用户名: 密码: 验证码:
严重烧伤后缺氧和β肾上腺素能受体持续激活导致心肌损害的机制及心肌保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重烧伤后心功能不全出现较早,可诱发或加重休克,成为烧伤后多器官功能不全(MODS)的重要启动因素之一[1]。在各种动物模型和人心脏中的大量研究表明不断增加的心肌细胞凋亡是心功能不全的主要原因。烧伤后心肌局部血流量迅速减少,发生缺氧损害,缺氧损害本身即可导致心肌细胞的死亡。与此同时严重烧伤引起的持续应激状态使交感-肾上腺素髓质兴奋性增加,血液儿茶酚胺上升为正常的7~8倍[2],进而持续激活心肌细胞上的β肾上腺素能受体(β-AR),最终导致心肌细胞凋亡或者坏死。因此缺氧和β肾上腺素能受体过度激活可能是严重烧伤后心肌细胞死亡的两大损伤因素。
     热休克蛋白90 (HSP 90)作为一种分子伴侣,其作用是维护大量蛋白折叠和构象成熟。HSP90除了具有分子伴侣功能,还参与调节了多种细胞信号通路和细胞功能[3]。研究证明HSP90对多种凋亡诱导因子引起的心肌细胞凋亡具有保护作用。本实验首先检测了HSP90是否具有抗缺氧诱导的心肌细胞凋亡的作用。
     我们建立体外培养的新生大鼠心肌细胞缺氧模型,应用HSP90的特异性抑制剂格尔德霉素(geldanamycin,GA)抑制心肌细胞HSP90活性。我们运用MTT法检测心肌细胞活力,酶联免疫(ELISA)试剂盒检测心肌细胞培养液中乳酸脱氢酶(LDH)的漏出率、TUNEL染色检测心肌凋亡率等观测多项细胞生物学指标。结果显示:缺氧引起心肌细胞膜结构破坏、细胞活力下降,并最终导致细胞凋亡;用GA抑制HSP90活性后,心肌细胞活力下降和细胞凋亡明显加剧。这些结果明确了HSP90对心肌具有抗缺氧损伤的内源性保护效应。
     我们进一步探讨了HSP90抗缺氧诱导的心肌细胞凋亡的作用机制。磷脂酰肌醇3激酶/蛋白质丝氨酸苏氨酸激酶(PI3K/Akt)信号通路作为细胞内重要信号转导通路之一,通过影响下游多种效应分子的活化状态,在细胞内发挥着抑制凋亡、促进增殖的关键作用。PI3K/Akt信号通路能够提高心肌功能和促进心肌细胞的存活。研究提示HSP90可能是蛋白质丝氨酸/苏氨酸激酶(Akt)的上游调节分子。所以我们假设HSP90对严重烧伤后的心肌细胞的保护作用机制是通过调控PI3K/Akt通路的抗凋亡作用。本实验对这一假设进行了验证。
     我们应用Western Blot检测心肌细胞缺氧损伤后HSP90蛋白表达规律,并运用GA抑制HSP90后检测缺氧状态下心肌细胞PI3K/Akt通路中的多种效应分子如Akt, Bcl-2家族促凋亡基因Bad,GSK-3β,细胞色素C等的蛋白表达变化。结果显示:心肌细胞中HSP90蛋白和磷酸化Akt在缺氧后表达明显增高,Akt下游效应分子Bad和GSK-3β的磷酸化水平升高,说明PI3K/Akt信号通路在心肌细胞缺氧早期也被激活。用GA抑制HSP90活性后Akt和Bad的磷酸化被阻断,从线粒体释放至细胞浆的细胞色素C明显增加,说明HSP90的心肌保护作用与PI3K/Akt信号通路相关,即HSP90保持Akt的磷酸化稳定性并促进Akt下游底物Bad的磷酸化,抑制细胞色素C从心肌细胞线粒体的释放,从而起到抗凋亡的作用。
     另一方面,我们检测HSP90是否具有抗β肾上腺素能受体过度激活诱导的心肌细胞死亡的作用。我们利用异丙肾上腺素(Isoproterenol, ISO)诱导体外培养的成年小鼠心肌细胞死亡,模拟严重烧伤后β肾上腺素能受体持续激活诱导心肌细胞死亡。结果显示ISO对心肌细胞具有明显的细胞毒作用(导致心肌细胞坏死);用GA抑制HSP90后,ISO对心肌细胞的细胞毒作用不受影响,提示HSP90对GA对β肾上腺素能受体过度激活导致的心肌损伤无保护作用。
     我们进一步探讨了β肾上腺素能受体过度激活导致心肌细胞死亡的作用机制,并寻求针对该损伤因素的心肌保护方法。研究发现严重烧伤发生后心肌细胞中出现大量的游离钙累积(钙超载),而且烧伤后通过细胞膜L型钙通道(LTCC)进入胞内的钙内流明显增加。因为LTCC是β肾上腺素能受体信号系统的重要底物蛋白,本实验假设:β肾上腺素能受体过度激活是通过增加经LTCC的钙内流导致心肌细胞坏死。因为LTCC和β肾上腺素能受体相互作用密切,以往的研究没有将二者有效分离开来研究其分别机制。本实验利用LTCC亚基β2a转基因小鼠模型首次检测了β肾上腺素能受体和LTCC在心肌细胞死亡中各自独立的作用机制。
     我们原代分离成年野生型和转基因小鼠的心室肌细胞后进行体外培养,然后检测各种药物干预情况下(包括β肾上腺素能受体非选择性激动剂ISO、其他β肾上腺素能受体调节药物、钙调节蛋白的调控药物、caspase和活性氧簇抑制剂等)心肌细胞的生存率。同时我们还观察了β肾上腺素能受体各亚型的不同作用机制。
