用户名: 密码: 验证码:
盐胁迫对不同冬小麦品种萌芽及幼苗的影响及其钙的缓解效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用高度抗盐小麦品种德抗961和济南17(当前山东省主推品种)为试验材料,在德州学院农学系实验室及温室内进行试验。研究了不同类型冬小麦品种在盐胁迫下萌芽和幼苗生长的生理响应,以及钙营养对不同类型冬小麦品种萌芽和幼苗盐胁迫伤害的缓解作用。探讨了盐胁迫下不同小麦基因型和不同的钙浓度对小麦发芽率、发芽时胚乳内淀粉酶活性、氨基酸含量和可溶性糖含量,幼苗渗透调节物质含量、抗衰老酶活性、过氧化产物含量和光合色素含量等的影响。主要结论如下:
     1盐胁迫对不同冬小麦品种萌芽的影响
     1%NaCl胁迫下,两个不同类型小麦品种的萌芽均受到抑制,表现在发芽率、发芽指数、活力指数、初生根条数和芽长均有所下降。与此同时,小麦种子胚乳内可溶性糖含量上升,氨基酸含量和淀粉酶活性较对照下降。无论上升还是下降,高抗盐品种德抗961均较济南17变化幅度小。
     2外源钙离子对盐胁迫下不同冬小麦品种萌发的影响
     1%NaCl胁迫下加入外源钙,有利于两个不同类型的小麦品种种子发芽,不同程度地缓解了盐胁迫。外源钙的加入对济南17的缓解作用显著,而对抗盐品种德抗961缓解作用较小。钙浓度在0.1%-0.4%范围内,缓解作用随钙浓度的增加呈先增强后减弱的趋势。在钙浓度为0.1%时对高抗盐品种德抗961的盐害缓解作用最强,对济南17则是在钙浓度为0.2%时缓解作用达最强。钙浓度达0.4%,二品种均表现为加重盐害。
     3盐胁迫下对不同冬小麦品种幼苗的影响
     1%NaCl胁迫对两个不同类型的小麦品种幼苗的生长都产生抑制作用。表现在幼苗的鲜重、干重和相对含水量均比对照下降,光合色素含量也表现低于对照;而渗透调节物质如可溶性糖、可溶性蛋白、游离氨基酸和脯氨酸等含量均上升,过氧化产物丙二醛含量明显上升,抗氧化酶如超氧化物歧化酶、过氧化物酶、过氧化氢酶活性均上升。无论上升还是下降,高抗盐品种德抗961较济南17变化幅度都小。说明德抗961对盐胁迫反应比济南17迟缓。
     4外源钙离子对盐胁迫下不同冬小麦品种幼苗的影响
     1%NaCl胁迫下加入外源钙,有利于两个不同类型的小麦品种幼苗的生长,能不同程度地缓解盐胁迫。外源钙的加入对济南17的缓解作用显著,而对抗盐品种德抗961缓解作用较小。表现在幼苗干鲜重增加,光合色素含量增加,渗透调节物质和丙二醛含量降低,抗氧化酶活性升高。钙浓度在0.1%-0.4%范围内,缓解作用随钙浓度的增加呈先增强后减弱的趋势。对高抗盐品种德抗961而言,在钙浓度为0.1%时的缓解盐害作用最强,济南17则在钙浓度为0.2%时的缓解作用达最强。钙浓度达0.4%,二品种均表现为加重盐害。
     5促进盐胁迫下小麦种子萌发和盐碱地保苗的措施
     选用耐盐品种,配合使用外源钙,根据品种抗盐性决定所用钙浓度。
The experiment was conducted in laboratory and greenhouse of Agriculture Science Department of De Zhou University.Two different cultivars of winter wheat(DK961,high salt-tolerant;JN17) were tested. DK961 was a salt tolerant winter wheat cultivar and JN17 was a popular winter wheat variety demonstrated in Shandong Province.In this paper,the physiological response was studied to winter wheat varieties germination and seedling growth when different types of winter wheat varieties were under salt stress,And so the ameliorative effect of calcium nutrition on germination and seedling.
     The effects of different wheat genotypes and calcium concentration when they were under salt stress was also explored.Such as effects on wheat germination rate,the endosperm amylase activity when germinating,amino acid content and soluble sugar content,osmotic adjustment substance content, anti-aging enzyme activity,peroxide content and photosynthetic pigment content,and so on.
     The results indicated that:
     1.The effect of salt stress to buds of different winter wheat varieties.
     When under 1%NaCl stress,two different types of wheat germinating were inhibited,which showed in the germination rate,germination index, vitality index,the reduction on root number and length of bud.At the same time,the soluble sugar content in Wheat seed endosperm increased,while the amino acid content and amylase activity decreased.Whether rising or declining,the changing range of DK961(high salt-tolerant) was lower than that of JN17.
