用户名: 密码: 验证码:
NR2B介导的泛素-蛋白酶体系统成分的功能障碍对CREB活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素-蛋白酶体系统(ubiquitin-proteasome system, UPS)的主要生物学功能是降解细胞内聚集的或错误折叠的蛋白质以调节多种生物学过程,从而维持细胞的正常生理状态及功能。UPS中各个成分的功能障碍都会对生物体产生严重的负面影响,尤其是当这些异常作用发生在中枢神经系统中,不仅会引起记忆相关蛋白的表达缺失,还有可能会损伤突触可塑性和记忆功能的维持,从而造成记忆减退或神经变性。NMDA受体NR2B亚单位(N-methyl-D-aspartate receptor subtype2B, NR2B)在多种突触信号事件、蛋白质的相互作用以及人类神经退行性疾病中行使着极其重要的生物学功能。研究显示,UPS的许多底物都能够对NR2B亚单位的生物学功能产生影响,包括微管相关蛋白tau、突触蛋白、蛋白激酶以及蛋白磷酸酯酶等,因此,我们推测UPS可能通过其底物蛋白作用于NR2B亚单位,从而调节突触可塑性和学习记忆。
     本研究选取转录因子cAMP反应元件结合蛋白(cAMP response element binding protein, CREB)为研究对象,分别从细胞、脑片和动物整体水平探索UPS成分功能障碍对记忆功能的调控及分子机制。作为转录因子,CREB在调节神经元蛋白的表达中发挥关键作用,且该调节作用对于突触可塑性和记忆的形成与维持至关重要。除了蛋白酶体,CREB的转录活性还受到NR2B亚单位介导的下游分子途径所调控,因此,探索泛素-蛋白酶体系统成分功能障碍对CREB活性调节的分子机制是揭示影响学习记忆功能的有效途径之一。
     1.蛋白酶体活性抑制诱导CREB去磷酸化(细胞系水平,N2a细胞)。研究结果表明蛋白酶体活性抑制可以通过两条途径下调CREB-Serl33位点的磷酸化水平,从而下调CREB的活性。(1)蛋白酶体活性抑制会引起tau蛋白的异常磷酸化和泛素化,且这些异常的tau蛋白能够通过下调NMDA受体NR2B亚单位在Tyr1472位点的磷酸化水平而调节NR2B亚单位正常的生理功能,最终导致CREB活性位点Ser133位点的磷酸化水平显著下降;(2)抑制蛋白酶体活性诱导激酶蛋白激酶A (protein kinase A, PKA)和糖原合成酶激酶-3β (glycogen synthase kinase-3p, GSK-3p)的活性发生改变,进而导致CREB-Ser133去磷酸化水平的增加。
     2.去泛素化酶泛素C末端水解酶L1(ubiquitin C-terminal hydrolase L1, UCH-L1)的活性抑制参与海马脑片中CREB的去磷酸化调节(器官型海马脑片水平,C57BL/6小鼠海马脑片)。研究表明,UCH-L1会影响CREB的磷酸化水平及其转录活性,但其具体机制尚不清楚。为此,本研究用UCH-L1抑制剂LDN处理小鼠海马脑片以探索UCH-L1活性抑制对CREB活性的影响。实验结果表明,UCH-L1活性抑制导致海马脑片中CREB-Ser133的磷酸化水平显著下降。同时,UCH-L1抑制还引起tau蛋白的过度磷酸化、酪氨酸激酶Fyn活性下调、NR2B亚单位在Tyr1472位点的磷酸化水平下降以及突触蛋白PSD-95(postsynaptic density protein95)含量的增加。过度磷酸化的tau蛋白可通过干扰Fyn/NR2B/PSD-95复合体的形成,从而影响NR2B亚单位的生物活性,最终导致CREB活性的下调。除此之外,UCH-L1活性抑制引起的PKA活性下降也参与CREB的活性调节。
     3.蛋白酶体和UCH-L1功能障碍对小鼠空间记忆影响的分子机制(动物整体水平,APP/PS1双转基因小鼠)。APP/PS1双转基因小鼠是一种阿尔茨海默病(Alzheimer's disease, AD)模型小鼠,其主要病理特性是存在老年斑沉积且对神经细胞具有毒性作用。结果显示,APP/PS1小鼠具有明显的空间记忆缺陷。进一步检测发现APP/PS1小鼠海马和皮层部位的CREB的活性较对照组小鼠显著降低,且调节CREB活性的分子途径发生改变。一方面脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的水平显著下调与CREB活性下降密切相关;另一方面过度磷酸化的tau蛋白可能通过导致NR2B-Tyr1472位点磷酸化水平下降而影响NR2B亚单位的正常生理功能从而导致CREB的去磷酸化。另外,有研究显示,蛋白酶体和UCH-L1参与上述分子途径的活性调节。本研究发现,APP/PS1小鼠中蛋白酶体和UCH-L1的活性和表达水平都显著下调,表明APP/PS1小鼠空间学习记忆的缺陷可能是由泛素-蛋白酶体系统成分功能障碍导致的CREB活性下调引起的。因此,根据以上实验结果(1-3部分),本研究从proteasome and UCH-L1—abnormal tau protein—NR2B/CREB这一分子途径揭示了APP/PS1小鼠空间记忆障碍的分子机制。
The majory function of ubiquitin-proteasome system (UPS) is to regulate variety of biological processes through degradating intracellular aggregation or misfolded proteins, and depend on this process the normal physiological state and functions of cells can be maintained. The components of UPS dysfunction have a seriously negative impact on the organism, especially when the occurrence of these abnormal effects in central nervous system would induce the lost expression of memory-related proteins or even impaire the maintenance of synaptic plasticity and memory function which further cause memory decline or neurodegenerative disorders. N-Methyl-D-aspartate (NMDA) receptor NR2B subunit plays extremely biological functions in synaptic signaling events, protein-protein interactions and human neurodegeneration. A growing body of evidence suggests that many substrates of UPS have an effect on NR2B biological function, including microtubule-associated protein tau, synaptic proteins, protein kinases and phosphatase and so on, thus a consideration is suggested that UPS probably regulates NR2B subunit through its substrates and further affects synaptic plasticity and learning and memory.
