用户名: 密码: 验证码:
生理性起搏对左室同步性和心功能影响的临床和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分右室流出道间隔部和右室心尖部起搏对左室同步性和心功能影响的临床研究
     目的:比较右心室流出道(RVOT)间隔部和右室心尖部(RVA)起搏对心功能正常患者的左室同步性、心功能和左室重构的影响。
     方法:96例高度或Ⅲ度房室传导阻滞的患者随机分为RVOT间隔部起搏组(A组,n=48)和RVA起搏组(B组,n=48),于术前及术后12个月进行二维及组织多普勒超声心动图检查,评价左室容积、左室收缩、舒张同步性及收缩、舒张功能等情况。采集二维超声心动图心尖四腔心切面测量舒张末左室容积(LVEDV).收缩末左室容积(LVESV),用Simpson法计算左室射血分数(LVEF).采集组织多普勒图像(TDI)连续5个心动周期进行脱机分析,测量左室12节段心肌收缩达峰时间(Ts),舒张早期达峰时间(Te),并计算12节段Ts标准差(Ts-12SD).最大差(Ts-Dif)和12节段Te标准差(Te-12SD).最大差(Te-Dif).同时测量左室12节段平均心肌收缩速度(Sm)和平均心肌早期舒张速度(Em)。
     结果:随访12个月,其中A组有2人失访,B组有4人失访。术前两组患者的基线情况及各超声指标均无差异(P均>0.05)。起搏治疗12个月后,B组的Ts-12SD(26.43±14.39 ms vs 35.53±15.53 ms,P<0.05)和Te-12SD(23.82±8.90msvs 27.98±11.07ms,P<0.05)均较术前明显增加,A组无明显变化(Ts-12SD:24.98±15.49 ms vs 28.30±15.09 ms;Te-12SD:25.84±14.69 ms vs 28.31±10.12ms;P均>0.05)。A、B两组的Ts-Dif均较术前增加(P均<0.05),而Te-Dif无明显变化(P均>0.05)。术后1年A组的Ts-12SD和Ts-Dif比B组小(p<0.05),Te-12SD和Te-Dif两组间无差异(P>0.05)。起搏治疗12个月后,两组的Sm.Em均较术前降低,Sm(A组:5.03±1.14 cm/s vs 4.44±1.08 cm/s;B组:5.10±1.56cm/s vs 4.24±1.15 cm/s;P均<0.05),Em(A组:5.79±2.62 cm/s vs 4.43±1.65 cm/s:B组:5.42±1.95 cm/s vs 4.44±1.74 cm/s:P均<0.05),但两组的LVEF与术前相比无差异(P均>0.05)。术后12个月两组的LVEF.Sm和Em均无差异(P均>0.05)。起搏治疗12个月后,两组的LVEDV和LVESV与术前比无明显变化(P均>0.05),术后1年两组间比较亦无差异(P>0.05)。
     结论:RVOT间隔部起搏相对RVA起搏可产生更加同步的左室收缩,但对心功能正常的患者,起搏12个月并未使RVOT间隔部起搏在保护心功能、阻止左室重构等方面优于RVA起搏。
     第二部分常用临床和超声指标对心脏再同步化治疗(CRT)疗效的预测价值
     目的:比较和评价常用超声指标、血清氨基末端脑钠素前体(NT-ProBNP)及QRS波时限在预测CRT疗效中的价值,探寻预测CRT疗效的最佳参数。
     方法:选择2006年9月至2009年12月在我院因心衰住院行CRT治疗的患者80例,在CRT术前和术后6个月进行超声心动图检查,采集二维超声心动图测量左室舒张末内径(LVDD)、左室收缩末内径(LVDS)、左房内径(LAD)、左室舒张末容积(LVEDV)、左室收缩末容积(LVESV),用Simpson法计算左室射血分数(LVEF)。通过M型超声心动图获取室间隔与左室后壁间的收缩延迟时间(SPWMD)。采集脉冲多普勒图像计算主动脉射血前时间(APEI)、肺动脉射血前时间(PPEI),并计算室间电机械延迟(IVMD)。采集组织多普勒图像(TDI)进行脱机分析,测量左室12节段收缩达峰时间(Ts)并计算12节段Ts标准差(Ts-12SD)。于术前及术后7天检测患者血浆NT-ProBNP浓度并转换为对数值log (NT-ProBNP),同时测量术前及术后7天QRS波时限(QRSd),计算两者的差值(△QRSd)。以治疗后6个月,左室收缩末容积较术前减小≥15%为治疗有效,以此分为CRT有效组和无效组,比较两组比较上述各指标术前术后变化,探讨其对CRT疗效的预测价值。
     结果:共有70例患者完成6个月随访。CRT有效率61%(43/70)。CRT有效组和无效组术前的LVDD、LVDS、LAD、LVEDV、LVESV和LVEF均无统计学差异(P均>0.05)。术后6个月CRT无效组的上述指标与术前比较无显著改变(P均>0.05),CRT有效组的LVDD、LVDS、LAD、LVEDV和LVESV较术前显著减小(p均< 0.05), LVEF明显改善(P<0.05)。CRT有效组和无效组术前的SPWMD、APEI、PPEI和IVMD无统计学差异(p均>0.05),CRT有效组的术前Ts-12SD高于无效组(42.03±16.33 ms vs 33.04±8.33 ms,P=0.018)。术后6个月CRT有效组的Ts-12SD较术前减小(42.03±16.33 ms vs 29.40±8.96 ms,p<0.05),余指标与术前比较无统计学差异,而CRT无效组的上述各指标较术前均无统计学改变(P均>0.05)。术前Ts-12SD对CRT疗效有预测价值(AUC=0.703,P=0.019),当Ts-12SD取>34.65ms时敏感度及特异度最大,敏感度61.8%,特异度70.6%。术前log (NT-ProBNP)水平对CRT疗效有预测价值(AUC=0.75,P=0.005),当log (NT-ProBNP)取≤3.04(即NT-ProBNP取≤1096pg/ml)时,敏感度及特异度最大,敏感度48.3%,特异度94.1%。术前QRSd、△QRSd及其他同步性指标均不能预测CRT疗效(p均>0.05)。