     我们的结果发现:转基因心肌细胞在培养中的细胞死亡率明显高于野生型心肌细胞。野生型和转基因心肌细胞的死亡率都被ISO加重,但是ISO不增加转基因心肌细胞的LTCC大小,LTCC抑制剂Nifedipine只能部分抑制心肌细胞死亡。这些结果表明ISO诱导的心肌细胞死亡具有LTCC依赖和非依赖的两种机制。ISO通过增强肌浆网Ca2+ ATP酶(钙泵,SERCA),钠/钙交换蛋白(NCX)和钙/钙调蛋白依赖性激酶Ⅱ(CaMK II)的功能增加野生型和转基因心肌细胞的收缩功能。Caspase和ROS抑制剂不能减少LTCC或ISO导致的心肌细胞死亡。激活β2肾上腺素能受体具有一定的心肌保护作用。这些结果提示β肾上腺素能受体持续激活导致的心肌细胞坏死主要是通过β1肾上腺素能受体介导的LTCC增加的机制,但其他的机制参与不能排除。
     总之,我们的研究提示HSP90具有抗缺氧诱导的凋亡的心肌保护作用。我们的研究还提示:通过减少通过LTCC的过度Ca2+内流、减少β1肾上腺素受体的激活,同时增加β2肾上腺素受体的激活新型联合治疗,可以减少各种病理应激所致的心肌细胞死亡。
Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotetive effect via the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (GA, 1μg/ml). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis.
     Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c.
     Adult mouse cardiomyocytes were subjected to isoproterenol (ISO, 0.1μmol/ml) in the absence or presence of the HSP90 inhibitor GA. GA neither affected the myocyte viability nor enhanced the ISO induced myocyte death.
     In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3K/Akt pathway. The cardioprotective effect of HSP90 is not mediated via attenuating the activation of adrenergic signaling pathways.
     Cardiac diseases persistently increase the contractility demands of cardiac myocytes which met by activating the sympathetic nervous system and subsequently increasing myocyte Ca2+ transients. Persistent exposure to sympathetic and/or Ca2+ stress is associated with myocyte death. This study examined the respective roles of persistentβ-adrenergic receptor (β-AR) agonist exposure and high [Ca2+]i in myocyte death. Methods: Ventricular myocytes (VMs) were isolated from transgenic (TG) mice with cardiac specific and inducible expression of theβ2a subunit of the L-type Ca2+ channel (LTCC). VMs were cultured and the rate of myocyte death was measured in the presence of isoproterenol (ISO), other modulators of Ca2+ handling and theβ-adrenergic system, and inhibitors of caspases and reactive oxygen species (ROS) generation.