     2.The effect of exogenous calcium on different buds of winter wheat varieties when under salt stress
     Additional exogenous calcium was helpful to the germination and eased the salt stress when the two different types of wheat varieties were under salt stress.The additional exogenous calcium on JK17(popular winter wheat varieties) were more apparent than that on DK961.Calcium concentrations in the 0.1%-0.4%range,the ameliorative effect increased at first and then decreased with the increase of calcium concentration.The effect of calcium concentration of 0.1%was the strongest for DK961,while for JN17,calcium concentration of 0.2%was the strongest,Calcium concentrations of 0.4% added salt injury to all of the varieties.
     3.The effect of salt stress on seedling of different winter wheat varieties
     1%NaCl stress might inhibit the growth of two different types of wheat seedlings.Which showed in decrease on Seedlings fresh weight,dry weight and water content by standard,and so photosynthetic pigment content;while the content of osmotic adjustment soluble substances such as sugar,soluble proteins,free amino acids and proline increased,the content of peroxidation product as MDA increased greatly,and so the activity of antioxidant enzymes such as superoxide of dismutase,peroxidase,catalase activity increased. Whether rising or declining,the changing range for DK961 was lower than that for JN17,which showed that the reaction to salt stress for DK961 was slower than that for JN17.
     4.The exogenous calcium on different seedlings of winter wheat varieties when under salt stress
     Additional exogenous calcium was helpful to the seedling's growth and eased the salt stress when the two different types of wheat varieties were under salt stress.The ameliorative effect of additional exogenous calcium on JK17 (popular winter wheat varieties) was more apparent than that on DK961, which showed that the Seedlings fresh weight increased,and so the photosynthetic pigment content.The content of osmotic adjustment soluble substance and MDA(malondialchehyche) decreased,while the activity of antioxidant enzymes increased.Calcium concentrations in the 0.1%-0.4% range,the ameliorative effect increased at first and then decreased with the increasing of calcium concentration.The ameliorative effect of calcium concentration of 0.1%was the strongest for DK961,while for JN17,calcium concentration of 0.2%was the strongest,and Calcium concentrations of 0.4% added salt injury to all of the varieties.
     5.The protect measures on germinating and seedlings in saline fields when wheat seeds were under salt stress.
     We should choose salt-tolerant wheat varieties,with the use of exogenous calcium.The calcium concentration was decided by different salt-tolerant wheat varieties.
引文