     结论:在超声心动图评价同步性的常用指标中,Ts-12SD尚能预测CRT疗效,但其预测价值尚不满意,有必要寻找更可靠的预测CRT疗效的超声新指标。术前NT-ProBNP水平对CRT疗效有一定的预测价值。术前QRSd及△QRSd不能预测CRT疗效。
     第三部分心脏再同步化治疗(CRT)对左室同步性和心功能影响的实验研究
     3.1超声新技术评价及预测心脏再同步化治疗(CRT)疗效的实验研究
     目的:通过建立快速起搏诱发心衰及CRT纠治心衰的动物模型,探讨超声新指标在CRT中的应用价值。
     方法:8-11个月的比格犬21只随机分为A组(CRT组,n=10),B组(非CRT组,n=7)和C组(假手术组,n=4)三组,三组均植入左室心外膜电极、右心室和右心房心内膜电极。A、B组以VOO模式260次/分快速起搏右心室诱发心衰,随后A组更换为CRT起搏器起搏4周,B组不予治疗自由恢复,C组不启动起搏。分别在术前、心衰后、CRT或自行恢复2周和4周以及起搏电极植入3周(C组)行二维、三维超声心动图检查,获取如下同步性指标:组织多普勒分析左室12节段达最大收缩速度时间的标准差(Ts-12SD)、斑点追踪显像分析左室乳头肌水平6节段QRS波起点至径向应变、圆周应变分别达峰时间的标准差(Trs-6SD、Tcs-6SD),实时三维超声心动图分析左室16节段达最小收缩容积时间的标准差(Tmsv-16SD),并测量左室射血分数(LVEF)、左室舒张末容积(LVEDV)及收缩末容积(LVESV)。以CRT治疗后4周,左室舒张末容积较心衰时减小≥15%为治疗有效,比较上述各同步性指标术前术后变化,并探讨其对CRT疗效的预测价值。
     结果:A组有2只,B组有1只比格犬因严重心衰死亡。手术成功率82.4%(14/17)。快速起搏2周后,A、B两组的LVEF较术前降低(58.67±3.26%vs31.97±1.84%,P<0.05), LVEDV (26.53±3.17 ml vs 35.50±6.46 ml, P<0.05)和LVESV (9.61±2.01ml vs 24.32±4.60 ml,P<0.05)较术前增加,Ts-12SD(1.98±0.88%vs 5.47±2.28%,P<0.05)、Trs-6SD(1.70±0.78%vs 1 1.12±7.53%,p<0.05)、Tcs-6SD(3.50±0.89%vs 9.13±1.65%,P<0.05)以及Tmsv-16SD(0.94±0.24% vs 3.70±0.82%,P<0.05)亦较术前明显增加,左室内各节段收缩呈现不同步,心电图QRS波时限较基线增宽(57.62±13.00 ms vs81.18±20.27 ms,P<0.05)。A组在CRT治疗4周后,LVEF.LVEDV.LVESV及同步性指标均有显著改善(p均<0.05),B组在关闭起搏器4周后,LVEF. LVESV及同步性指标较心衰时亦明显恢复(P均<0.05),但LVEDV无改善(34.6±5.1 ml vs 33.8±3.3 ml.P>0.05).A组CRT4周与B组自由恢复4周相比,LVEF (57.0±2.4% vs 47.5±7.5%,P<0.05).LVESV(14.3±2.2 ml vs 17.9±2.2 ml,P<0.05)、TS-1 2SD(2.26±1.21%vs 3.61±0.80%,P<0.05)、Trs-6SD(4.04±1.58%vs 6.83±3.15%,p<0.05)、Tcs-6SD(6.10±1.70%vs7.80±1.22%,p<0.05)和Tmsv-16SD(1.95±0.64% vs 3.29±0.93%,P<0.05)差异亦有统计学意义,A组优于B组。相关性分析表明Ts-12SD.Tmsv-16SD.Trs-6SD.Tcs.6SD与LVEF呈负相关(r分别为-0.77、-0.86、-0.75、-0.83,p均<0.01),与LVEDV呈正相关(r分别为0.44、0.66、0.66、0.73,P均<0.01)。Trs-6SD对CRT疗效最有预测前景(AUC=0.85,p=0.054)。当Trs-6SD取≥12.16%时敏感性和特异性最大,分别为83.3%和100%。
     结论:VOO模式260次/分起搏2周可以成功建立犬心衰模型,且通过实时三维超声心动图和斑点追踪显像能有效检测出模型中存在的左室内不同步,CRT治疗后左室内不同步改善。在这些超声新指标中Trs-6SD对CRT疗效的预测价值最大,有望成为评价CRT疗效的可靠新指标。
     3.2心脏再同步化治疗(CRT)的可能分子机制探讨
     目的:通过建立快速起搏诱发心衰及CRT纠治心衰的动物模型,探寻CRT治疗心衰的可能分子机制。