     Results and Conclusions: The rate of myocyte death was greater in TG versus WT myocytes and accelerated by ISO in both groups although ISO did not increase LTCC current (ICa-L) in TG-VMs. Nifedipine, an LTCC antagonist, only partially prevented myocyte death. These results suggest both LTCC-dependent and independent mechanisms in ISO induced myocyte death. ISO increased the contractility of WT and TG-VMs by enhancing SR function and inhibiting SERCA, Na+/Ca2+ exchanger, and CaMK II partially protected myocyte from death induced by both Ca2+ and ISO. Caspase and ROS inhibitors did not butβ2-AR activation did reduce myocyte death induced by enhanced ICa-L and ISO stimulation. Our results suggest that catecholamines induce myocyte necrosis primarily throughβ1-AR mediated increases in ICa-L but other mechanisms are also involved in rodents.
引文
1. Maass, D.L., White, D.J., Sanders, B. & Horton, J.W. Cardiac myocyte accumulation of calcium in burn injury: cause or effect of myocardial contractile dysfunction. J Burn Care Rehabil 26, 252-259 (2005).
    2. Cassuto, J., Tarnow, P., Yregard, L., Lindblom, L. & Rantfors, J. Regulation of postburn ischemia by alpha- and beta-adrenoceptor subtypes. Burns 31, 131-137 (2005).
    3. Miao, R.Q., et al. Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol 28, 105-111 (2008).
    4. Kawai, K., et al. Cellular mechanisms of burn-related changes in contractility and its prevention by mesenteric lymph ligation. Am J Physiol Heart Circ Physiol 292, H2475-2484 (2007).
    5. Huang, Y., Zheng, J., Fan, P. & Zhang, X. Transfection of antisense p38 alpha gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns 33, 599-605 (2007).
    6. Huang, Y., Xie, K., Zhang, J., Dang, Y. & Qiong, Z. Prospective clinical and experimental studies on the cardioprotective effect of ulinastatin following severe burns. Burns 34, 674-680 (2008).
    7. Chen, J.X. & Meyrick, B. Hypoxia increases Hsp90 binding to eNOS via PI3K-Akt in porcine coronary artery endothelium. Lab Invest 84, 182-190 (2004).
    8. Tang, J., et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res 315, 3521-3531 (2009).
    9. Wang W, P.Y., Wang Y, Zhao X, Yuan Z. The Anti-Apoptotic Effect of Heat Shock Protein 90 on Hypoxia-Mediated Cardiomyocyte Damage through the Pi3k/Akt Pathway. Clin Exp Pharmacol Physiol 36, 899-903 (2009).
    10. Wang W, Z.H., Kubo H, Chen X, Berretta R, Houser SR. beta1-Adrenergic Receptor Activation Induces Cardiac Myocyte Death Through Ca2+ Influx Dependent and Independent Pathways. Circulation 120, S763 (2009).
    11. Nakayama, H., et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444 (2007).
    12. Cingolani, E., et al. Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy. Circ Res 101, 166-175 (2007).
    13. Chen, X., et al. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97, 1009-1017 (2005).
    14. Maass, D.L., White, D.J., Sanders, B. & Horton, J.W. Cardiac myocyte accumulation of calcium in burn injury: cause or effect of myocardial contractile dysfunction. J Burn Care Rehabil 26, 252-259 (2005).
    15. Cribbs, L.L., et al. Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 88, 403-407 (2001).
    1. Ren, A., et al. Antagonism of endothelin-1 inhibits hypoxia-induced apoptosis in cardiomyocytes. Can J Physiol Pharmacol 86, 536-540 (2008).
    2. Adachi, S., et al. HSP90 inhibitors induce desensitization of EGF receptor via p38 MAPK-mediated phosphorylation at Ser1046/1047 in human pancreatic cancer cells. Oncol Rep 23, 1709-1714 (2010).
    3. Suzuki, Y., Kondo, Y., Hara, S., Kimata, R. & Nishimura, T. Effect of the hsp90 inhibitor geldanamycin on androgen response of prostate cancer under hypoxic conditions. Int J Urol 17, 281-285 (2010).
    4. Amour, J., et al. Role of heat shock protein 90 and endothelial nitric oxide synthase during early anesthetic and ischemic preconditioning. Anesthesiology 110, 317-325 (2009).