     The current research focused on cAMP response element binding protein (CREB), and the molecular mechanisms of dysfunctional UPS components on the regulation of memory function were explored from the levels of cells, hippocampal slices to animals. As a transcription factor, CREB is crucial for regulating the expression of neuronal proteins which is required for the synaptic plasticity and formation and maintenance of memory. In addition to the proteasome, the transcriptional activity of CREB can also be modulated by the downstream molecular signaling of NMDA receptor. Therefore, to explore the molecular mechanisms of dysfunctional UPS components on the regulation of CREB activity are an effective pathway to learning and memory function.
     1. Proteasome inhibition induces CREB dephosphorylation (Cell lines, N2a cells). The current study indicated that proteasome activity inhibition down-regulated the level of phosphorylated CREB at Ser133site via two pathways which further decreased CREB activity.(1) Inhibition of proteasome activity caused abnormal phosphorylation and ubiquitination of tau protein. Moreover, the abnormal tau protein affected the normal physiological function of NMDA receptor NR2B subunit by down-regulating the level of phosphorylated NR2B at Tyr1472site which eventually led to a significant decrease in phosphorylation of CREB at Ser133site.(2) Inhibition of proteasome activity induced the alternation of protein kinase A (PKA) and glycogen synthase kinase-3β (GSK-3(3) activities which further resulted in an increase in dephosphorylation of CREB-Ser133.
     2. Inhibition of deubiquitination enzyme ubiquitin C-terminal hydrolase L1(UCH-L1) is involved in CREB dephosphorylation in hippocampal slices (organotypic hippocampal slices, slices from C57BL/6mice). Researches have demonstrated that UCH-L1have an effect on phosphorylation and transcriptional activity of CREB, but the mechnisams still unclear. Therefore, this current research used UCH-L1inhibitor LDN to treat mice hippocampal slices and explored the effects of UCH-L1inhibition on CREB activity. The results indicated that inhibition of UCH-L1activity induced a significant reduction of phosphorylated CREB-Ser133. Meanwhile, the hyperphosphorylation of tau protein, down-regulation of tyrosin kinase Fyn activity, reduction of phosphorylated NR2B at Tyr1472site and increased level of synaptic protein PSD-95(postsynaptic density protein95) were observed after UCH-L1inhibition. Hypephosphorylated tau protein probably disturbed the formation of Fyn/NR2B/PSD-95complex to affect the biological activity of NR2B subunit and ultimately led to decreased CREB activity. Moreover, inhibition of UCH-L1activity induced reductive PKA activity also involved in the regulation of CREB activity.
     3. The molecular mechanisms of dysfunctional proteasome and UCH-L1affect the spatial memory in mice (Animal, APP/PS1double transgenic mice). APP/PS1double transgenic mouse is an Alzheimer's disease (AD) mouse model and the mainly pathological characteristic of the mouse is the deposition of senile plaque which has cytotoxicity. The results showed that APP/PS1mice have significant spatial memory deficits. Further detection found that compared with the control group, CREB activity in hippocampus and cortex in APP/PS1mice significantly reduced. In addition, the alterations of the molecular pathways that regulated the CREB activity were observed in APP/PS1mice. Firsly, the obviously decreased level of brain-derived neurotrophic factor (BDNF) was closely related to the down-regulation of CREB activity; secondly, hyperphosphorylated tau protein had an effect on the phosphorylation of NR2B at Tyr1472site which was likely to decrease the normal physiological function of NR2B subunit and further resulting dephosphorylation of CREB. Additonally, proteasome and UCH-L1were involved in the regulation of the activity of above-mentioned molecular pathways. However, in the current study, both the expressions and activities of proteasome and UCH-L1were significantly decreased in APP/PS1mice, indicating the defective spatial learning and memory in APP/PS1might be caused by down-regulation of CREB activity which induced by dysfunctional ubiquitin-proteasome system components. Therefore, according to the above results (part1to3), our study from proteasome and UCH-L1to abnormal tau protein and to NR2B/CREB this molecular pathway revealed the mechanisms of impaired spatial memory function of APP/PS1mouse.
引文
[1]Okano H, Hirano T, Balaban E. Learning and memory [J]. Proc Natl Acad Sci USA,2000,97(23): 12403-12404. doi:10.1073/pnas.210381897.
    [2]Kennedy MB. Synaptic signaling in learning and memory [J]. Cold Spring Harb Perspect Biol, 2013, pii:cshperspect.a016824vl. doi:10.1101/cshperspect.a016824.
    [3]Hardingham GE, Bading H. The Yin and Yang of NMDA receptor signaling [J]. Trends Neurosci, 2003,26(2):81-89. doi:10.1016/S0166-2236(02)00040-1.
    [4]Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity [J]. Philos Trans R Soc Lond B Biol Sci,2013,369(1633):20130163. doi:10.1098/rstb.2013.0163.
    [5]Cao X, Cui Z, Feng R, et al. Maintenance of superior learning and memory function in NR2B transgenic mice during ageing [J]. Eur J Neurosci,2007,25(6):1815-1822. doi:10.1111/j.1460-9568.2007.05431.x.
    [6]Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice [J]. Nature,1999,401(6748):63-69. doi:10.1038/43432.
    [7]Jurd R, Thornton C, Wang J, et al. Mind bomb-2 is an E3 ligase that ubiquitinates the N-methyl-D-aspartate receptor NR2B Subunit in a phosphorylation-dependent manner [J]. J Biol Chem,2008,283(1):301-310. doi:10.1074/jbc.M705580200.