     方法:8-11个月的比格犬21只随机分为A组(CRT组,n=10),B组(非CRT组,n=7)和C组(假手术组,n=4)三组,三组均植入左室心外膜电极、右心室和右心房心内膜电极,A、B组以VOO模式260次/分快速起搏右心室诱发心衰,随后A组更换为CRT起搏器起搏4周,B组不予治疗自由恢复,C组不启动起搏。于随访终点处死比格犬留取心肌标本,分别对比格犬左室心肌组织进行光镜、电镜检查,观察心肌细胞及线粒体形态、结构的变化。以GAPDH为内参,运用RT-PCR方法对线粒体乙醛脱氢酶2(ALDH2)及细胞钙转运相关蛋白-受磷蛋白(PLN)和肌浆网钙离子ATP酶(SERCA2a)等基因的转录水平进行检测,了解CRT治疗过程中有无分子生物学的变化。
     结果:A组有2只,B组有1只比格犬因严重心衰死亡。对这3只心衰比格犬左室心肌进行HE染色,可见心衰时小血管充血,肌丝较正常时变细,排列较紊乱。相对B组,A组经过4周CRT治疗后肌丝增粗明显。电镜下可见犬心衰时心肌细胞及线粒体均明显水肿,线粒体间、肌丝间的间隙增宽,成纤维细胞及溶酶体增多。相对B组,A组经CRT治疗4周后细胞、线粒体水肿恢复明显。随访终点时,根据电泳图像可见B组的PLN、SERCA2a及ALDH2灰度较A组及C组均不同程度减弱,ALDH2的表达在A、B两组间差异有统计学意义(P=0.028)。PLN、SERCA2a三组间无统计学差异(p>0.05)。
     结论:在快速起搏诱发心衰及CRT纠治心衰的模型中,CRT改善心功能、逆转左室重构的过程伴随着基因水平的改变,CRT有可能是通过增加线粒体ALDH2表达,改善线粒体能量代谢来发挥作用的。
Part One:The Impact of Septal Right Ventricular Outflow Tract
     Pacing and Right Ventricular Apex Pacing on Left Ventricular Synchrony and Function in Patients with Normal Cardiac Function
     Objective:To compare the impact of septal right ventricular outflow tract (RVOT) pacing and right ventricular apex (RVA) pacing on left ventricular synchrony, cardiac function and remodeling in patients with normal cardiac function.
     Methods: A total of 96 consecutive patients with high or third degree atrial-ventricular block were enrolled and randomized into two groups:RVOT pacing group (n=48) and RVA pacing group (n=48). Tissue Doppler Imaging (TDI) and two-dimensional echocardiography (2DE) were performed to investigate left ventricular (LV) systolic and diastolic synchrony, LV systolic and diastolic function and LV volumes before pacemaker implantation and after 12 months of ventricular pacing. Using the 2DE apical 4 chamber views, we acquired the left ventricular (LV) end-diastolic volume (LVEDV), end-systolic volume (LVESV) and LV ejection fraction (LVEF) measured by Simpson's rule. From color TDI, the time to peak myocardial systolic velocity during the ejection phase (Ts) and the time to peak myocardial early diastolic velocity (Te) were measured with referenced to QRS complex, the peak myocardial systolic velocities (Sm) and peak myocardial early diastolic velocities (Em) were recorded. The standard deviation of Ts (Ts-12SD) of all the 12 LV segments, and the maximal difference in Ts (Ts-Dif) between any 2 of the 12 LV segments were calculated. The standard deviation of Te (Te-12SD) of all the 12 LV segments and the maximal difference in Te (Te-Dif) were measured.