    5. Sauviat, M.P. & Pages, N. [Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane]. J Soc Biol 196, 339-348 (2002).
    6. Goldspink, D.F., Burniston, J.G. & Tan, L.B. Cardiomyocyte death and the ageing and failing heart. Exp Physiol 88, 447-458 (2003).
    7. Pollack, M., Phaneuf, S., Dirks, A. & Leeuwenburgh, C. The role of apoptosis in the normal aging brain, skeletal muscle, and heart. Ann N Y Acad Sci 959, 93-107 (2002).
    8. Yao, K., et al. Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro. Chin Med J (Engl) 116, 1034-1038 (2003).
    9. Du, J., Hu, Z. & Mitch, W.E. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Eur J Clin Invest 35, 157-163 (2005).
    1. Fuller, S.J., Sivarajah, K. & Sugden, P.H. ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44, 831-854 (2008).
    2. Blanc, A., Pandey, N.R. & Srivastava, A.K. Synchronous activation of ERK 1/2, p38mapk and PKB/Akt signaling by H2O2 in vascular smooth muscle cells: potential involvement in vascular disease (review). Int J Mol Med 11, 229-234 (2003).
    3. Esfandiarei, M., et al. Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78, 4289-4298 (2004).
    4. Kattla, J.J., Carew, R.M., Heljic, M., Godson, C. & Brazil, D.P. Protein kinase B/Akt activity is involved in renal TGF-beta1-driven epithelial-mesenchymal transition in vitro and in vivo. Am J Physiol Renal Physiol 295, F215-225 (2008).
    5. Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34, 232-237 (2006).
    6. Harris, M.B., Bartoli, M., Sood, S.G., Matts, R.L. & Venema, R.C. Direct interaction of the cell division cycle 37 homolog inhibits endothelial nitric oxide synthase activity. Circ Res 98, 335-341 (2006).
    7. Yao, L., et al. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 25, 89-101 (2010).
    8. Mullonkal, C.J. & Toledo-Pereyra, L.H. Akt in ischemia and reperfusion. J Invest Surg 20, 195-203 (2007).
    9. Lugli, E., et al. Characterization of cells with different mitochondrial membrane potential during apoptosis. Cytometry A 68, 28-35 (2005).
    10. Nagy, N., et al. Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. J Mol Cell Cardiol 44, 252-260 (2008).
    11. Dussmann, H., Rehm, M., Kogel, D. & Prehn, J.H. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial andcaspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 116, 525-536 (2003).
    12. Gottlieb, R.A. Mitochondria and apoptosis. Biol Signals Recept 10, 147-161 (2001).
    1. Cassuto, J., Tarnow, P., Yregard, L., Lindblom, L. & Rantfors, J. Regulation of postburn ischemia by alpha- and beta-adrenoceptor subtypes. Burns 31, 131-137 (2005).
    2. Singh, K., Communal, C., Sawyer, D.B. & Colucci, W.S. Adrenergic regulation of myocardial apoptosis. Cardiovasc Res 45, 713-719 (2000).
    3. DeGeorge, B.R., Jr., et al. Targeted inhibition of cardiomyocyte Gi signaling enhances susceptibility to apoptotic cell death in response to ischemic stress. Circulation 117, 1378-1387 (2008).
    4. Liao, R. & Jain, M. Isolation, culture, and functional analysis of adult mouse cardiomyocytes. Methods Mol Med 139, 251-262 (2007).
    5. Zhu, W.Z., et al. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98, 1607-1612 (2001).
    6. Kabaeva, Z., Zhao, M. & Michele, D.E. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol 294, H1667-1674 (2008).
    7. O'Connell, T.D., Rodrigo, M.C. & Simpson, P.C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357, 271-296 (2007).
    8. Chatterjee, K., et al. Acute vincristine pretreatment protects adult mouse cardiac myocytes from oxidative stress. J Mol Cell Cardiol 43, 327-336 (2007).
    9. Kubo, H., et al. Increased cardiac myocyte progenitors in failing human hearts. Circulation 118, 649-657 (2008).
    10. Chen, X., et al. Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. Am J Physiol Heart Circ Physiol 294, H2257-2267 (2008).
