用户名: 密码: 验证码:
绵羊羊膜上皮细胞的分化潜能及在骨缺损模型治疗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊膜上皮细胞(amnion epithelial cells, AECs)是由废弃的胎盘羊膜衍生的具有干细胞特性的细胞。AECs不仅具有多向分化潜能,而且许多研究都证实其具有免疫豁免性,移植后不产生免疫排斥反应,因缺乏末端转移酶端粒,移植后不致瘤,再加上来源广、易获得,不存在伦理争议等,而成为细胞研究工作者的研究热点之一。应用AECs进行一些疑难症的治疗是临床研究工作者的最终目标。临床应用治疗顺利进行的前提是以安全可靠的动物实验为基础。目前,AECs的研究主要以人的为主,在临床治疗研究中以人AECs治疗肝病、肺病、心脏病、糖尿病、神经系统疾病等疑难病症。而绵羊AECs的研究在国内尚未见报道,国外的相关研究也极少。因此,本研究对绵羊AECs的分离培养、干细胞特性的鉴定、体内分化及体外定向诱导分化进行了系统的研究。
     1.绵羊羊膜上皮细胞的分离与培养
     实验参照人羊膜消化分离获得原代细胞的方法,对绵羊羊膜的消化分离方法进行了探索,最终选用胰酶替代物TrypLE消化绵羊羊膜分离获得原代细胞,获得的原代细胞活力高,纯度好。细胞培养过程中选用了15%的胎牛血清浓度的培养液进行细胞的培养,很好地维持细胞良好的生长态势。
     在不同密度梯度培养情况下,通过观察比较,确定了细胞接种的最适密度培养密度范围。在最适密度培养范围内,进行细胞生长周期的观察发现:绵羊AECs的潜伏期是1-2d,指数生长期是3-5d,以后为平台期。
     通过细胞冻存实验确定了细胞的冻存方案,采用DMSO作为冻存保护剂,FBS:DMSO=9:1的比列为冻存液,并且取-80℃到液氮的简捷冻存途径,有效地保存了绵羊AECs。
     2.绵羊羊膜上皮细胞的干细胞特性的鉴定
     采用细胞免疫荧光和RT-PCR技术分别检测绵羊AECs的ES细胞表面标志物Oct-4、SSEA-1、SSEA-3、SSEA-4、TRA-1-60和TRA-1-81及于细胞全能性相关基因Oct-4、Sox-2、Nanog和Rex-1等。检测结果显示绵羊AECs的Oct-4、SSEA-1、SSEA-3、 SSEA-4、TRA-1-60和TRA-1-81的ES细胞标志物均有表达。干细胞全能性相关基因Oct-4、Sox-2和Rex-1表达,而Nanog基因未见表达。检测结果提示,绵羊AECs具有干细胞特性的多向分化潜能。
     3.绵羊羊膜上皮细胞在体外的定向诱导分化研究
     为了检验绵羊AECs在体外的多向分化潜能,在一定条件下,利用一些外源因子诱导绵羊AECs向神经系统细胞、成骨细胞和脂肪细胞进行定向分化。然后分别用细胞免疫荧光检测和RT-PCR技术、细胞AKP活性检测、茜素红染色、油红0染色等方法进行了诱导分化细胞的鉴定。结果显示:①神经方向诱导分化28d后,细胞免疫荧光显示神经细胞特异性标志物β-Ⅲ-tubulin和神经胶质细胞特异性标志物GFAP均呈阳性表达;RT-PCR显示nestin和β-Ⅲ-tubulin和MAP-2等基因均有表达。②成骨诱导分化细胞AKP活性检测显示,诱导分化培养的第28d细胞AKP活性略有升高,第35d开始明显高于对照组,而且随培养时间的延长而继续增高,诱导组和基础培养组差异显著;茜素红染色有明显的钙化结节形成。③脂肪细胞诱导分化的第42d,油红0染色观察到有脂滴形成;细胞内AKP活性检测结果显示,基础培养组细胞AKP活性最高,各诱导组细胞AKP活性明显低于基础培养组。从上述鉴定中细胞的阳性及染色结果和诱导分化细胞的形态特征,可以推测本研究可以将绵羊AECs诱导分化为了表达β-Ⅲ-tubulin阳性的未成熟神经细胞及MAP-2阳性的成熟神经细胞、GFAP阳性的神经胶质细胞,有钙化结节形成的成骨细胞及有脂滴形成的脂肪细胞。
     4.绵羊羊膜上皮细胞治疗兔桡骨缺损模型的研究
     国外有文献报道,将绵羊AECs直接注射到绵羊体内,来治疗绵羊跟腱损伤的报道,且治疗效果极佳。为了进一步检验我们获得的绵羊AECs是否能够在异种动物兔体内进行分化,从而达到类似的治疗效果。手术制作30只兔桡骨13mm缺损模型,随机分成3组,即高剂量组,低剂量组和对照组。将AECs处理后,按设定剂量通过静脉注射进行细胞移植。在细胞移植前、手术后、细胞移植后2周、4周、8周拍摄X光片,细胞移植后的2周、4周、8周进行组织形态学观察。结果提示:移植的绵羊AECs高剂量组在第8周无论从X光片还是新生骨组织切片,缺损组织都修复完好,高剂量组优于低剂量组,低剂量组修复效果优于对照组。因此可以推测绵羊AECs在兔桡骨缺损模型的体内,向成骨方向进行了分化,加速了骨缺损的修复速度和质量。提示绵羊AECs治疗小段骨缺损是可行的。
     综上,本研究成功获得了具有干细胞特性的绵羊AECs,其无论在体内还是在体外均具有多向分化能力。本研究结果补充了绵羊AECs在干细胞特性方面及在体内和体外分化的理论知识,为临床进一步应用研究奠定了理论基础,提供了实践依据。
The amnion epithelial cells(AECs) is a type of cells possessed with stem cell characteristics and derive from superseded placenta amnion. AECs are not only have multi-directional differentiation potentiality, but possess immune exemption potency that immunological rejection and tumorigenesis are not generated after post transplant because of terminal transferas telomere defected, and AECs are gained readily and not cause ethics dispute, which make it become one hot spot of cell researches. To apply AECs curing some serious disease is the final objective of clinical researchers. Furthermore, successful clinical application and treat are base on safe and reliable animal experiment. At present, human amnion epithelial cells are studied chiefly and adopted to treat liver disease, pulmonary tuberculosis, heart disease, diabetes, nervous system disease and so on. However, the research on ovine amnion epithelial cells is not report in domestic and scarced in internationally. Therefore, isolating, culture and assessing stem cell characteristics, differentiation in vivo and direction location induction and differentiation in vitro of ovine amnion epithelial cells are proceed system research in this study.
