., Mitalipova, M., and Jaenisch, R. (2008). A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3,346-353.
    Hoffman, L.M., Hall, L., Batten, J.L., Young, H., Pardasani, D., Baetge, E.E., Lawrence, J., and Carpenter, M.K. (2005). X-inactivation status varies in human embryonic stem cell lines. Stem Cells 23,1468-1478.
    Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K., and Ogura, A. (2010). Generation of induced pluripotent stem cells in rabbits:potential experimental models for human regenerative medicine. J Biol Chem 285,31362-31369.
    Honda, A., Hirose, M., and Ogura, A. (2009). Basic FGF and Activin/Nodal but not LIF signaling sustain undifferentiated status of rabbit embryonic stem cells. Exp Cell Res 315,2033-2042.
    Hou, P., Li, Y., Zhang, X., Liu, C., Guan, J., Li, H., Zhao, T., Ye, J., Yang, W., Liu, K., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341,651-654.
    Hsieh, Y.C., Intawicha, P., Lee, K.H., Chiu, Y.T., Lo, N.W., and Ju, J.C. (2011). LIF and FGF cooperatively support sternness of rabbit embryonic stem cells derived from parthenogenetically activated embryos. Cell Reprogram 13,241-255.
    Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142,375-386.
    Intawicha, P., Ou, Y.W., Lo, N.W., Zhang, S.C., Chen, Y.Z., Lin, T.A., Su, H.L., Guu, H.F., Chen, M.J., Lee, K.H., et al. (2009). Characterization of embryonic stem cell lines derived from New Zealand white rabbit embryos. Cloning Stem Cells 11,27-38.
    Jaenisch, R., and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132,567-582.
    Kanatsu-Shinohara, M., Inoue, K., Ogonuki, N., Morimoto, H., Ogura, A., and Shinohara, T. (2010). Serum-and feeder-free culture of mouse germline stem cells. Biol Reprod 84,97-105.
    Kanda, A., Sotomaru, Y., Shiozawa, S., and Hiyama, E. (2012). Establishment of ES cells from inbred strain mice by dual inhibition (2i). J Reprod Dev 58,77-83.
    Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5,135-138.
    Kay, G.F., Barton, S.C., Surani, M.A., and Rastan, S. (1994). Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77,639-650.
    Kim, D.K. (1995). Estimating doubling time of cells in vitro. In Vitro Cell Dev Biol Anim 31,419-420.
    Kim, J.B., Sebastiano, V., Wu, G., Arauzo-Bravo, M.J., Sasse, P., Gentile, L., Ko, K., Ruau, D., Ehrich, M., van den Boom, D., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell 136, 411-419.
    Kolli, S., Ahmad, S., Lako, M., and Figueiredo, F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. (2009). Stem Cells 28,597-610.
    Kunath, T., Saba-El-Leil, M.K., Almousailleakh, M., Wray, J., Meloche, S., and Smith, A. (2007). FGF stimulation of the Erkl/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134,2895-2902.
    Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., Police, S., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25, 1015-1024.
    Lagarkova, M.A., Shutova, M.V., Bogomazova, A.N., Vassina, E.M., Glazov, E.A., Zhang, P., Rizvanov, A.A., Chestkov, I.V., and Kiselev, S.L. (2010). Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle 9,937-946.
    Leitch, H.G., Blair, K., Mansfield, W., Ayetey, H., Humphreys, P., Nichols, J., Surani, M.A., and Smith, A. (2010). Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development 137,2279-2287.
    Lengner, C.J., Gimelbrant, A.A., Erwin, J.A., Cheng, A.W., Guenther, M.G., Welstead, G.G., Alagappan, R., Frampton, G.M., Xu, P., Muffat, J., et al. (2010). Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 141,872-883.
    Leppig, K.A., Brown, C.J., Bressler, S.L., Gustashaw, K., Pagon, R.A., Willard, H.F., and Disteche, C.M. (1993). Mapping of the distal boundary of the X-inactivation center in a rearranged X chromosome from a female expressing XIST. Hum Mol Genet 2,883-887.
    Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R.E., Schulze, E.N., Song, H., Hsieh, C.L., et al. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell 135,1299-1310.