    11. Brito-Martins, M., Harding, S.E. & Ali, N.N. beta(1)- and beta(2)-adrenoceptor responses in cardiomyocytes derived from human embryonic stem cells: comparisonwith failing and non-failing adult human heart. Br J Pharmacol 153, 751-759 (2008).
    12. Yu, Q.J., et al. Insulin inhibits beta-adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection. Apoptosis 13, 305-317 (2008).
    13. Foo, R.S., Mani, K. & Kitsis, R.N. Death begets failure in the heart. J Clin Invest 115, 565-571 (2005).
    14. Kitsis, R.N. & Mann, D.L. Apoptosis and the heart: a decade of progress. J Mol Cell Cardiol 38, 1-2 (2005).
    15. Remondino, A., et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92, 136-138 (2003).
    16. Bolger, A.P. & Al-Nasser, F. Beta-blockers for chronic heart failure: surviving longer but feeling better? Int J Cardiol 92, 1-8 (2003).
    17. Devereaux, P.J., et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet 371, 1839-1847 (2008).
    18. Yano, N., et al. Beta-adrenergic receptor mediated protection against doxorubicin-induced apoptosis in cardiomyocytes: the impact of high ambient glucose. Endocrinology 149, 6449-6461 (2008).
    19. Ponicke, K., Heinroth-Hoffmann, I. & Brodde, O.E. Role of beta 1- and beta 2-adrenoceptors in hypertrophic and apoptotic effects of noradrenaline and adrenaline in adult rat ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 367, 592-599 (2003).
    20. Singh, K., Xiao, L., Remondino, A., Sawyer, D.B. & Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189, 257-265 (2001).
    21. Ahmet, I., et al. Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110, 1083-1090 (2004).
    22. Krishnamurthy, P., Subramanian, V., Singh, M. & Singh, K. Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardialremodeling. Hypertension 49, 865-872 (2007).
    23. Burniston, J.G., Tan, L.B. & Goldspink, D.F. beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol 98, 1379-1386 (2005).
    1. White, D.J., Maass, D.L., Sanders, B. & Horton, J.W. Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma. Crit Care Med 30, 14-22 (2002).
    2. Zhou, J.L., et al. [Effects of glycine on apoptosis in murine cardiomyocyte suffering from ischemia and hypoxia]. Zhonghua Shao Shang Za Zhi 24, 167-170 (2008).
    3. Jaleel, N., et al. Ca2+ influx through T- and L-type Ca2+ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circ Res 103, 1109-1119 (2008).
    4. Schroder, F., et al. Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60, 268-277 (2003).
    5. Ding, G., et al. Dopamine increases L-type calcium current more in newborn than adult rabbit cardiomyocytes via D1 and beta2 receptors. Am J Physiol Heart Circ Physiol 294, H2327-2335 (2008).
    6. Collis, L.P., Srivastava, S., Coetzee, W.A. & Artman, M. beta2-Adrenergic receptor agonists stimulate L-type calcium current independent of PKA in newborn rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 293, H2826-2835 (2007).
    7. Nakayama, H., et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444 (2007).
    8. Remondino, A., et al. Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92, 136-138 (2003).
    9. Przygodzki, T., Sokal, A. & Bryszewska, M. Calcium ionophore A23187 action on cardiac myocytes is accompanied by enhanced production of reactive oxygen species. Biochim Biophys Acta 1740, 481-488 (2005).
    10. Chen, X., et al. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97, 1009-1017 (2005).
    11. O'Connell, T.D., Rodrigo, M.C. & Simpson, P.C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357, 271-296 (2007).
    12. Bers, D.M., Barry, W.H. & Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 57, 897-912 (2003).
    13. Eigel, B.N., Gursahani, H. & Hadley, R.W. Na+/Ca2+ exchanger plays a key role in inducing apoptosis after hypoxia in cultured guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 287, H1466-1475 (2004).
    14. Fanchaouy, M., et al. Pathways of abnormal stress-induced Ca2+ influx into dystrophic mdx cardiomyocytes. Cell Calcium 46, 114-121 (2009).
    15. Singh, K., Xiao, L., Remondino, A., Sawyer, D.B. & Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189, 257-265 (2001).