1 蔡蕾,丁同楼,王宝山.外源GA3、ABA和Ca(NO3)_2缓解盐对小麦种子萌发的抑制作用.西北植物学报,2004,24:583-587
    2 陈龙,罗志良,谭光轩,吴诗光,王红星.小麦灌浆期叶片游离脯氨酸和可溶性蛋白质含量与抗旱性的关系.周口师范高等专科学校学报,2000,1-3
    3 程林梅,唐连顺.氯化钙对棉花幼苗抗旱性的效应.中国农学通报,1998,14(1):20-21
    4 戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响.中国农学通报,2003,第19卷,第3期:97-101
    5 段咏新,宋松泉,傅家瑞.钙对杂交水稻叶片中活性氧防御酶的影响,生物学杂志,1999,16(1):18-20
    6 冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响.大豆科学,1997,16(1):48-52
    7 傅秀云,杨红兵等.浇水对盐碱地小麦生长及产量的影响.山东农业科学,2000,6,18-20
    8 龚明,杨兴富.钙对玉米幼苗抗盐性的效应.植物生理学通讯,1994,30(6):429-432
    9 顾增辉,宋剑辉.大豆抗冷性生理生化指标的筛选.中国农业科学,1992,25(4):15-23.
    10 郭房庆,黄昊,汤章城.NaCl胁迫对小麦抗盐突变体根液泡膜H~+-ATP酶和H~+-pp 酶活性的影响.植物生理学报,1999,25(4):395-400
    11 郝再彬,苞晶,徐仲等.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004
    12 李合生等.现代植物生理学.高等教育出版社,2002,第一版
    13 李树华,许兴等.不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应.麦类作物学报,2000,20(4):63-67
    14 刘成运,孟庆梅.冷害条件下凤眼莲某些生理特性变化的研究.武汉植物究,1993,11(4):345-353
    15 刘峰,张军,张文吉.氧化钙对水稻的生理作用研究.植物学通报,2001,18(4):490-495
    16 刘富林,韩润林.钙对小麦叶片保水力及膜功能的影响.河北农业大学学报(自然版),1991,14(4)28-32
    17 刘友良,汪良驹.见:余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998,752-769
    18 刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    19 栾升、倪晋山。表面活性剂和Ca~(2+)对大麦根质膜透性的作用.植物生理学报,1987,13(2):168-173
    20 罗志军,田秀英.果树钙素营养研究进展.北方园艺,2006 No.1:56-58
    21 律兆松,王汝镰.不同生物措施改良苏打盐土效果的模糊综合评价初探.土壤通报,1989,20(5):200-205
    22 吕芝香,王正刚.盐胁迫下Ca~(2+)对玉米无机离子分布和膜脂脂肪酸的影响.植物生理学报,1993,19(4):325-332
    23 毛达如,植物营养研究方法,中国农业大学出版社,1994,91-92
    24 缪颖,叶钢,毛节琦.缺钙玉米叶片的过氧化伤害.浙江农业大学,1997,23(2):163-167
    25 牛东玲,王启基.盐碱地治理研究进展.土壤通报,2002,6期(33卷):449-455
    26 任红旭,陈雄.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化.植物生态学报,2001,25(6):709-715
    27 斯琴巴特尔,吴红英.盐胁迫对玉米种子萌发及幼苗生长的影响.干旱区资源与境,孙金月,赵玉田,常汝镇,梁博文,刘方.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学1997,30(4):9-15 2000,14(4):76-80
    28 沈成国.植物衰老生理与分子生物学,北京:中国农业出版社,2001
    29 汪洪,周卫,林葆.钙对镉胁迫下玉米生长及生理特性的影响.植物营养与肥料学报,2001,7(1):78-87
    30 王邦锡,何俊贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素.植物生理学报.1992,18(1):77-84
    31 王宝山,蔡蕾,李平华等.盐碱地耐盐小麦覆膜栽培高产机理的研究.西北植物学报,2000,20(5):746-753
    32 王宝山,李明亮,张宝泽等.盐胁迫下外源脯氨酸和丙二醛对冰叶松叶菊愈伤组织中离子和脯氨酸含量的影响.植物生理学通讯,1993,29(3):182-184
    33 王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策.植物学通报,1997,14(增刊):25-30
    34 王恒彬,王学臣,陈珈等.蚕豆保卫细胞原生质体ABA结合蛋白的理化特性.植物学报,1997,28:22-29
    35 王建华,刘鸿先.SOD在植物逆境及衰老中的作用.植物生理学通讯,1980,(1):1-7
    36 王丽燕,赵可夫.NaCl胁迫对海蓬子离子区室化、光合作用和生长的影响.植物生理与分子生物学学报,2004,30(1):94-98
    37 王忠等.植物生理学.中国农业出版社,2000,第一版
    38 吴德宽,吴渤海.干旱胁迫下钙对裸大麦叶片生理生化特性的影响.麦类作物,1997,17(2):42-44
    39 吴以平,董树刚.钙对高盐胁迫下浒苔和孔石莼生理生化过程的影响.Marine Science,2000,24(8):11-14
    40 徐秋曼,陈宏,程景胜.外源Ca~(2+)对水稻幼苗生长的影响.天津师大学报(自然科学版),1999,19(4):49-58
    41 许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报2000,6(4):379-387
    42 严小龙,张福锁,植物营养遗传学,北京:中国农业出版社,1997,151-160
    43 杨根平,高爱丽,荆家海.钙与渗透胁迫下大豆细胞透性的关系.植物生理学通讯,1993,29(3):179-181