     1. Isolating and culture of ovine amnion epithelial cells
     The isolating and digestion methods of ovine amnion epithelial cells in accordance with the means of digestion human amnion epithelial cells were explored. And pancreatic enzyme surrogate TrypLE was adopted lastly to digest ovine amnion and isolate primary cell that are obtained with the features of high vigor and purity coefficient. The culture solution contained with15%fetal bovine serum was applied and maintained excellently the favourable growth tendency of ovine amnion epithelial cells.
     The optimum density and scope of cultural density of cells inoculation were detected through observation and comparision in different density gradient culture experiment. It was found, via observing cell growth cycle in optimum density scope, that the incubation period of ovine amnion epithelial cells was1to2days, and exponential growth phase was3to5days, afterward maintaining invariably.
     The freezing and storing scheme of cells was definited by freezing and storing experiments, which DMSO was conducted as freezing and storing protective additive and FBS and DMSO were mingled according to certain ratio(FBS:DMSO=9:1) as freezing and storing solution.Moreover, to adopt the simple and quick freezing and storing ways that removed cells from-80℃to liquid nitrogen were efficiently preserve ovine amnion epithelial cells.
     2. Assessment the stem cell characteristics of ovine amnion epithelial cells
     Cell immunofluorescence and RT-PCR were performed to detect respectively the expression of embryonic stem cell of ovine AECs marker proteins Oct-4, SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81and totipotency related genes OCT-4, SOX-2, Nanog, Rex-1and so on. The observed Oct-4, SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81immunoreactivity of ovine AECs were predominant. RT-PCR experiments confirmed that the genes of Oct-4, Sox-2, Rex-1were expressed and Nanog was not expressed. The results indicated that the ovine AECs have the multi-directional differentiation potentiality of stem cell properties.
     3. Directional induction and differentiation of ovine amnion epithelial cells in vitro
     To check the multi-directional differentiation potentiality of ovine amnion epithelial cells in vitro, ovine AECs were induced to directional differentiate into nervous systemcells, osteoblast and adipocyte utilizing some additional factors. Cell immunofluorescence and RT-PCR technologies, alkaline phosphatase activities detection, alizarin bordeaux stain, oil red O dyeing were performed respectively to accredit induced and differentiated cells. The results showed:①the specific marker β-Ⅲ-tubulin in cellula nervosa and GFAP in nerve cement cells were observed positive immunofluorescence signals after28day in induced nerves direction; the genes of nestin, β-Ⅲ-tubulin and MAP-2were expressed.②alkaline phosphatase activities in bone formation induction and differentiation were elevate slightly after28day and begin to higher obviously than control group after35days. Moreover, the activities were to continue increase as cultural time prolong and the differences between induce and control group were evident; calcify nodus were visible in alizarin monosulfonate stain.③it could be observed lipid droplet formation by oil red O dyeing in cellula adiposa induction and differentiation on42d; alkaline phosphatase activities in foundation culture group were reach to maximum and higher conspicuously than each induced group. From above research to the morphous characteristics of differentiated cells, we may safely draw the suppose that ovine amnion epithelial cells have already induced and differentiated into positive pro-mature neuron cells expressed β-Ⅲ-tubulin, positive mature neuron cells expressed MAP-2, positive nerve cement cells expressed GFAP, osteoblast with calcify nodus and cellula adiposa with lipid droplet.
     4. study of therapy efficacy applied ovine amnion epithelial cells in rabbit radius defected models
     Injecting directly ovine amnion epithelial cells into ovine vivo to cure achilles tendon injury had reported and therapeutic efficacy was extremely excellent. To test the possibility of acquired ovine amnion epithelial cells differentiation in rabbit vivo and similar therapeutic efficacy with reported above, the13-centimetre long radius defected models were made artificially in30rabbits, divided into high dose group, low dose group and control group randomly. To carry out cellular transplant by intravenous injection according to setting dose after dealing with ovine aminion epithelial cells. Took the models for X-ray in2weeks,4weeks and8weeks before the ovine aminion epithelial cells transplantations, after operation and injection cells respectively and meanwhile observed histomorphology. The resultes hint:defect tissues were repaired in the high dose group at8weeks, observed from the X-ray and histological section of new bone, and the quality and quantities of trabecular bones in high dose group were better and higher than in the low dose group and it was the same situation between the low dose group and the control group. Accordingly, it was presume that ovine amnion epithelial cells in rabbit radius defected models in vivo were differentiated into bone and accelerated repaired speed and quality of bone coloboma.And the study indicated that it is feasible to apply ovine amnion epithelial cells to heal small bone defect.