    16. Iwai-Kanai, E., et al. alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 100, 305-311 (1999).
    17. Zhu, W.Z., et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111, 617-625 (2003).
    18. Wang, W., et al. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95, 798-806 (2004).
    19. Maruyama, R., et al. Synchronous progression of calcium transient-dependent beating and sarcomere destruction in apoptotic adult cardiomyocytes. Am J Physiol Heart Circ Physiol 290, H1493-1502 (2006).
    20. Balasubramaniam, R., et al. Nifedipine and diltiazem suppress ventricular arrhythmogenesis and calcium release in mouse hearts. Pflugers Arch 449, 150-158 (2004).
    21. Ellison, G.M., et al. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem 282, 11397-11409 (2007).
    22. Houser, S.R. When does spontaneous sarcoplasmic reticulum CA(2+) release cause a triggered arrythmia? Cellular versus tissue requirements. Circ Res 87, 725-727 (2000).
    23. Kabaeva, Z., Zhao, M. & Michele, D.E. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am JPhysiol Heart Circ Physiol 294, H1667-1674 (2008).
    24. Sorescu, D. & Griendling, K.K. Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congest Heart Fail 8, 132-140 (2002).
    25. Warnholtz, A. & Munzel, T. The failing human heart: another battlefield for the NAD(P)H oxidase? J Am Coll Cardiol 41, 2172-2174 (2003).
    26. Eleuteri, E., et al. Role of oxidative and nitrosative stress biomarkers in chronic heart failure. Front Biosci 14, 2230-2237 (2009).
    27. Kinugawa, S. & Tsutsui, H. [Oxidative stress and heart failure]. Nippon Rinsho 64, 848-853 (2006).
    28. Zhu, W.Z., et al. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98, 1607-1612 (2001).
    29. Chesley, A., et al. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 87, 1172-1179 (2000).
    30. Ahmet, I., et al. Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J Pharmacol Exp Ther 325, 491-499 (2008).
    31. Beetz, N., et al. Transgenic simulation of human heart failure-like L-type Ca2+-channels: implications for fibrosis and heart rate in mice. Cardiovasc Res (2009).
    32. Miriyala, J., Nguyen, T., Yue, D.T. & Colecraft, H.M. Role of CaVbeta subunits, and lack of functional reserve, in protein kinase A modulation of cardiac CaV1.2 channels. Circ Res 102, e54-64 (2008).
    1. Cassuto, J., Tarnow, P., Yregard, L., Lindblom, L. & Rantfors, J. Regulation of postburn ischemia by alpha- and beta-adrenoceptor subtypes. Burns 31, 131-137 (2005).
    2. Foo, R.S., Mani, K. & Kitsis, R.N. Death begets failure in the heart. J Clin Invest 115, 565-571 (2005).
    3. Kitsis, R.N. & Mann, D.L. Apoptosis and the heart: a decade of progress. J Mol Cell Cardiol 38, 1-2 (2005).
    4. Lohse, M.J., Engelhardt, S. & Eschenhagen, T. What is the role of beta-adrenergic signaling in heart failure? Circ Res 93, 896-906 (2003).
    5. Singh, K., Xiao, L., Remondino, A., Sawyer, D.B. & Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J Cell Physiol 189, 257-265 (2001).
    6. Ahmet, I., et al. Beneficial effects of chronic pharmacological manipulation of beta-adrenoreceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 110, 1083-1090 (2004).
    7. Ahmet, I., et al. Cardioprotective and survival benefits of long-term combined therapy with beta2 adrenoreceptor (AR) agonist and beta1 AR blocker in dilated cardiomyopathy postmyocardial infarction. J Pharmacol Exp Ther 325, 491-499 (2008).
    8. Spadari-Bratfisch, R.C. & dos Santos, I.N. Adrenoceptors and adaptive mechanisms in the heart during stress. Ann N Y Acad Sci 1148, 377-383 (2008).
    9. Carafoli, E., Santella, L., Branca, D. & Brini, M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36, 107-260 (2001).
    10. Opatowsky, Y., Chomsky-Hecht, O., Kang, M.G., Campbell, K.P. & Hirsch, J.A. The voltage-dependent calcium channel beta subunit contains two stable interacting domains. J Biol Chem 278, 52323-52332 (2003).
    11. Van Petegem, F., Clark, K.A., Chatelain, F.C. & Minor, D.L., Jr. Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429, 671-675 (2004).