    [8]Salter MW, Kalia LV. Src kinases:a hub for NMDA receptor regulation [J]. Nat Rev Neurosci, 2004,5(4):317-328. doi:10.1038/nrn1368.
    [9]Nakazawa T, Komai S, Tezuka T, et al. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-D-aspartate receptor [J]. J Biol Chem,2001,276(1):693-699. doi:10.1074/jbc.M008085200.
    [10]Alder J, Thakker-Varia S, Crozier RA, et al. Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity [J]. J Neurosci,2005,25(12):3080-3085. doi:10.1523/JNEUROSCI.2970-04.2005.
    [11]Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer's disease mouse models [J]. Cell,2010,142(3):387-397. doi:10.1016/j.cell.2010.06.036.
    [12]Qiu S, Li XY, Zhuo M. Post-translational modification of NMDA receptor GluN2B subunit and its roles in chronic pain and memory [J]. Semin Cell Dev Biol,2011,22(5):521-529. doi:10.1016/j.semcdb.2011.06.003.
    [13]Kida S. A functional role for CREB as a positive regulator of memory formation and LTP [J]. Exp Neurobiol,2012,21(4):136-140. doi:10.5607/en.2012.21.4.136.
    [14]Scott Bitner R. Cyclic AMP response element-binding protein (CREB) phosphorylation:A mechanistic marker in the development of memory enhancing Alzheimer's disease therapeutics [J]. Biochem. Pharmacol,2012,83(6):705-714. doi:10.1016/j.bcp,2011.11.009.
    [15]Sakamoto K, Karelina K, Obrietan K. CREB:a multifaceted regulator of neuronal plasticity and protection [J]. J Neurochem,2011,116(1):1-9. doi:10.1111/j.1471-4159.2010.07080.x.
    [16]Siu YT, Jin DY. CREB a real culprit in oncogenesis [J]. FEBS J,2007,274(13):3224-3232. doi:10.1111/J.1742-4658.2007.05884.x.
    [17]Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB [J]. Trends Neurosci,2005, 28(8):436-445. doi:10.1016/j.tins.2005.06.005.
    [18]Kornhauser JM, Cowan CW, Shaywitz AJ, et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events [J]. Neuron,2002,34(2): 221-233. doi:10.1016/S0896-6273(02)00655-4.
    [19]Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium [J]. J Neurochem,2001,78(6):1219-1232. doi:10.1046/j.1471-4159.2001.00495.x.
    [20]Fernandes ND, Sun Y, Price BD. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells [J]. J Biol Chem,2007, 282(22):16577-16584. doi:10.1074/jbc.M609628200.
    [21]Sakamoto K, Huang BW, Iwasaki K, et al. Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271 [J]. Mol Biol Cell,2010,21(16):2966-2974. doi:10.1091/mbc.E10-01-0015.
    [22]Mauna JC, Miyamae T, Pulli B, et al. Protein phosphatases 1 and 2A both are required for long-term depression and associated dephosphorylation of cAMP response element binding protein in hippocampal area CA1 in vivo [J]. Hippocampus,2011,21(10):1093-1104. doi:10.1002/hipo.20823.
    [23]Lee B, Cao R, Choi YS, et al. The CREB/CRE transcriptional pathway:protection against oxidative stress-mediated neuronal cell death [J]. J Neurochem,2009,108(5):1251-1265. doi:10.1111/j.1471-4159.2008.05864.x.
    [24]Merz K, Herold S, Lie DC. CREB in adult neurogenesis-master and partner in the development of adult-born neurons? [J]. Eur J Neurosci,2011,33(6):1078-1086. doi:10.1111/j.1460-9568.2011.07606.x.
    [25]Lee SH, Lim CS, Park H, et al. Nuclear translocation of CAM-associated protein activates transcription for long-term facilitation in Aplysia. Cell,2007,129(4):801-812. doi:10.1016/j.cell.2007.03.041.
    [26]Mizuno M, Yamada K, Maekawa N, et al. CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning [J]. Behav Brain Res,2002,133(2): 135-141. doi:10.1016/S0166-4328(01)00470-3.
    [27]Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system [J]. Neuron,2002,35(4):605-623. doi:10.1016/S0896-6273(02)00828-0.
    [28]Benito E, Barco A. CREB's control of intrinsic and synaptic plasticity:implications for CREB-dependent memory models [J]. Trends Neurosci,2010,33(5):230-240. doi:10.1016/j.tins.2010.02.001.
    [29]Shipton OA, Leitz JR, Dworzak J, et al. Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J Neurosci,2011,31(5):1688-92. doi:10.1523/JNEUROSCI.2610-10.2011.
    [30]Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration [J]. Cold Spring Harb Perspect Med,2012,2(7):a006247,1-25. doi:10.1101/cshperspect.a006247.
    [31]Gu Y, Oyama F, Ihara Y. Tau is widely expressed in rat tissues [J]. J Neurochem,1996,67(3): 1235-1244. doi:10.1046/J.1471-4159.1996.67031235.x.
    [32]Gendron TF, Petrucelli L. The role of tau in neurodegeneration [J]. Mol Neurodegener,2009,4: 13,1-19. doi:10.1186/1750-1326-4-13.
    [33]Ballatore C, Lee VM, and Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders [J]. Nat Rev Neurosci,2007,8(9):663-672. doi:10.1038/nrn2194.
    [34]Mocanu MM, Nissen A, Eckermann K, et al. The potential for β-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous tau in inducible mouse models of tauopathy [J]. J Neurosci,2007,28(3):737-748. doi:10.1523/JNEUROSCI.2824-07.2008.
    [35]Hanger DP, Anderton BH, Noble W. Tau phosphorylation:the therapeutic challenge for neurodegenerative disease [J]. Trends Mol Med,2009,15(3):112-119. doi:10.1016/j.molmed.2009.01.003.