    Li, T., Wang, S., Xie, Y, Lu, Y., Zhang, X., Wang, L., Yang, S., Wolf, D., Zhou, Q., and Ji, W. (2005). Homologous feeder cells support undifferentiated growth and pluripotency in monkey embryonic stem cells. Stem Cells 23,1192-1199.
    Li, W., Sun, W., Zhang, Y., Wei, W., Ambasudhan, R., Xia, P., Talantova, M., Lin, T., Kim, J., Wang, X., et al. (2011). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108, 8299-8304.
    Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S. (2009). Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4,16-19.
    Lin, J., Fernandez, I., and Roy, K. (2011). Development of feeder-free culture systems for generation of ckit+scal+progenitors from mouse iPS cells. Stem Cell Rev 7,736-747.
    Liu, K., Ji, G., Mao, J., Liu, M., Wang, L., Chen, C., and Liu, L. (2012). Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram 14,505-513.
    Liu, W., Yin, Y, Jiang, Y, Kou, C., Luo, Y., Huang, S., Zheng, Y, Li, S., Li, Q., Guo, L., et al. (2010). Genetic and epigenetic X-chromosome variations in a parthenogenetic human embryonic stem cell line. J Assist Reprod Genet 28,303-313.
    Lyon, M.F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372-373.
    Ma, F., Ebihara, Y, Umeda, K., Sakai, H., Hanada, S., Zhang, H., Zaike, Y., Tsuchida, E., Nakahata, T., Nakauchi, H., et al. (2008). Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 105,13087-13092.
    Maenner, S., Blaud, M., Fouillen, L., Savoye, A., Marchand, V., Dubois, A., Sanglier-Cianferani, S., Van Dorsselaer, A., Clerc, P., Avner, P., et al. (2010).2-D structure of the A region o f Xist RNA and its implication for PRC2 association. PLoS Biol, (DOI:10.1371/journal.pbi o.1000276).
    Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1,55-70.
    Makhlouf, M., and Rougeulle, C. (2011). Linking X chromosome inactivation to pluripotency: Necessity or fate? Trends Mol Med 17,329-336.
    Marchetto, M.C., Carromeu, C., Acab, A., Yu, D., Yeo, G.W., Mu, Y, Chen, G., Gage, F.H., and Muotri, A.R. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143,527-539.
    Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz, A., Stewart, A.F., Smith, A., et al. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149,590-604.
    Matoba, S., Inoue, K., Kohda, T., Sugimoto, M., Mizutani, E., Ogonuki, N., Nakamura, T., Abe, K., Nakano, T., Ishino, F., et al. (2011). RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci U S A 108, 20621-20626.
    Mekhoubad, S., Bock, C., de Boer, A.S., Kiskinis, E., Meissner, A., and Eggan, K. (2012). Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10,595-609.
    MJ., E., and MH., K. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292,154-156.
    Nagai, A., Hattori, T., Hirose, M., Ogura, A., Nozaki, K., Aizawa, M., and Yamashita, K. (2014). Mouse embryonic stem cells cultured under serum- and feeder-free conditions maintain their self-renewal capacity on hydroxyapatite. Mater Sci Eng C Mater Biol Appl 34,214-220.
    Nagy, A. (2006). Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory).
    Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N., and Bird, A, (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393,386-389.
    Navarro, P., and Avner, P. (2009). When X-inactivation meets pluripotency:an intimate rendezvous. FEBS Lett 583,1721-1727.
    Navarro, P., Chambers, I., Karwacki-Neisius, V., Chureau, C., Morey, C., Rougeulle, C., and Avner, P. (2008). Molecular coupling of Xist regulation and pluripotency. Science 321,1693-1695.
    Navarro, P., Moffat, M., Mullin, N.P., and Chambers, I. (2011). The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells. Hum Genet 130,255-264.
    Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I., Muller, F.J., Wang, Y.C., Boscolo, F.S., et al. (2012). Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10,620-634.
    Nichols, J., Jones, K., Phillips, J.M., Newland, S.A., Roode, M., Mansfield, W., Smith, A., and Cooke, A. (2009). Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15,814-818.
    Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4,487-492.
    Norris, D.P., Patel, D., Kay, G.F., Penny, G.D., Brockdorff, N., Sheardown, S.A., and Rastan, S. (1994). Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77,41-51.