     In this study successfully gain ovine amnion epithelial cells possessed with stem cell characteristics are have the multi-directional differentiation potency in vivo and in vitro. And the results in this research supply with the theory knowledges of AECs in stem cell characteristics and differentiation in vivo and in vitro, and establish rationale and provide practice base for clinical exploratory development.
引文
1 Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature.1981,292(5819):154-156.
    2 Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A.1981,78(12):7634-7638.
    3 Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells [J].Stem Cells.2005,23(10):1549-1559.
    4 Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science.1998,282(5391):1145-1147.
    5 胡新立,尚克刚.6个小鼠ES细胞系的建立和鉴定[J].北京大学学报(自然科学版).1996.32(2):248-253.
    6 丛笑倩,姚鑫.ES细胞分化为血管样结构的机理探讨—TGF-β1在血管形成中的作用[J].实验生物学报.1996,29(3):273-285.
    7 Park J H, Kim S J, Lee J B, et al. Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells[J].Mol Cells.2004, 17(2):309-315.
    8 Amit M,Itskovitz-Eldor J.Derivation and spontaneous differentiation of human embryonic stem cells[J].J Anat.2002,200(3):225-232.
    9 Tani H, Morris R J, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype[J]. Proc Natl Acad Sci U S A.2000,97(20):10960-10965.
    10 Weissman I L. Stem cells:units of development, units of regeneration, and units in evolution[J]. Cell.2000,100(1):157-168.
    11 Reynolds B A, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. science.1992,255(5052):1707-1710.
    12 Orlic D,Kajstura J, Chimenti S, et al.Bone marrow cells regenerate infarcted myocardium[J]. Nature.2001,410(6829):701-705.
    13 Blau H M, Brazelton T R, Weimann J M. The evolving concept of a stem cell:entity or function?[J], Cell.2001,105(7):829-841.
    14 Krause D S, Theise N D, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell[J], Cell.2001,105(3):369-377.
    15 Watts C, Mcconkey H, Anderson L, et al. Anatomical perspectives on adult neural stem cells[J]. J Anat.2005,207(3):197-208.
    16 Schaff ler A, Buchler C. Concise review:adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies[J]. Stem Cells.2007,25 (4):818-827.
    17 Mimeault M, Hauke R, Mehta P P, et al. Recent advances in cancer stem/progenitor cell research:therapeutic implications for overcoming resistance to the most aggressive cancers [J].J Cell Mol Med.2007,11 (5):981-1011.
    18 Mimeault M, Batra S K. Concise review:recent advances on the significance of stem cells in tissue regeneration and cancer therapies [J]. Stem Cells.2006,24 (11):2319-2345.
    19 Mimeault M, Hauke R, Batra S IC. Stem cells:a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies[J]. Clin Pharmacol Ther.2007,82 (3):252-264.
    20 Morrison S J, Shah N M, Anderson D J. Regulatory mechanisms in stem cell biology[J]. Cell.1997, Vol.88 (3):287-298.
    21 Brazelton T R, Rossi F M, Keshet G I, et al. From marrow to brain:expression of neuronal phenotypes in adult mice[J]. Science.2000,290(5497):1775-1779.
    22 Anderson D J, Cage F H, Weissman I L. Can stem cells cross lineage boundariess [J]. Nat Med.2001,7 (4):393-395.
    23 Clarke D L, Johansson C B, Wilbertz J, et al. Generalized potential of adult neural stem cells[J]. Science.2000,288(5471):1660-1663.
    24 LoefflerM, Roederl. Tissue stem cells:definition,plasticity, heterogeneity, self-or ganization and models-a conceptual approach[J]. Cells Tissues Organs.2002, 171(1):8-26.
    25 Kocher A A, Schuster M D,Szabolcs M J,et al.Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function[J]. Nat Med.2001,7 (4): 430-436.
    26 Gussoni E, Soneoka Y, Strickland C D, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation[J]. Nature.1999,401(6751):390-394.
    27 Deutsch G, Jung J, Zheng M, et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm[J]. Development.2001,128 (6):871-881.
    28 Alison M R, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells [J].Nature.2000,406(6793):257.
    29 Bjornson C R, Rietze R L, Reynolds B A, et al. Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science.1999,283(5401):534-537.
    30 Ferrari G, Cusella-De A G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors[J], Science.1998,279(5356):1528-1530.
    31 Alvarez-Dolado M, Pardal R.Garcia-Verdugo J M, et al. Fusion of bone-mar row-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes[J]. Nature.2003,425 (6961):968-973.
    32 Vassilopoulos G, Wang P R, Russell D W. Transplanted bone marrow regenerates liver by cell fus ion[J]. Nature.2003,422(6934):901-904.
    33 Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes[J]. Nature.2003,422(6934):897-901.