    [36]Ittner LM, Gotz J. Amyloid-β and tau - a toxic pas de deux in Alzheimer's disease [J]. Nat Rev Neurosci,2011,12(2):65-72. doi:10.1038/nrn2967.
    [37]Spires-Jones TL, Stoothoff WH, de Calignon A, et al. Tau pathophysiology in neurodegeneration a tangled issue [J]. Trends Neurosci,2009,32(3):150-159. doi:10.1016/j.tins.2008.11.007.
    [38]Morris M, Maeda S, Vossel K, et al. The many faces of tau [J]. Neuron,2011,70(3):410-426. doi:10.1016/j.neuron.2011.04.009.
    [39]Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction [J]. J Cell Sci,2004,117(Pt 24):5721-5729. doi:10.1242/jcs.01558.
    [40]Perez M, Santa-Maria I, Gomez de Barreda E, et al. Tau--an inhibitor of deacetylase HDAC6 function [J]. J Neurochem,2009,109(6):1756-1766. doi:10.1111/j.1471-4159.2009.06102.x.
    [41]Sultan A, Nesslany F, Violet M, et al. Nuclear tau, a key player in neuronal DNA protection [J]. J Biol Chem,2011,286(6):4566-4575. doi:10.1074/jbc.M110.199976.
    [42]Caceres A, Kosik KS. Inhibiton of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons [J]. Nature,1990,343(6257):461-463. doi:10.1038/343461a0.
    [43]Bouchard M, Suchowersky O. Tauopathies:One Disease or Many? [J]. Can J Neurol Sci,2011, 38(4):547-556.
    [44]Gotz J, Ittner A, Ittner LM. Tau-targeted treatment strategies in Alzheimer's disease [J]. Br J Pharmacol,2012,165(5):1246-1259. doi:10.1111/j.1476-5381.2011.01713.x.
    [45]Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans,2012,40(4):644-652. doi:10.1042/BST20120071.
    [46]Kopke E, Tung YC, Shaikh S, et al. Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease [J]. J Biol Chem, 1993,268(32):24374-24384.
    [47]Avila J, Santa-Maria I, Perez M, et al. Tau phosphorylation, aggregation, and cell toxicity [J]. J Biomed Biotechnol,2006,2006(3):74539. doi:10.1155/JBB/2006/74539.
    [48]Ross CA, Pickart CM. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases [J]. Trends Cell Biol,2004,14(12):703-711. doi:10.1016/j.tcb.2004.10.006.
    [49]Hegde AN, Upadhya SC. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease [J]. Biochim Biophys Acta,2011,1809(2):128-140. doi:10.1016/j.bbagrm.2010.07.006.
    [50]Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity [J]. Prog Neurobiol,2004,73(5):311-357. doi:10.1016/j.pneurobio.2004.05.005.
    [51]Besche HC, Peth A, Goldberg AL. Getting to first base in proteasome assembly [J]. Cell,2009, 138(1):25-28. doi:10.1016/j.cell.2009.06.035.
    [52]Day IN, Thompson RJ. UCHL1 (PGP 9.5):Neuronal biomarker and ubiquitin system protein [J]. Prog Neurobiol,2010,90(3):327-362. doi:10.1016/j.pneurobio.2009.10.020.
    [53]Hegde AN, Upadhya SC. The ubiquitin-proteasome pathway in health and disease of the nervous system [J]. Trends Neurosci,2007,30(11):588-595. doi:10.1016/j.tins.2007.08.005.
    [54]Ciechanover A. The ubiquitin-proteasome pathway:on protein death and cell life [J]. EMBO J, 1998,17(24):7151-7160. doi:10.1093/emboj/17.24.7151.
    [55]Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function [J]. Pharmacol Rev,2007,59(1):14-39. doi:10.1124/pr.59.1.4.
    [56]Song S, Jung YK. Alzheimer's disease meets the ubiquitin-proteasome system [J]. Trends Mol Med,2004,10(11):555-570. doi:10.1016/j.molmed.2004.09.005.
    [57]Gong B, Cao Z, Zheng P, et al. Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell,2006,126(4):775-788. doi:10.1016/j.cell.2006.06.046.
    [58]de Vrij FM, Fischer DF, van Leeuwen FW, et al. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system [J]. Prog Neurobiol,2004,74(5):249-270. doi:10.1016/j.pneurobio.2004.10.001.
    [59]Jung T, Catalgol B, Grune T. The proteasomal system [J]. Mol Aspects Med,2009,30(4): 191-296. doi:10.1016/j.mam.2009.04.001.
    [60]Walters BJ, Campbell SL, Chen PC, et al. Differential effects of Uspl4 and Uch-L1 on the ubiquitin proteasome system and synaptic activity [J]. Mol Cell Neurosci,2008,39(4):539-548. doi:10.1016/j.mcn.2008.07.028.
    [61]Chung CH, Baek SH. Deubiquitinating enzymes:their diversity and emerging roles [J]. Biochem Biophys Res Commun,1999,266(3):633-640. doi:10.1006/bbrc.1999.1880.
    [62]Nijman SM, Luna-Vargas MP, Velds A, et al. A genomic and functional inventory of deubiquitinating enzymes [J]. Cell,2005,123(5):773-786. doi:10.1016/j.cell.2005.11.007.
    [63]Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis [J]. J Neurol Sci,1981, 49(3):429-438. doi:10.1016/0022-510X(81)90032-0.
    [64]Bradbury JM, Thompsom RJ. Immunoassay of the neuronal and neuroendocrinc marker PGP 9.5 in human tissues [J]. J Neurochem,1985,44(2):651-653. doi:10.1111/j.1471-4159.1985.tb05461.x.
    [65]Martin R, Fraile B, Peinado F, et al. Immunohistochemical localization of protein gene product 9.5, ubiquitin, and neuropeptide Y immunoreactivities in epithelial and neuroendocrine cells from normal and hyperplastic human prostate [J]. J Histochem Cytochem,2000,48(8): 1121-1130. doi:10.1177/002215540004800809.