    44 杨根平,高向阳,荆家海.水分胁迫下钙对大豆叶片光合作用的改善效应.作物学报,1995,21(6)711-716
    45 杨根平.离体叶片脱水率作为抗旱指标的:深讨.华北农学报,1990,5(增刊):88-91
    46 姚大年,李保云,梁荣奇,刘广田.基因型和环境对小麦品种淀粉性状及面条品质的影响,中国农业大学学报,2000,5(1):63-68
    47 晏斌,戴秋杰,刘晓忠等.钙提高水稻耐盐性的研究.作物学报,1995,21(6):685-690
    48 余叔文,汤章诚.植物生理与分子生物学,北京:科学出版社,1998,752-754
    49 于振文等.作物栽培学.中国农业出版社,1995年8月
    50 袁清昌,许长成,邹琦.钙信使系统在百草枯诱导小麦幼苗膜脂过氧化中的作用.植物生理学通讯,1996,32(1):13-16
    51 张宝译.盐胁迫下不同的钙盐对小麦幼苗耐盐性的影响.植物学通报,1997,14(4):48-50.
    52 张芬琴,沈振国,刘友良.铝和铝+钙对小麦根尖质膜、液泡膜微囊ATP酶和膜流动性的影响.植物生理学报,2000,26(2):105-110
    53 张士功,高吉寅,宋景芝.硝酸钙对小麦萌发过程中盐害的缓解作用.作物研究,1998(3):20-23
    54 章文华,陈亚华,刘友良.钙在植物细胞盐胁迫信号转导中的作用.植物生理学通讯,2000,36(2):146-153
    55 赵可夫,卢元芳,张宝泽.Ca对小麦幼苗降低盐害效应的研究.植物学报,1993,35(1):51-56
    56 赵可夫.植物的抗盐和抗盐机理.曲阜师院学报,1984,36-38
    57 赵可夫.盐分过多对植物的伤害作用.曲阜师范大学学报,植物抗盐生理专刊,1984
    58 赵世杰,刘华山,董新纯.植物生理学实验指导.北京:中国农业科技出版社,1998,5-40
    59 赵旭,王林权,周春菊,尚浩博.钙离子对两种基因型冬小麦萌发过程中盐胁迫 效应的影响.土壤通报,2006,第37卷第4期,748-752
    60 赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报.2005,31(1):103-106
    61 郑慧琼,腾世云.小麦耐盐愈伤组织内源脯氨酸含量和细胞学特征,山东大学学报(自然科学版).1995,195-182
    62 郑志富,金振华,周燮等.一种与核酸复合的脱落酸结合蛋白.中国科学(C辑),1998,28:22-29
    63 宗会,胡文玉.钙信使系统在苹果果肉圆片衰老中的作用.植物生理学通讯,2000,36(4):305-307
    64 朱新广,王强,张其德,等.在盐胁迫下光抑制及其恢复进程对冬小麦光合功能的影响.植物学报,2001,43(12):120-125
    65 Bernstein N,Silk WK,Lauchli A.Growth and development of sorghum leaves under condition of NaCl stress.Planta,1993,191:433-439
    66 Bethke PC,Gilroy S,Jones RL.Calcium and plant hormone act ion.In:Davies PJ(ed).Plant Hormones.Dordrecht:Kluwer Academic Publishers,1995.298-317。
    67 Blatt MR,Grabov A,Signalling gates in abscisic acid - mediated control of guard cell ion channels.Physiol Plant,1997,100:481-490。
    68 Bowler C,Van Montagu C,Inze D.Superoxide dismutase and stress tolerance.Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116
    69 Brambl R,Gade W.Plant Physiol,1985,64:402
    70 Caley CY,Duffus CM,Jeffcoat B.Effects of elevated temperature and reduced water uptake on enzymes of starch synthesis in developing wheat grains.Aust J Plant Physiol.1990,17:431-439
    71 Canned RQ,Belford RK,Gales K et al.Effects of water logging at different stages of development on the growth and yield of winter wheat.J Sci.Food Agric.1980,31:117-124
    72 Cramer GR.Displacement of Ca~(2+) and Na~+ form the plasmalemma of rottcells.Plant Physiol,1985,79:207-211
    73 Cheeseman JM.Mechanisms of Salinity Tolerance in Plants,Plant Physiol.1988,117:547-550
    74 Colmer TD,Fan TWM,Higashi RM,Lachi A,Interactive effects of Ca~(2+) and NaCl salinity on the ionic relations and proline aecumlation in the primary root tip of sorghum bicolor.Physiol Plant,1996,97:421-424
    75 Cowan A K,Richardson G R,Maurel JCG.Stress - induced ahscistic acid transients and stimulus - response - coupling. Physiol Plant, 1997, 100: 491-499
    