    34 Weimann J M, Johansson C B, Trejo A, et al. Stable reprogrammed heterokaryons fora spontaneously in Purkinje neurons after bone marrow transplant [J]. Nat Cell Biol. 2003,5 (11):959-966.
    35 Terada N,Hamazaki T,Oka M, et al.Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J].Nature.2002,416(6880):542-545.
    36 Ziegler B L, Valtieri M, Porada G A, et al.KDR receptor:a key marker defining hemato-poietic stem cells[J].Science.1999,285(5433):1553-1558.
    37 Pittenger M F, Mackay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells[J], Science.1999,284(5411):143-147.
    38 Liechty K W, Mackenzie TC, Shaaban A F, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep[J].Nat Med.2000,6(11):1282-1286.
    39 Mezey E, Chandross K J. Bone marrow:a possible alternative source of cells in the adult nervous system[J]. Eur J Pharmacol.2000,405(1-3):297-302.
    40 Mahay D,Terenghi G.Shawcross S G.Growth factors in mesenchymal stem cells following glial-cell differentiation[J]. Biotechnol Appl Biochem.2008,51 (4): 167-176.
    41 Mahmood A,Lu D, Wang L, et al. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury[J].J Neurotrauma.2002,19(12):1609-1617.
    42 Wang P P.Wang J H.Yan Z P,et al. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induct ion[J]. Biochem Biophys Res Commun.2004,320 (3):712-716.
    43 Lam S P, Luk J M, Lo C M.120 Potential use of adult bone marrow stromal cells (BMSCS) treatment in an acute liver failure model induced by D-galactosamine inject ion [J]. Journal of Hepatology.2006,2 (0):S54.
    44 Sakaida I.Terai S.Nishina H,et al. Development of cell therapy using autologous bone marrow cells for liver cirrhosis[J].Med Mol Morphol.2005,38(4):197-202.
    45 Abbott J D, Huang Y, Liu D, et al. Stromal cell-derived factor-lalpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury[J]. Circulation.2004,110 (21):3300-3305.
    46 Menasche P. Stem cells for clinical use in cardiovascular medicine:current limitations and future perspectives[J]. Throrab Haemost.2005, Vol.94(4):697-701.
    47 Rafii S, Avecilla S, Shmelkov S, et al. Angiogenic factors reconstitute hematopoies-is by recruiting stem cells from bone marrow microenvironment [J]. Ann N Y Acad Sci.2003,996:49-60.
    48 Katritsis D G, Sotiropoulou P A, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium[J]. Catheter Cardiovasc Interv.2005,65(3):321-329.
    49 Miyahara Y, Nagaya N,Kataoka M,et al. Mono layered mesenchymal stem cells repair scarred myocardium after myocardial infarction[J]. Nat Med.2006,12(4):459-465.
    50 Kawada H,Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction[J]. Blood.2004,104(12):3581-3587.
    51 Ferrari G,Angel is D, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors[J]. Science.1998,279(5356):1528-1530.
    52 Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myoca-rdium[J]. Nature.2001,410(6829):701-705.
    53 Theise N D, Nimmakayalu M.Gardner R, et al. Liver from bone marrow in humans [J]. Hepatology.2000,32(1):11-16.
    54 Fuchs E, Segre J A. Stem cells:Review a new lease on life[J]. Cell.2000,100:143-155.
    55 Slack J M W. Stem cells in epithelial tissues[J]. Science.2000,287(5457):1431-1433.
    56 Keller G. Embryonic stem cell differentiation:emergence of a new era in biology and medicine[J].Genes\&development.2005,19(10):1129-1155.
    57 王春雪,王拥军,万虹,等.干细胞移植:神经系统疾病治疗的新策略(英文)[J].中国临床康复.2005(17).
    58 Pera M F. Human pluripotent stem cells:a progress report[J].Current opinion in genetics\ & development.2001,11(5):595-599.
    59郭虹,刘杰文,杨少光,等.具有间充质干细胞特征的CD105+细胞在胎儿多种组织器官的分布[J].细胞生物学杂志.2004(4):404-408.
    60 Guillot P V, Gotherstrom C, Chan J, et al. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC[J]. Stem Cells.2007,25(3):646-654.
    61 Priest R E, Marimuthu K M, Priest J H.Origin of cells in human amniotic fluid cultures:ultrastructural features[J]. Lab Invest.1978,39(2):106-109.
    62 Perin L, Sedrakyan S,Da S S,et al. Characterization of human amniotic fluid stem cells and their pluripotential capability[J]. Methods Cell Biol.2008,86:85-99.
    63 Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood[J]. Blood.1974,43(3):357-361.
    64 Nakahata T.Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono-and multipotential hemopoietic progenitors [J].J Clin Invest.1982,70(6):1324-1328.
    65 Kaviani A, Perry T E, Barnes C M, et al. The placenta as a cell source in fetal tissue engineering[J]. J Pediatr Surg.2002,37(7):995-999.
    66 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell.2006,126(4)663-676.
    67 Yu J.Vodyanik M A, Smuga-Otto K,et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science.2007,318(5858):1917-1920.
    68 Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell.2007,131(5):861-872.
    69 Li W.ZhaoX Y, Wan HF, et al. iPS cells generated without c-Myc have active Dlkl-Dio3 region and are capable of producing full-term mice through tetraploid complemen-tation[J].Cell Res.2011,21 (3):550-553.