    [66]Diomedi-Camassei F, Rava L, Lerut E, et al. Protein gene product 9.5 and ubiquitin are expressed in metabolically active epithelial cells of normal and pathologic human kidney [J]. Nephrol Dial Transplant,2005,20(12):2714-2719. doi:10.1093/ndt/gfil24.
    [67]Campbell LK, Thomas JR, Lamps LW, et al. Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors:an immunohistochemical study of 95 mesenchymal neoplasms [J]. Mod Pathol,2003,16(10):963-969. doi:10.1097/01.MP.0000087088.88280.B0.
    [68]Liu Y, Fallon L, Lashuel HA, et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility [J]. Cell, 2002,111(2):209-218. doi:10.1016/S0092-8674(02)01012-7.
    [69]Osaka H, Wang YL, Takada K, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron [J]. Hum Mol Genet,2003,12(16):1945-1958. doi:10.1093/hmg/ddg211.
    [70]Saigoh K, Wang YL, Suh JG, et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice [J]. Nat Genet,1999,23(1):47-51. doi:10.1038/12647.
    [71]Chen F, Sugiura Y, Myers KG et al. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction [J]. Proc Natl Acad Sci USA,2010,107(4):1636-1641. doi:10.1073/pnas.0911516107.
    [72]Nagamine S, Kabuta T, Furuta A, et al. Deficiency of ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) leads to vulnerability to lipid peroxidation [J]. Neurochem Int,2010,57(2):102-110. doi:10.1016/j.neuint.2010.04.015.
    [73]Sakurai M, Ayukawa K, Setsuie R, et al. Ubiquitin C-terminal hydrolase L1 regulates the morphology of neural progenitor cells and modulates their differentiation [J]. J Cell Sci,2006, 119(Pt 1):162-171. doi:10.1242/jcs.02716.
    [74]Hurst-Kennedy J, Chin LS, Li L. Ubiquitin C-terminal hydrolase L1 in tumorigenesis [J]. Biochem Res Int,2012,2012:123706,1-10. doi:10.1155/2012/123706.
    [75]Cartier AE, Djakovic SN, Salehi A, et al. Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1 [J]. J Neurosci,2009,29(24):7857-7868. doi:10.1523/JNEUROSCI.1817-09.2009.
    [76]Smith DL, Pozueta J, Gong B, et al. Reversal of long-term dendritic spine alterations in Alzheimer disease models [J]. Proc Natl Acad Sci USA,2009,106(39):16877-16882. doi:10.1073/pnas.0908706106.
    [77]Lansbury PT Jr. Improving synaptic function in a mouse model of AD [J]. Cell,2006,126(4): 655-657. doi:10.1016/j.cell.2006.08.011.
    [78]Kabuta T, Setsuie R, Mitsui T, et al. Aberrant molecular properties shared by familial Parkinson's disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1 [J]. Hum Mol Genet,2008, 17(10):1482-1496. doi:10.1093/hmg/ddn037.
    [79]Zukin RS, Bennett MV. Alternatively spliced isoforms of the NMDARI receptor subunit [J]. Trands Neurosci,1995,18(7):306-313. doi:10.1016/0166-2236(95)93920-S.
    [80]Andersson O, Stenqvist A, Attersand A, et al. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B [J]. Genomics,2001,78(3):178-184. doi:10.1006/geno.2001.6666.
    [81]Pachernegg S, Strutz-Seebohm N, Hollmann M. GluN3 subunit-containing NMDA receptors:not just one-trick ponies [J]. Trends Neurosci,2012,35(4):240-249. doi:10.1016/j.tins.2011.11.010.
    [82]Paoletti P. Molecular basis of NMDA receptor functional diversity [J]. Eur J Neurosci,2011, 33(8):1351-1365. doi:10.1111/j.1460-9568.2011.07628.x.
    [83]Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function [J]. Mol Cell Neurosci,2011,48(4):308-320. doi:10.1016/j.mcn.2011.05.001.
    [84]Loftis JM, Janowsky A. The N-methyl-D-aspartate receptor subunit NR2B:localization, functional properties, regulation, and clinical implications [J]. Pharmacol Ther,2003,97(1): 55-85. doi:10.1016/S0163-7258(02)00302-9.
    [85]Khan AM, Curras MC, Dao J, et al. Lateral hypothalamic NMDA receptor subunits NR2A and/or NR2B mediate eating:immunochemical/behavioral evidence [J]. Am J Physiol,1999, 276(3Pt 2):R880-R891.
    [86]Akashi K, Kakizaki T, Kamiya H, et al. NMDA receptor GluN2B (G1uRε2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses [J]. J Neurosci,2009,29(35):10869-10882. doi:10.1523/JNEUROSCI.5531-08.2009.
    [87]Zhuo M. Plasticity of NMDA receptor NR2B subunit in memory and chronic pain [J]. Mol Brain, 2009,2:4,1-11. doi:10.1186/1756-6606-2-4.
    [88]Wu LJ, Zhuo M. Targeting the NMDA receptor subunit NR2B for the treatment of neuropathic pain [J]. Neurotherapeutics,2009,6(4):693-702. doi:10.1016/j.nurt.2009.07.008.
    [89]We M, Hata Y, Takeuchi M, et al. Binding of neuroligins to PSD-95 [J]. Science,1997, 277(5331):1511-1515. doi:10.1126/science.277.5331.1511.
    [90]Collingridge GL, Volianskis A, Bannister N, et al. The NMDA receptor as a target for cognitive enhancement [J]. Neuropharmacology,2013,64:13-26. doi:10.1016/j.neuropharm.2012.06.051.
    [91]Lin SY, Wu K, Levine ES, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities [J]. Brain Res Mol Brain Res,1998,55(1):20-27. doi:10.1016/S0169-328X(97)00349-5.