    76 Cramer GR, Abdel BR, Seemann JR, Salinity calcium interactions on root growth and osmotic adjustment of two corn cultivars differing in salt tolerance, J Plant Nutri,1990, 13: 1453-1462
    
    77 Cramer GR. Displacement of Ca~(2+) and Na~+ form the plasmalemma of rottcells. Plant Physiol, 1985, 79:207-211
    
    78 Epstein Metal. Advance salt tolerance. Plant Soil, 1987, 99: 17-29
    
    79 Frandsen G, Frieder N U, Nielsen M, Mundy J, Skriver K. Novel plant Ca~(2+) - binding protein expressed in response to abscisic acid and osmotic stress. J Bio Chem, 1996,271 :343-345
    
    80 Frandsen G, Muller UF, Nielsen M, Mundy J, Skriver K, Novel plant Ca~(2+) binding protein expressed in response to abscisic acid and osmotic stress, J Bio Chen,1996, 271 : 343-348
    
    81 Gary V. The effects of benzyladenine, cycloheximido and cordycepin on witing induced ABA and proline accumulation and ABA and salt induced proline accumulation in barley leaves. Plant hysiology, 1986, 82:703-707
    
    82 Giannopolitis C N, Ries S K. Superoxide dismutase I. Occurrence in higher plants.Plant Physiol, 1977, 59:309-314
    
    83 GILORY S. Signal transduction in barley aleurone protop lasts is calcium dependent and independent. Plant Cell, 1996, 8(12), 193-209
    
    84 Gossett, D.R., E.P. Millhollon M.C.Lucas. Antioxidant responses to NaCl stress in salt-tolerant and sal-sensitive cultivars of cotton. Crop Science, 1994, 34:706-714.
    
    85 Grieve CM, Francois LE, Maas EV. Salinitv affects the timing of phasic development in spring wheat. Crop Sci. 1994, 34: 1544-1549
    
    86 Hamada, A.M. and Khulaef, E.M. Effects of Salinity and Heat-Shock on Wheat Seedling Growth and Content of Carbohydrates, Proteins and Amino Acids, Biol.Plant. 1995, 137:399-404
    
    87 Hansen E H, Munns D N. Effect of CaSO_4 and NaCl on mineral content of leucaena leucoephala.PIant and Soil, 1988, 107:101-105.
    