    70 StadtfeldM, MaheraliN, Breault D T, et al. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse[J]. Cell Stem Cell.2008,2 (3):230-240.
    71 Masui S.Nakatake Y.Toyooka Y,et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells[J]. Nat Cell Biol.2007,9(6): 625-635.
    72 Davis A C, Wims M, Spotts G D, et al. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice[J]. Genes Dev.1993,7(4):671-682.
    73 Fernandez P C, Frank S R, Wang L, et al. Genomic targets of the human c-Myc protein[J]. Genes Dev.2003,17(9):1115-1129.
    74 Katz J P,Perreault N.Goldstein B G, et al.The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon[J]. Development.2002,129(11):2619-2628.
    75 Akutsu H, Cowan C A,Melton D. Human embryonic stem cells [J]. Methods Enzymol.2006, 418:78-92.
    76 Lerou P H, Yabuuchi A, Huo H, et al. Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos [J]. Nat Protoc.2008, 3(5):923-933.
    77 Soldner F, Hockemeyer D, Beard C, et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors[J]. Cell.2009,136 (5):964-977.
    78 Dimos J T, Rodolfa K T, Niakan K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons [J]. Science.2008, 321(5893):1218-1221.
    79 Liao J L, Yu J, Huang K, et al. Molecular signature of primary retinal pigment epithe-lium and stem-cell-derived RPE cells[J]. Hum Mol Genet.2010,19 (21):4229-4238.
    80 Liu H, Ye Z, Kim Y, et al.Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes[J]. Hepatology.2010,51 (5):1810-1819.
    81 Taura D.Noguchi M.Sone M, et al.Adipogenic differentiation of human induced pluripotent stem cells:comparison with that of human embryonic stem cells [J]. FEBS Lett.2009,583(6):1029-1033.
    82 Choi K D,Yu J, Smuga-Otto K, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells[J]. Stem Cells.2009,27(3):559-567.
    83 Hewitt K J.Shamis Y, Hayman R B, et al. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells[J]. PLoS One.2011,6 (2): el7128.
    84 Shamis Y, Hewitt K J, Bear S E, et al. iPSC-derived fibroblasts demonstrate augmented production and assembly of extracellular matrix proteins [J]. In Vitro Cell Dev Biol Anim.2012,Vol.48 (2):112-122.
    85 Raya A,Rodriguez-Piza I.Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells[J]. Nature.2009, 460(7251):53-59.
    86 Ye Z,Zhan H,Mali P,et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders[J]. Blood.2009,114 (27):5473-5480.
    87 Boulting G L, Kiskinis E, Croft G F,et al.A functionally characterized test set of human induced pluripotent stem cells [J].Nat Biotechnol.2011,29(3):279-286.
    88 Hanna J.Wernig M,Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J]. Science.2007,318(5858):1920-1923.
    89 Xu D.Alipio Z, Fink L M,et al. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy[J].Proc Natl Acad Sci U S A.2009,106(3):808-813.
    90 Lu S J, Feng Q, Park J S, et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells[J]. Blood.2008,112(12):4475-4484.
    91 Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease[J].Proc Natl Acad Sci U S A.2008,105(15):5856-5861.
    92 Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells[J]. Circulation. 2008,118(5):498-506.
    93 Zhang J, Wilson G F, Soerens A G, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells[J]. Circ Res.2009,104(4):e30-e41.
    94 Park T S.Galic Z,Conway A E, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells[J].Stem Cells.2009,27(4):783-795.
    95 Lee G, Papapetrou E P, Kim H, et al. Model ling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs [J].Nature.2009,461(7262):402-406.
    96 Zhong X, Jin Y. Critical roles of coactivator p300 in mouse embryonic stem cell differentiation and Nanog expression[J].J Biol Chem.2009,284(14):9168-9175.
    97 Gao F, Kwon S W,Zhao Y, et al.PARPl poly(ADP-ribosyl)ates Sox2 to control Sox2 protein levels and FGF4 expression during embryonic stem cell different iat ion [J]. J Biol Chem.2009,284 (33):22263-22273.
    98 Fei T.Xia K, Li Z, et al. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination[J]. Genome Res.2010, 20(1):36-44.
    99 Park I H, Arora N,Huo H, et al. Disease-specific induced pluripotent stem cells[J]. Cell.2008,134(5):877-886.
    100 Shi M,Li W,Li B,et al. [Multipotency of adult stem cells derived from human amnion][J].Sheng Wu Gong Cheng Xue Bao.2009,25 (5):754-760.
    101 Marcus A J, Coyne T M, Rauch J,et al. Isolation, characterization, and differentiat-ion of stem cells derived from the rat amniotic membrane[J]. Differentiation.2008, 76(2):130-144.
    102 Han Y M, Romero R,Kim J S,et al. Region-specific gene expression profiling:novel evidence for biological heterogeneity of the human amnion [J]. Biology of reproduc-tion.2008,79(5):954-961.
    103 Miki T, Mitamura K, Ross M A, et al. Identification of stem cell marker-positive cells by immunof luorescence in term human amnion [J]. Journal of reproductive immunology. 2007,75(2):91-96.
    104 Steed D L,Trumpower C, Duffy D, et al. Amnion-derived cellular cytokine solution: a physiological combination of cytokines for wound healing[J]. Eplasty.2008,8: e18..