    [92]Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases [J]. Annu Rev Cell Dev Biol,1997,13:513-609. doi:10.1146/annurev.cellbio.13.1.513.
    [93]Saito YD, Jensen AR, Salgia R, et al. Fyn:a novel molecular target in cancer [J]. Cancer,2010, 116(7):1629-1637. doi:10.1002/cncr.24879.
    [94]Resh MD. Fyn, a Src family tyrosine kinase [J]. Int J Biochem Cell Biol,1998,30(11): 1159-1162. doi:10.1016/S1357-2725(98)00089-2.
    [95]Babus LW, Little EM, Keenoy KE et al. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice [J]. Brain Res,2011,1415:96-102. doi:10.1016/j.brainres.2011.07.059.
    [96]Xu F, Plummer MR, Len GW, et al. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation [J]. Brain Res,2006,1121(1): 22-34. doi:10.1016/j.brainres.2006.08.129.
    [97]Seiwa C, Sugiyama I, Yagi T, et al. Fyn tyrosine kinase participates in the compact myelin sheath formation in the central nervous system [J]. Neurosci Res,2000,37(1):21-31. doi:10.1016/S0168-0102(00)00100-0.
    [98]Han K, Kim E. Synaptic adhesion molecules and PSD-95 [J]. Prog Neurobiol,2008,84(3): 263-283. doi:10.1016/j.pneurobio.2007.10.011.
    [99]Sweet ES, Previtera ML, Fernandez JR, et al. PSD-95 alters microtubule dynamics via an association with EB3 [J]. J Neurosci,2011,31(3):1038-1047. doi:10.1523/JNEUROSCI.1205-10.2011.
    [100]Sweet ES, Tseng CY, Firestein BL. To branch or not to branch:How PSD-95 regulates dendrites and spines [J]. Bioarchitecture,2011,1(2):69-73. doi:10.4161/bioa.1.2.15469.
    [101]Sturgill JF, Steiner P, Czervionke BL, et al. Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking [J]. J Neurosci,2009,29(41): 12845-12854. doi:10.1523/JNEUROSCI.1841-09.2009.
    [102]Chen X, Nelson CD, Li X, et al. PSD-95 is required to sustain the molecular organization of the postsynaptic density [J]. J Neurosci,2011,31(17):6329-6338. doi:10.1523/JNEUROSCI.5968-10.2011.
    [103]Bianchetta MJ, Lam TT, Jones SN, et al. Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons [J]. J Neurosci,2011,31(33):12029-12035. doi:10.1523/JNEUROSCI.2388-11.2011.
    [104]El-Husseini Ael-Din, Schnell E, Dakoji S, et al. Synaptic strength regulated by palmitate cycling on PSD-95 [J]. Cell,2002,108(6):849-863. doi:10.1016/S0092-8674(02)00683-9.
    [105]Kim MJ, Futai K, Jo J, et al. Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of Serine-295 of PSD-95 [J]. Neuron,2007,56(3):488-502. doi:10.1016/j.neuron.2007.09.007.
    [106]Gardoni F, Polli F, Cattabeni F, et al. Calcium-calmodulin-dependent protein kinase II phosphorylation modulates PSD-95 binding to NMDA receptors [J]. Eur. J. Neurosci.,2006, 24(10):2694-704. doi:10.1111/J.1460-9568.2006.05140.x.
    [107]Zhang J, Petit CM, King DS, et al. Phosphorylation of a PDZ domain extension modulates binding affinity and interdomain interactions in postsynaptic density-95 (PSD-95) protein, a membrane-associated guanylate kinase (MAGUK) [J]. J Biol Chem,2011,286(48):41776-41785. doi:10.1074/jbc.M 111.272583.
    [108]Xu W. PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity [J]. Curr Opin Neurobiol,2011,21(2):306-312. doi:10.1016/j.conb.2011.03.001.
    [109]Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling [J]. Mol Cell,2009, 33(3):275-286. doi:10.1016/j.molcel.2009.01.014.
    [110]Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation [J]. Neurobiol Learn Mem,2013,105:107-116. doi:10.1016/j.nlm.2013.03.009.
    [111]Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory [J]. Annu Rev Neurosci,1998, 21:127-148. doi:10.1146/annurev.neuro.21.1.127.
    [112]Lopez-Salon M, Alonso M, Vianna MR, et al. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation [J]. Eur J Neurosci,2001,14(11):1820-1826. doi:10.1046/j.0953-816x.2001.01806.x.
    [113]Cajigas IJ, Will T, Schuman EM. Protein homeostasis and synaptic plasticity [J]. EMBO J, 2010,29(16):2746-2752. doi:10.1038/emboj.2010.173.
    [114]Chain DG, Casadio A, Schacher S, et al. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia [J]. Neuron,1999, 22(1):147-156. doi:10.1016/S0896-6273(00)80686-8.
    [115]Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction [J]. Nat Rev Neurosci,2008,9(11):826-838. doi:10.1038/nrn2499,
    [116]Amadoro G, Ciotti MT, Costanzi M, et al. NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation [J]. Proc Natl Acad Sci USA,2006,103(8):2892-2897. doi:10.1073/pnas.0511065103.
    [117]Nakazawa T, Komai S, Watabe AM, et al. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity [J]. EMBO J,2006,25(12):2867-2877. doi:10.1038/sj.emboj.7601156.
    [118]Burnouf S, Martire A, Derisbourg M, et al. NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model [J]. Aging Cell,2013,12(1):11-23. doi:10.1111/acel.12018.
    [119]Ren QG, Liao XM, Wang ZF, et al. The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation [J]. FEBS Lett,2006,580(10): 2503-2511. doi:10.1016/j.febslet.2006.03.073.
    [120]Hamano T, Gendron TF, Ko LW, et al. Concentration-dependent effects of proteasomal inhibition on tau processing in a cellular model of tauopathy [J]. Int J Clin Exp Pathol,2009, 2(6):561-573.