    88 Hanson AD, nelsen CE, Everson EH. Evalution of free Proline accumulation as an index of drought resistance using two contrasting barey cultivars .Crop Sci, 1977, 17 :720
    
    89 Khokhlova LP, Asafova EV. The effect of calciumon the content of proline and solube proteins in plants acclimating to low temperature. RussJ Plant Physiol, 1994, 41 :447-453
    90 Lahage, PA, E. Epstein. Scienc,1969. 166 :395-396
    
    91 Lawlor DW, Uprety DC. Effect of water stress on photosynthetic stress and crops and the biochemical mechanism. IN: Yash Pal Arol, Prasanna MG. Dordrecht: Kluwer Academic publishers. 1993, 419-449
    
    92 Levitt J. Responces of plant to environmental stress(second edition) Volume Ⅱ.New York:Academ ic Press, 1980, 365-454.
    
    93 Li J, Lee YRJ, Assmann SM. Guard cells possess a calcium- dependent protein kinase that phospholates the KAT: a potassium channel .Plant Physiol, 1998, 166 : 785-795
    
    94 Lynch J, Politc VS, Lauchli A .Salinity stress increases Ca activity in maize root protoplasts .Plant Physiol, 1989, 90:1271-1274
    
    95 Lynch JA. Salinity stress increase cytoplasmic activity in maixe root protoplasts. Plant Physiol, 1989, 90 : 127-138
    
    96 MacRobbie EAC. Signalling in guard cells and regulation of ion channel activity. J Exp Bot, 1997, 48 : 515-528
    
    97 Maslenkora LT. Adaptation to salinity as monitored by PSII oxgen evolving reactions in barley thylakoids. J Plant Physiol. 1993, 142: 629-634
    
    98 McAinsh PR, Brownlee AM, Hetherington AM. Calcium ions as second messengers in guard cell signal transduction. Physiol Plant, 1997, 100 : 16-29
    
    99 Meneguzzo S., F.Navari-Izzo&R.Izzo. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol, 1999, 155:274-280
    
    100 Munns R, Gardner A, Tonnet ML and Rawson HM. Growth and development in NaCl- treated plants. Ⅱ. Do Na~+ or Cl~- concentrationsin dividing or expanding tissues determine growth in barley. Aust J Plant Physiol.1988, 15:529-540
    
    101 Novaro P, Egidio M G. Genotype and environment; their effect on some durum wheat quality characteristics. J Gen Breed. 1997, 51(3): 247-252
    
    102 Paul M. HA Segawa Kra YA. Bra Ssan KJ IAN 2KAN G ZHU KHAN S J. BOHN ERT. Plant cellular and mo lecular responses to high salinity. Annu Rev Plant Physiol.2000, 51, 463-499.
    
    103 Proceedings of the 5th International Wheat Conference, Ankara, Turkey, 10-14,1997, 223-228
    
    104 Rabe, E.J., Horicultural. sci. 1990, 65:231~243
    
    105 Rharrabti, Y. & C. Royo. Durum wheat quality in Mediterranean environments. I. Quality expression under different zones, latitudes and water regimes across Spain. Field Crops Research. 2003, 80:121-131.
    
    106 Schobert B .Is there an osmotic regulatory mechanismin agle and higher plant, J Thcor Bid, 1977.6:17
    107 Schroeder J I, Kwak J M, Allen GJ. Guard cell abscisic acid signaling and engineering drought hardness in plants. Nature, 2001, 410:327-330.
    108 SGHERR I C L M , MA FFE IM , NAVAR I2L ZZO F. Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering. J Plant Physiol, 2000, 157:273-279.
    
    109 Shinozaki K, Yamaguchi K. Gene expression and signal transduction in water - stress response. Plant Physiol, 1997, 115: 327-334
    
    110 Van Assche F, Clijsters C. Effects of metals on enzyme activity in plants. Plant Cell Environ, 1990, 13 : 195-206
    
    111 Watad AA, Reinhold L, Lerner HR. Comparison between a stable Nacl - selected Nicotiana cell line and wild type. Plant Physiol, 1983, 73 : 624
    
    112 Wyn Jones, RG, OR. Lunt, . Bot Rev, 1967, 33 :407-426
    
    113 ZHAN G J, N GU YER H T, BLUM A. Genetic analysis of osmotic adjustment in crop plants. J Exp Bot, 1999, 50:291-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700