    105 Miyamoto K, HayashiK, SuzukiT, et al. Human placenta feeder layers support undiffer-entiated growth of primate embryonic stem cells [J]. Stem Cells.2004,22 (4):433-440.
    106 Lai D, Cheng W, Liu T, et al.Use of human amnion epithelial cells as a feeder layer to support undifferentiated growth of mouse embryonic stem cells[J]. Cloning and stem cells.2009,11(2):331-340.
    107 Marongiu F, Gramignoli R, Sun Q, et al. Isolation of amniotic mesenchymal stem cells [J].Stem Cells.2010,1:1-5.
    108 Miki T, Strom S C. Amnion-derived pluripotent/multipotent stem cells[J].Stem Cell Reviews and Reports.2006,2(2):133-141.
    109 Henderson J K,Draper J S, Baillie H S, et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens [J].Stem Cells.2002,20(4):329-337.
    110 Pesce M, Scholer H R. Oct-4:gatekeeper in the beginnings of mammalian development [J].Stem Cells.2001,19(4):271-278.
    111 Niwa H.Molecular mechanism to maintain stem cell renewal of ES cells[J].Cell Struct Funct.2001,26(3):137-148.
    112 Pesce M, Wang X, Wolgemuth D J, et al. Differential expression of the Oct-4 transcri-ption factor during mouse germ cell differentiation[J].Mechanisms of developm-ent.1998,71 (1-2):89-98.
    113 Ilancheran S, Michalska A, Peh G, et al. Stem cells derived from human fetal membranes display multilineage differentiation potential[J]. Biol Reprod.2007,77(3):577-588.
    114 Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro[J].Hum Cell.2004,17(3):125-130.
    115 Ishii T,Ohsugi K.Nakamura S,et al.Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system [J].Neurosci Lett.1999,268(3):131-134.
    116 Marcus A J, Coyne TM, Black I B,et al. Fate of amnion-derived stem cells transplanted to the fetal rat brain:migration, survival and differential ion [J]. J Cell Mol Med. 2008,12(4):1256-1264.
    117 Niknejad H,Peirovi H,Ahmadiani A,et al. Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells[J]. Eur Cell Mater.2010,19:22-29.
    118 Orlacchio A,Bernardi G.Orlacchio A,et al.Stem cells:an overview of the current status of therapies for central and peripheral nervous system diseases[J].Curr Med Chera.2010,17(7):595-608.
    119 [Kim S U,de Vellis J. Stem cell-based cell therapy in neurological diseases:a review[J].J Neurosci Res.2009,87(10):2183-2200.
    120 [120] Arenas E. Towards stem cell replacement therapies for Parkinson's disease [J]. Biochem Biophys Res Commun.2010,396(1):152-156.
    121 Clarkson E D.Fetal tissue transplantation for patients with Parkinson's disease: a database of published clinical results [J]. Drugs Aging.2001,18(10):773-785.
    122 Elwan M A. Synthesis of dopamine from 1-3,4-dihydroxyphenylalanine by human amniotic epithelial cells[J].Eur J Pharmacol.1998,354(1):R1-R2.
    123 Kakishita K, Elwan M A, Nakao N, et al. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease:a potential source of donor for transplantation therapy [J]. Exp Neurol.2000,165(1):27-34.
    124 Uchida S, Inanaga Y, Kobayashi M, et al. Neurotrophic function of conditioned medium from human amniotic epithelial cells[J]. J Neurosci Res.2000,62(4): 585-590.
    125 Meng X T, Li C, Dong Z Y,et al.Co-transplantation of bFGF-expressing araniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord injured rats[J]. Cell Biol Int.2008,32 (12):1546-1558.
    126 [Kakishita K,Nakao N, Sakuragawa N, et al. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions[J]. Brain Res.2003,980(1):48-56.
    127 Okawa H, Okuda O, Arai H, et al. Amniotic epithelial cells transform into neuron-like cells in the ischemic brain[J]. Neuroreport.2001,12 (18):4003-4007.
    128 Liu T, Wu J, Huang Q, et al. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model[J]. Shock.2008,29(5):603-611.
    129 Fox I J, Roy-Chowdhury J. Hepatocyte transplantat ion[J]. J Hepatol.2004,40(6):878-886.
    130 Davila J C, Cezar G G, Thiede M, et al. Use and appl ication of stem cells in toxicol-ogy [J]. Toxicol Sci.2004,79(2):214-223.
    131 Takashima S, Ise H, Zhao P,et al. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions[J]. Cell Struct Funct.2004,29 (3):73-84.
    132 Miki T, Marongiu F, Ellis E C, et al. Production of hepatocyte-like cells from human amnion[J]. Methods Mol Biol.2009,481:155-168.
    133 Manuelpillai U, Tchongue J.Lourensz D, et al. Transplantation of human amnion epithelial cells reduces hepatic f ibrosis in iramunocompetent CC1-treated mice[J]. Cell Transplant.2010,19(9):1157-1168.
    134 Nakajima T, Enosawa S,Mitani T, et al. Cytological examination of rat amniotic epithelial cells and cell transplantation to the liver [J].Cell Transplant.2001, 10(4-5):423-427.
    135 Wei J P, Zhang T S, Kawa S, et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice[J]. Cell Transplant.2003,12 (5):545-552.