    Okamoto, I., Patrat, C., Thepot, D., Peynot, N., Fauque, P., Daniel, N., Diabangouaya, P., Wolf, J.P., Renard, J.P., Duranthon, V., et al. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472,370-374.
    Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448,313-317.
    Palmieri, S.L., Peter, W., Hess, H., and Scholer, H.R. (1994). Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166,259-267.
    Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476,220-223.
    Papp, B., and Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell 152, 1324-1343.
    Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008a). Disease-specific induced pluripotent stem cells. Cell 134,877-886.
    Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008b). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451,141-146.
    Peh, W.L., Middleton, K., Christensen, N., Nicholls, P., Egawa, K., Sotlar, K., Brandsma, J., Percival, A., Lewis, J., Liu, W.J., et al. (2002). Life cycle heterogeneity in animal models of human papillomavirus-associated disease. J Virol 76,10401-10416.
    Ren, J., Pak, Y., He, L., Qian, L., Gu, Y., Li, H., Rao, L., Liao, J., Cui, C., Xu, X., et al. (2011). Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell research 21,849-853.
    Sartori, C., DiDomenico, A.I., Thomson, A.J., Milne, E., Lillico, S.G., Burdon, T.G., and Whitelaw, C.B. (2012). Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 14, 8-19.
    Shen, Y., Matsuno, Y, Fouse, S.D., Rao, N., Root, S., Xu, R., Pellegrini, M., Riggs, A.D., and Fan, G. (2008). X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci U S A 105,4709-4714.
    Shiomi, M., Ito, T., Yamada, S., Kawashima, S., and Fan, J. (2004). Correlation of vulnerable coronary plaques to sudden cardiac events. Lessons from a myocardial infarction-prone animal model (the WHHLMI rabbit). J Atheroscler Thromb 11,184-189.
    Silva, S.S., Rowntree, R.K., Mekhoubad, S., and Lee, J.T. (2008). X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci U S A 105,4820-4825.
    Solari, C., Losino, N., Luzzani, C., Waisman, A., Bluguermann, C., Questa, M., Sevlever, G., Miriuka, S., Baranao, L., and Guberman, A. (2011). Induced pluripotent stem cells' self-renewal and pluripotency is maintained by a bovine granulosa cell line-conditioned medium. Biochem Biophys Res Commun 410,252-257.
    Southon, E., and Tessarollo, L. (2009). Manipulating mouse embryonic stem cells. Methods Mol Biol 530,165-185.
    Stadtfeld, M., Maherali, N., Breault, D.T., and Hochedlinger, K. (2008). Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2,230-240.
    Stavridis, M.P., Lunn, J.S., Collins, B.J., and Storey, K.G. (2007). A discrete period of FGF-induced Erkl/2 signalling is required for vertebrate neural specification. Development 134,2889-2894.
    Stockmann, M., Linta, L., Fohr, K.J., Boeckers, A., Ludolph, A.C., Kuh, G.F., Udvardi, P.T., Proepper, C, Storch, A., Kleger, A., et al. (2013). Developmental and Functional Nature of Human iPSC Derived Motoneurons. Stem Cell Rev 9,475-492.
    Sumer, H., Liu, J., Malaver-Ortega, L.F., Lim, M.L., Khodadadi, K., and Verma, P.J. (2011). NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89,2708-2716.
    Sundberg, M., Bogetofte, H., Lawson, T., Jansson, J., Smith, G., Astradsson, A., Moore, M., Osborn, T., Cooper, O., Spealman, R., et al. (2013). Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31,1548-1562.
    Szabo, E., Rampalli, S., Risueno, R.M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., and Bhatia, M. (2010). Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468,521-526.
    Tachibana, M., Amato, P., Sparman, M., Gutierrez, N.M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H.S., Sritanaudomchai, H., et al. (2013). Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell 153,1228-1238.
    Takada, T., Suzuki, Y, Kondo, Y., Kadota, N., Kobayashi, K., Nito, S., Kimura, H., and Torii, R. (2002). Monkey embryonic stem cell lines expressing green fluorescent protein. Cell Transplant 11, 631-635.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K.., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872.
    Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126,663-676.