    [121]Lee YS, Silva AJ. The molecular and cellular biology of enhanced cognition [J]. Nat Rev Neurosci,2009,10(2):126-140. doi:10.1038/nrn2572.
    [122]Abe T, Matsumura S, Katano T, et al. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain [J]. Eur J Neurosci, 2005,22(6):1445-1454. doi:10.1111/j.1460-9568.2005.04340.x.
    [123]Oddo S. The ubiquitin-proteasome system in Alzheimer's disease. J Cell Mol Med,2008,12(2): 363-373. doi:10.1111/j.1582-4934.
    [124]Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer's disease [J]. J Neural Transm,2005,112(6):813-838. doi:10.1007/s00702-004-0221-0.
    [125]Cuervo AM, Wong ES, Martinez-Vicente M. Protein degradation, aggregation, and misfolding [J]. Mo Disord,2010,25 Suppl 1:S49-54. doi:10.1002/mds.22718.
    [126]Casarejos MJ, Solano RM, Gomez A, et al. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy in human neuroblastoma cells [J]. Neurochem Int,2011,58(4):512-520. doi:10.1016/j.neuint.2011.01.
    [127]Zhao K, Ippolito G, Wang L, et al. Neuron-selective toxicity of tau peptide in a cell culture model of neurodegenerative tauopathy:essential role for aggregation in neurotoxicity [J]. J Neurosci Res,2010,88(15):3399-3413. doi:10.1002/jnr.22485.
    [128]Goldbaum O, Oppermann M, Handschuh M, et al. Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid [J]. J Neurosci, 2003,23(26):8872-8880.
    [129]Gong CX, Iqbal K. Hyperphosphorylation of microtubule-associated protein tau:a promising therapeutic target for Alzheimer disease [J]. Curr Med Chem,2008,15(23):2321-2328. doi:10.2174/092986708785909111.
    [130]Rankin CA, Sun Q, Gamblin TC. Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation [J]. Mol Brain Res,2005,138(1):84-93. doi:10.1016/j.molbrainres.2005.04.012.
    [131]Sadik G, Tanaka T, Kato K, et al. Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein:implications for the mechanism of tau aggregation [J]. J Neurochem,2009, 108(1):33-43. doi:10.1111/j.1471-4159.2008.
    [132]Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons [J]. Pro Neurobiol,2008,85(2):148-175. doi:10.1016/j.pneurobio.2008.03.002.
    [133]Johannessen M, Delghandi MP, Moens U. What turns CREB on? [J]. Cell Signal,2004,16(11): 1211-1227. doi:10.1016/j.cellsig.2004.05.001.
    [134]DaRocha-Souto B, Coma M, Perez-Nievas BG, et al. Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer's disease [J]. Neurobiol Dis, 2012,45(1):425-437. doi:10.1016/j.nbd.2011.09.002.
    [135]Bullock BP, Habener JF. Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation, and increases net charge [J]. Biochemistry,1998,37(11):3795-3809. doi:10.1021/bi970982t.
    [136]Dennissen FJ, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases:Culprit, accomplice or victim [J]. Prog Neurobiol,2012,96(2): 190-207. doi:10.1016/j.pneurobio.2012.01.003.
    [137]Wilkinson KD, Lee KM, Deshpande S, et al. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase [J]. Science,1989,246(4930):670-673. doi:10.1126/science.2530630.
    [138]Larsen CN, Krantz BA, and Wilkinson KD. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases [J]. Biochemistry,1998,37 (10):3358-3368. doi:10.1021/bi972274d.
    [139]Eytan E, Armon T, Heller H, et al. Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex [J]. J Biol Chem,1993,268(7):4668-4674.
    [140]Hegde AN, Inokuchi K, Pei W, et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia [J]. Cell,1997,89(1):115-126. doi:10.1016/S0092-8674(00)80188-9.
    [141]Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders [J]. Drug News Perspect,2007,20(6):365-370.
    [142]Castegna A, Thongboonkerd V, Klein J, et al. Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins [J]. J Neurochem,2004, 88(6):1540-1546. doi:10.1046/j.1471-4159.2003.02288.x.
    [143]Choi J, Levey AI, Weintraub ST, et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's Diseases [J]. J Biol Chem,2004,279(13):13256-13264. doi:10.1074/jbc.M314124200.
    [144]Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB [J]. Nat Rev Mol Cell Biol,2001,2(8):599-609. doi:10.1038/35085068.
    [145]Liu J, Jiang YG, Huang CY, et al. Depletion of intracellular zinc down-regulates expression of Uch-L1 mRNA and protein, and CREB mRNA in cultured hippocampal neurons [J]. Nutr Neurosci,2008,11(3):96-102. doi:10.1179/147683008X301432.
    [146]Sakurai M, Sekiguchi M, Zushida K, et al. Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene [J]. Eur J Neurosci,2008,27(3):691-701. doi:10.1111/j.1460-9568.2008.06047.x.
    [147]Monti B, Marri L, Contestabile A. NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development [J]. Eur J Neurosci,2002,16(8): 1490-1498. doi:10.1046/j.1460-9568.2002.02232.x.
    [148]Lim IA, Hall DD, Hell JW. Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102 [J]. J Biol Chem,2002,277(24):21697-21711. doi 10.1074/jbc.Ml 12339200.
    [149]Rong Y, Lu X, Bernard A, et al. Tyrosine phosphorylation of ionotropic glutamate receptors by Fyn or Src differentially modulates their susceptibility to calpain and enhances their binding to spectrin and PSD-95 [J]. J Neurochem,2001,79(2):382-390. doi:10.1046/j.1471-4159.2001.00565.x.
    [150]Gahwiler BH, Capogna M, Debanne D, et al. Organotypic slice cultures:a technique has come of age [J]. Trends Neurosci,1997,20:471-477. doi:10.1016/S0166-2236(97)01122-3.