    136 Hou Y,Huang Q,Liu T,et al.Human amnion epithelial cells can be induced to differentiate into functional insulin-producing cells[J]. Acta Biochim Biophys Sin (Shanghai).2008,40(9):830-839.
    137 Szukiewicz D,Pyzlak M, Stangret A,et al. Decrease in expression of histaraine H2 receptors by human amniotic epithelial cells during differentiation into pancre-atic beta-like cells [J]. Inflamm Res.2010,59(2):S205-S207.
    138 Moritoki Y.Ueno Y,Kanno N,et al. Amniotic epithelial cell-derived cholangiocytes in experimental cholestatic ductal hyperplasia[J]. Hepatol Res.2007,37(4):286-294.
    139 Fujimoto K L.Miki T,Liu L J,et al.Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart[J].Cell Transplant.2009,18(4):477-486.
    140 Cargnoni A, Di Marcello M,Campagnol M, et al. Amniotic membrane patching promotes ischemaic rat heart repair[J].Cell Transplant.2009,18(10):1147-1159.
    141 Tsuji H.Miyoshi S,Ikegarai Y,et al.Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes[J].Circ Res.2010,106(10):1613-1623.
    142 Mood ley Y, Ilancheran S, Samuel C.et al. Human amnion epi thel ialcell transplantation abrogates lung fibrosis and augments repair[J]. Am J Respir Crit Care Med.2010, 182(5):643-651.
    143 Hori J, Wang M,Kamiya K, et al. Imraunological characteristics of amniotic epithelium [J]. Cornea.2006,25 (1):S53-S58.
    144 Wolbank S, Peterbauer A, Fahrner M, et al. Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane:a comparison with human mesenchymal stem cells from adipose tissue[J].Tissue Eng.2007,13(6):1173-1183.
    145 Banas R A.Trumpower C, Bentlejewski C, et al. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells[J].Hum Immunol.2008,69 (6):321-328.
    146 Lefebvre S.Adrian F.Moreau P, et al. Modulation of HLA-G expression in human thymic and amniotic epithelial cells[J].Hum Immunol.2000,61(11):1095-1101.
    147 Rooney I A.Morgan B P. Protection of human amniotic epithelial cells (HAEC) from complement-mediated lysis:expression on the cells of three complement inhibitory membrane proteins[J]. Immunology.1990,71 (3):308-311.
    148 Rooney I A.Morgan B P. Characterization of the membrane attack complex inhibitory protein CD59 antigen on human amniotic cells and in amniotic fluid [J]. Immunology. 1992,76(4):541-547.
    149 Kubo M, Sonoda Y,Muramatsu R,et al. Immunogenicity of human amniotic membrane in experimental xenotransplantation[J]. Invest Ophthalmol Vis Sci.2001,42 (7):1539-1546.
    150 Yeager A M.Singer H S, Buck J R,et al.A therapeutic trial of amniotic epithelial cell implantation in patients with lysosomal storage diseases [J]. Am J Med Genet. 1985,22(2):347-355.
    151 Scaggiante B, Pineschi A, Sustersich M, et al. Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane[J]. Transplantation.1987,44 (1):59-61.
    152 Sakuragawa N, Yoshikawa H, Sasaki M. Amniotic tissue transplantation:clinical and biochemical evaluations for some lysosomal storage diseases[J].Brain Dev.1992, 14(1):7-11.
    153 Akle C A, Adinolfi M,Welsh K I, et al. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers [J]. Lancet.1981,2(8254):1003-1005.
    154 Miura M.Miura Y, Padilla-Nash H M,et al. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation[J]. Stem Cells.2006,24 (4):1095-1103.
    155 Lane E L,Winkler C, Brundin P, et al.The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat[J].Neurobiol Dis.2006,22(2):334-345.
    156 Olanow C W, Freeman T, Kordower J.Transplantation of embryonic dopamine neurons for severe Parkinson's disease[J].N Eng1 J Med.2001,345 (2):146-147.
    157 Serrano-Delgado V M, Novello-Garza B, Valdez-Martinez E. Ethical issues relating the the banking of umbilical cord blood in Mexico[J]. BMC Med Ethics.2009, 14(10):12.
    158 Murphy S, Rosli S, Acharya R, et al. Amnion epithelial cell isolation and character-ization for clinical use[J].Curr Protoc Stem Cell Biol.2010,1:1E-6E.
    159 Diaz-Prado S.Muinos-Lopez E,Hermida-Gomez T,et al.Multilineage differentiation potential of cells isolated from the human amniotic membrane[J].J Cell Biochem. 2010,111 (4):846-857.
    160 Elwan M A, Sakuragawa N. Uptake of dopamine by cultured monkey amniotic epithelial cells [J].Eur J Pharmacol.2002,435(2-3):205-208.
    161 Elwan M A, Sakuragawa N. Uptake and decarboxylation of L-3,4-dihydroxyphenylalan-ine in cultured monkey placenta amniotic epithelial cells[J]. Placenta.2007,28 (2-3):245-248.
    162金玲,陈剑,吴静,等.大鼠羊膜上皮细胞体外培养的初步研究[J].中国病理生理杂志.2006(5):1036-1038.
    163金玲,陈剑,吴静,等.兔羊膜上皮细胞的体外培养和增殖[J].细胞生物学杂志.2008(3)30:397-400.
    164 Shamblott M J.Axelman J, Wang S,et al. Derivation of pluripotent stem cells from cultured human primordial germ cells [J]. Proc Natl Acad Sci U S A.1998,95 (23): 13726-13731.