    Tchieu, J., Kuoy, E., Chin, M.H., Trinh, H., Patterson, M., Sherman, S.P., Aimiuwu, O., Lindgren, A., Hakimian, S., Zack, J.A., et al. (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell 7,329-342.
    Teichroeb, J.H., Betts, D.H., and Vaziri, H. (2011). Suppression of the imprinted gene NNAT an d X-chromosome gene activation in isogenic human iPS cells. PloS one, (DOI:10.1371/jou rnal.pone.0023436)
    Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay, R.D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448,196-199.
    Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.
    Thomson, J.A., Kalishman, J., Golos, T.G., Durning, M., Harris, C.P., Becker, R.A., and Hearn, J.P. (1995). Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92,7844-7848.
    Tomoda, K., Takahashi, K., Leung, K., Okada, A., Narita, M., Yamada, N.A., Eilertson, K.E., Tsang, P., Baba, S., White, M.P., et al. (2012). Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells. Cell Stem Cell 11,91-99.
    Tong, C., Li, P., Wu, N.L., Yan, Y., and Ying, Q.L. (2010). Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467,211-213.
    Vallier, L., Touboul, T., Chng, Z., Brimpari, M., Hannan, N., Millan, E., Smithers, L.E., Trotter, M., Rugg-Gunn, P., Weber, A., et al. (2009). Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PloS one, (DOI: 10.1371/journal.pone.0006082).
    Wang, S., Shen, Y., Yuan, X., Chen, K., Guo, X., Chen, Y., Niu, Y., Li, J., Xu, R.H., Yan, X., et al. (2008). Dissecting signaling pathways that govern self-renewal of rabbit embryonic stem cells. J Biol Chem 283,35929-35940.
    Wang, S., Tang, X., Niu, Y., Chen, H., Li, B., Li, T., Zhang, X., Hu, Z., Zhou, Q., and Ji, W. (2007). Generation and characterization of rabbit embryonic stem cells. Stem Cells 25,481-489.
    Ware, C.B., Wang, L., Mecham, B.H., Shen, L., Nelson, A.M., Bar, M., Lamba, D.A., Dauphin, D.S., Buckingham, B., Askari, B., et al. (2009). Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 4,359-369.
    Weekers, F., Van Herck, E., Coopmans, W., Michalaki, M., Bowers, C.Y., Veldhuis, J.D., and Van den Berghe, G. (2002). A novel in vivo rabbit model of hypercatabolic critical illness reveals a biphasic neuroendocrine stress response. Endocrinology 143,764-774.
    Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448,318-324.
    West, F.D., Terlouw, S.L., Kwon, D.J., Mumaw, J.L., Dhara, S.K., Hasneen, K., Dobrinsky, J.R., and Stice, S.L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19,1211-1220.
    Wilmut, I., and Campbell, K.H. (1998). Quiescence in nuclear transfer. Science 281,1611.
    Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., et al. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1, 46-54.
    Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20,1261-1264.
    Xue, F., Ma, Y., Chen, Y.E., Zhang, J., Lin, T.A., Chen, C.H., Lin, W.W., Roach, M., Ju, J.C., Yang, L., et al. (2012). Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells. Cell Reprogram 14, 364-376.
    Yang, H., Shi, L., Wang, B.A., Liang, D., Zhong, C., Liu, W., Nie, Y., Liu, J., Zhao, J., Gao, X., et al. Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. (2013). Cell 149,605-617.
    Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318,1917-1920.
    Zakhartchenko, V., Flisikowska, T., Li, S., Richter, T., Wieland, H., Durkovic, M., Rottmann, O., Kessler, B., Gungor, T., Brem, G., et al. (2010). Cell-mediated transgenesis in rabbits:chimeric and nuclear transfer animals. Biol Reprod 84,229-237.
    Zhao, X.-y., Li, W., Lv, Z., and Liu, L. (2009). iPS cells produce viable mice through tetraploid complementation. Nature 461,80-90.
    Zimmermann, A., Preynat-Seauve, O., Tiercy, J.M., Krause, K.H., and Villard, J. Haplotype-based banking of human pluripotent stem cells for transplantation:potential and limitations. (2012). Stem Cells Dev 21,2364-2373.
    Zuccotti, M., and Monk, M. (1995). Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nat Genet 9,316-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700