    12. Tareilus, E., et al. A Xenopus oocyte beta subunit: evidence for a role in the assembly/expression of voltage-gated calcium channels that is separate from its role as a regulatory subunit. Proc Natl Acad Sci U S A 94, 1703-1708 (1997).
    13. El-Armouche, A. & Eschenhagen, T. Beta-adrenergic stimulation and myocardial function in the failing heart. Heart Fail Rev 14, 225-241 (2009).
    14. Lehnart, S.E., Maier, L.S. & Hasenfuss, G. Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14, 213-224 (2009).
    15. Chen, X., et al. Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. Am J Physiol Heart Circ Physiol 294, H2257-2267 (2008).
    16. Feldman, D.S., Carnes, C.A., Abraham, W.T. & Bristow, M.R. Mechanisms of disease: beta-adrenergic receptors--alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2, 475-483 (2005).
    17. Sucharov, C.C. Beta-adrenergic pathways in human heart failure. Expert Rev Cardiovasc Ther 5, 119-124 (2007).
    18. Communal, C. & Colucci, W.S. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch Mal Coeur Vaiss 98, 236-241 (2005).
    19. Chen, X., et al. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ Res 91, 517-524 (2002).
    20. Yatani, A., et al. Down regulation of the L-type Ca2+ channel, GRK2, and phosphorylated phospholamban: protective mechanisms for the denervated failing heart. J Mol Cell Cardiol 40, 619-628 (2006).
    21. Bers, D.M. Cardiac excitation-contraction coupling. Nature 415, 198-205 (2002).
    22. Houser, S.R. & Margulies, K.B. Is depressed myocyte contractility centrally involved in heart failure? Circ Res 92, 350-358 (2003).
    23. Xiang, Y. & Kobilka, B.K. Myocyte adrenoceptor signaling pathways. Science 300, 1530-1532 (2003).
    24. Rizzuto, R., et al. Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619-8627 (2003).
    25. Zhu, W.Z., et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111, 617-625 (2003).
    26. Chen, X., et al. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes. Circ Res 97, 1009-1017 (2005).
    27. Ellison, G.M., et al. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem 282, 11397-11409 (2007).
    28. Nakayama, H., et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest 117, 2431-2444 (2007).
    29. Houser, S.R. When does spontaneous sarcoplasmic reticulum CA(2+) release cause a triggered arrythmia? Cellular versus tissue requirements. Circ Res 87, 725-727 (2000).
    30. Kabaeva, Z., Zhao, M. & Michele, D.E. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol 294, H1667-1674 (2008).
    31. O'Connell, T.D., Rodrigo, M.C. & Simpson, P.C. Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 357, 271-296 (2007).
    32. Bers, D.M., Barry, W.H. & Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res 57, 897-912 (2003).
    33. Miao, R.Q., et al. Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol 28, 105-111 (2008).
    34. Brar, B.K., Railson, J., Stephanou, A., Knight, R.A. & Latchman, D.S. Urocortin increases the expression of heat shock protein 90 in rat cardiac myocytes in a MEK1/2-dependent manner. J Endocrinol 172, 283-293 (2002).
    35. Yaglom, J.A., Ekhterae, D., Gabai, V.L. & Sherman, M.Y. Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization ofmitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 278, 50483-50496 (2003).
    36. Jiang, B., Xiao, W., Shi, Y., Liu, M. & Xiao, X. Heat shock pretreatment inhibited the release of Smac/DIABLO from mitochondria and apoptosis induced by hydrogen peroxide in cardiomyocytes and C2C12 myogenic cells. Cell Stress Chaperones 10, 252-262 (2005).
    37. Peng, X., et al. Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. J Biol Chem 280, 13148-13152 (2005).
    38. Chen, J.X. & Meyrick, B. Hypoxia increases Hsp90 binding to eNOS via PI3K-Akt in porcine coronary artery endothelium. Lab Invest 84, 182-190 (2004).
    39. Georgakis, G.V., Li, Y. & Younes, A. The heat shock protein 90 inhibitor 17-AAG induces cell cycle arrest and apoptosis in mantle cell lymphoma cell lines by depleting cyclin D1, Akt, Bid and activating caspase 9. Br J Haematol 135, 68-71 (2006).
    40. Jimenez, C., et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 17, 743-753 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700