    165 Boyer L A,Mathur D,Jaenisch R.Molecular control of pluripotency[J]. Curr Opin Genet Dev.2006,16(5):455-462.
    166 Rodda D J.Chew J L, Lim L H, et al. Transcript ional regulation of nanog by OCT4 and SOX2[J]. J Biol Chem.2005,280 (26):24731-24737.
    167 Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintena-nce of pluripotency in mouse epiblast and ES cells [J]. Cell.2003,113(5):631-642.
    168 Pan G.Thomson J A. Nanog and transcriptional networks in embryonic stem cell pluripotency[J].Cell Res.2007,17(1):42-49.
    169 Jiang Y, Jahagirdar B N, Reinhardt R L, et al. Pluripotency of mesenchymal stem cells derived from adult marrow[J]. Nature.2002,418(6893):41-49.
    170 Wang J,Rao S.Chu J,et al.A protein interaction network for pluripotency of embryonic stem cells[J].Nature.2006,444(7117):364-368.
    171郭允倩,饶艳华,赵元,等.Rex-1对Oct4转录活性的调控[J].中国生物工程杂志.2009(9):17-21.
    172 Masui S, Ohtsuka S, Yagi R, et al. Rexl/Zfp42 is dispensable for pluripotency in mouse ES cells[J].BMC Dev Biol.2008,8:45.
    173 Shinya M, Komuro H, Saihara R, et al. Neural differentiation potential of rat amniot-ic epithelial cells[J]. Fetal Pediatr Pathol.2010,29(3):133-143.
    174 Brewer G J,Torricelli J R,Evege E K, et al.Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination[J]. J Neurosci Res.1993,35(5):567-576.
    175 Reali C,Scintu F,Pillai R, et al. Differentiation of human adult CD34+stem cells into cells with a neural phenotype:role of astrocytes [J]. Exp Neurol.2006,197 (2): 399-406.
    176 Nagai A,Kim W K, Lee H J, et al.Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow[J]. PLoS One.2007,2 (12):el272.
    177 Kim H J, Hida H, Jung C G, et al. Treatment with deferoxamine increases neurons from neural stem/progenitor cells[J].Brain Res.2006,1092(1):1-15.
    178 Sun L, Lee J,Fine H A. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury[J].J Clin Invest.2004,113(9):1364-1374.
    179 Cai J,Wu Y.Mirua T, et al. Properties of a fetal multipotent neural stem cell(NEP cell) [J].Dev Biol.2002,251 (2):221-240.
    180 About I, Laurent-Maquin D, Lendahl U, et al. Nestin expression in embryonic and adult human teeth under normal and pathological conditions [J]. Am J Pathol.2000,157 (1): 287-295.
    181 Messam C A, Hou J,Major E O. Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody [J]. Exp Neurol.2000,161 (2):585-596.
    182宋秀军,陈代雄,方宁,等.人羊膜上皮细胞分化为成骨细胞的特性[J].中国组织工程研究与临床康复.2008(38):7518-7521.
    183 Murphy S, Lim R, Dickinson H, et al.Human amnion epithelial cells prevent bleomy-cin-induced lung injury and preserve lung function [J]. Cell Transplant.2011,20 (6):909-923.
    184李雅娜,孙研,张玲,等.地塞米松、3-异丁基-1-甲基黄嘌呤、胰岛素、吲哚美辛定向诱导兔骨髓间充质干细胞分化为脂肪细胞的研究(英文)[J].中国组织工程研究与临床康复.2008(21):4193-4196.
    185 Marongiu F, Gramignoli R, Dorko K, et al. Hepatic differentiation of amniotic epithe-lial celis[J]. Hepatology.2011,53(5):1719-1729.
    186 Han X, Wan Q, Wu W,et al. [Activin A and BMP-4induce cardiomyocyte-like cells differentiation of human amniotic epithelial cells] [J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2011,28 (6):1217-1222.
    187 Wlodarski K, Poltorak A, Koziorowska J. Species specif icity of osteogenesis induced by WISH cell line and bone induction by vaccinia virus transformed human fibrob-lasts[J].Calcif Tissue Res.1971,7(4):345-352.
    188 Simat S F, Chua K H, Abdul R H, et al.The stemness gene expression of cultured human amniotic epithelial cells in serial passages[J]. Med J Malaysia.2008,63:53-54.
    189罗宏武,黄湘俊,黄飞舟,等.人羊膜上皮细胞横向分化及脾内移植的初步研究[J].中国修复重建外科杂志.2011(2):144-148.
    190 Qureshi K M, Oliver R J,Paget M B, et al. Human amniotic epithelial cells induce localized cell-mediated immune privilege in vitro:implications for pancreatic islet transplantation[J].Cell Transplant.2011,20 (4):523-534.
    191 Vosdoganes P, Hodges R J,Lim R, et al. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep[J]. Am J Obstet Gynecol.2011, 205(2):126-156.
    192 Muttini A,Mattioli M,Petrizzi L,et al. Experimental study on allografts of amniotic epithelial cells in calcaneal tendon lesions of sheep[J].Vet Res Commun. 2010,34(11):S117-S120.
    193 Lange-Consiglio A,Corradetti B.Bizzaro D, et al. Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane[J]. J Tissue Eng Regen Med.2011. doi:10.1002/term.465. [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700