    [151]Holopainen IE. Organotypic hippocampal slice cultures:a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity [J]. Neurochem Res,2005,30(12):1521-1528. doi:10.1007/s11064-005-8829-5.
    [152]Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue [J] J Neurosci Methods,1991,37(2):173-182. doi:10.1016/0165-0270(91)90128-M.
    [153]Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways [J]. Nat Neurosci,2002,5(5):405-414. doi:10.1038/nn835.
    [154]Brown MT, Cooper JA. Regulation, substrates and functions of src [J]. Biochim Biophys Acta, 1996,1287(2-3):121-149. doi:10.1016/0304-419X(96)00003-0.
    [155]Colledge M, Snyder EM, Crozier RA, et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression [J]. Neuron,2003,40(3):595-607. doi:10.1016/S0896-6273(03)00687-1.
    [156]Hegde AN, Goldberg AL, Schwartz JH. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin:a molecular mechanism underlying long-term synaptic plasticity [J]. Proc Natl Acad Sci USA,1993,90(16):7436-7440.
    [157]Kolarova M, Garcia-Sierra F, Bartos A, et al. Structure and pathology of tau protein in Alzheimer disease [J]. Int J Alzheimer Dis,2012,2012:731526. doi:10.1155/2012/731526.
    [158]Reynolds CH, Garwood CJ, Wray S, et al. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgammal, Grb2, and Src family kinases [J]. J Biol Chem,2008,283(26):18177-18186. doi:10.1074/jbc.M709715200.
    [159]Li M, Zhang DQ, Wang XZ, et al. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway [J]. Biochem Biophys Res Commun,2011,411(4):667-672. doi:10.1016/j.bbrc.2011.06.170.
    [160]Ashe KH, Zahs KR. Probing the Biology of Alzheimer's disease in mice [J]. Neuron,2012, 66(5):631-645. doi:10.1016/j.neuron.2010.04.031.
    [161]Ward SM, Himmelstein DS, Lancia JK, et al. Tau oligomers and tau toxicity in neurodegenerative disease [J]. Biochem Soc Trans,2012,40(4):667-671. doi:10.1042/BST20120134.
    [162]Lee MJ, Lee JH, Rubinsztein DC. Tau degradation:The ubiquitin-proteasome system versus the autophagy-lysosome system [J]. Prog Neurobiol,2013,105:49-59. doi:10.1016/j.pneurobio.
    [163]Trinchese F, Liu S, Battaglia F, et al. Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice [J]. Ann Neurol,2004,55(6):801-814. doi:10.1002/ana.20101.
    [164]Yan P, Bero AW, Cirrito JR, et al. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice [J]. J Neurosci,2009,29(34):10706-10714. doi:10.1523/JNEUROSCI.2637-09.2009.
    [165]Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity:The synaptic consolidation hypothesis [J]. Prog Neurobiol,2005,76(2):99-125. doi:10.1016/j.pneurobio.2005.06.003.
    [166]Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition [J]. Eur J Neurosci,2004,20(10):2580-2590. doi:10.1111/J.1460-9568.2004.03720.x.
    [167]Van der Jeugd A, Ahmed T, Burnouf S, et al. Hippocampal tauopathy in tau transgenic mice coincides with impaired hippocampus-dependent learning and memory, and attenuated late-phase long-term depression of synaptic transmission [J]. Neurobiol Learn Mem,2011, 95(3):296-304. doi:10.1016/j.nlm.2010.12.005.
    [168]Jahn H. Memory loss in Alzheimer's disease [J]. Dialogues Clin Neurosci,2013,15(4): 445-454.
    [169]Squire LR. Memory and the hippocampus:a synthesis from findings with rats, monkeys, and humans [J]. Psychol Rev,1992,99(2):195-231. doi:10.1037/0033-295X.99.2.195.
    [170]Broadbent NJ, Squire LR, Clark RE. Spatial memory, recognition memory, and the hippocampus [J]. Proc Natl Acad Sci USA,2004,101(40):14515-14520. doi:10.1073/pnas.0406344101.
    [171]Schindowski K, Bretteville A, Leroy K, et al. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits [J]. Am J Pathol,2006,169(2):599-616. doi:10.2353/ajpath.2006.060002.
    [172]Tatebayashi Y, Miyasaka T, Chui DH, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau [J]. Proc Natl Acad Sci USA,2002, 99(21):13896-13901. doi:10.1073/pnas.202205599.
    [173]Santacruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function [J]. Science,2005,309(5733):476-481. doi:10.1126/science.l 113694.
    [174]Lopez Salon M, Morelli L, Castano EM, et al. Defective ubiquitination of cerebral proteins in Alzheimer's disease [J]. J Neurosci Res,2000,62(2):302-310. doi:10.1002/1097-4547(20001015)62:2<302::AID-JNR15>3.0.CO;2-L.
    [175]Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer's disease [J]. J Neurochem,2000,75(1):436-439. doi:10.1046/J.1471-4159.2000.0750436.x.
    [176]Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory [J]. Cell,1996,87(7):1327-1338. doi:10.1016/S0092-8674(00)81827-9.
    [177]Caldeira MV, Melo CV, Pereira DB, et al. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons [J]. Mol Cell Neurosci,2007,35(2):208-219. doi:10.1016/j.mcn.2007.02.019.
    [178]Schindowski K, Belarbi K, Buee L. Neurotrophic factors in Alzheimer's disease:role of axonal transport [J]. Genes Brain Behav,2008,7 Suppl 1:43-56. doi:10.1111/j.1601-183X.2007.00378.x.
    [179]Elliott E, Atlas R, Lange A, et al. Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3 kinase signalling mechanism [J]. Eur J Neurosci,2005,22(5):1081-1089. doi:10.1111/j.1460-9568.2005.04290.x.
    [180]Jovanovic JN, Benfenati F, Siow YL, et al. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci USA, 1996,93(8):3679-3683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700