     Results:Two patients in group A and 4 patients in group B were lost during the 12 months of follow-up. There were no significant differences in baseline characteristics and all echocardiography parameters between the two groups. After 12 months of ventricular pacing, Ts-12SD (26.43±14.39 ms vs 35.53±15.53 ms, P<0.05) and Te-12SD (23.82±8.90 ms vs 27.98±11.07 ms, P<0.05) increased in group B, and remained unchanged in group A (Ts-12SD:24.98±15.49 ms vs 28.30±15.09 ms; Te-12SD:25.84±14.69 ms vs 28.31±10.12 ms; both NS). Ts-Dif prolonged (P< 0.05) and Te-Dif did not change (both NS) in both groups. Ts-12SD and Ts-Dif in group B were greater than those in group A (both P<0.05), while Te-12SD and Te-Dif were not different between the two groups at 12 months of follow-up (NS). After 12 months of ventricular pacing, Sm (group A:5.03±1.14 vs 4.44±1.08 cm/s; group B:5.10±1.56 vs 4.24±1.15 cm/s; both P<0.05) and Em (group A:5.79±2.62 vs 4.43±1.65 cm/s; group B:5.42±1.95 vs 4.44±1.74 cm/s; both P<0.05) decreased but LVEF did not change (NS) in both groups. LVEDV and LVESV did not change both in group A and group B (all NS). There were no significant differences with respect to Sm, Em, LVEF, LVEDV and LVESV in the two groups at 12 months of follow-up (all NS).
     Conclusions:Although RVOT septal pacing caused more synchronous LV contraction compared with RVA pacing, it did not benefit over RVA pacing in the aspect of preventing cardiac remodeling and preserving LV systolic function after 12 months of pacing in patients with normal cardiac function.
     Part Two:The Predictive Value of Clinical and Echocardiographic Parameters on Cardiac Resynchronization Therapy
     Objective:To compare and assess the value of echocardiographic parameters of M-mode, pulsed-wave Doppler and tissue Doppler imaging which were usually used for selecting cardiac resynchronization therapy (CRT) candidates, N-terminal pro-brain natriuretic peptide (NT-ProBNP), and the duration of QRS wave in predicting the response to CRT and to evaluate the possible best parameter to predict the response to CRT.
     Methods:Eighty patients accepted CRT because of refractory heart failure were enrolled from 2006.9 to 2009.12. Two-dimensional echocardiography (2DE), M-mode, pulsed-wave Doppler and tissue Doppler imaging (TDI) were performed before and after 6 months of CRT. Using the 2DE, we acquired the left ventricular (LV) diastolic diameter (LVDD), LV systolic diameter (LVDS), left atria diameter (LAD), LV end diastolic volume (LVEDV), LV end systolic volume (LVESV) and LV ejection fraction (LVEF) measured by Simpson's rule. M-mode echocardiography, pulsed-wave Doppler and TDI were used to evaluate inter- and intra- ventricular dyssynchrony. M-mode echocardiography was used to acquire the septal- to- posterior wall motion delay (SPWMD), pulsed-wave Doppler was used to acquire aortic wave pre- ejection interval (APEI) and pulmonary wave pre- ejection interval (PPEI), and inter-ventricular mechanical delay (IVMD) was calculated. TDI were used to get the standard deviation of time to peak myocardial systolic velocity (Ts-12SD). Meanwhile, the concentration of NT-ProBNP was detected before and after 7 days of CRT implantation and transformed to logarithm log (NT-ProBNP). The duration of QRS wave (QRSd) were measured preoperation and after one week of CRT, and the difference of two QRS wave (AQRSd) was computed. At least 15% reduction in LVESV at the 6-month after CRT was defined as responders. We aimed to compare the changes of all parameters between responders and non-responders and to investigate the predictive value of ail the parameters.
     Results:Seventy patients complete the 6 months of follow up, and there were 43 (61%) responders. There were no significance between responders and non-responders in terms of LVDD, LVDS, LAD, LVEDV, LVESV, LVEF, SPWMD, PPEI, APEI and IVMD before CRT implantation (all NS), but responders had relatively high Ts-12SD than non-responders (42.03±16.33 ms vs 33.04±8.33 ms, P=0.018). After 6 months of CRT, the LVDD, LVDS, LAD, LVEDV and LVESV decreased significantly (P<0.05), LVEF increased significantly (P<0.05) and Ts-12SD decreased significantly (42.03±16.33 ms vs 29.40±8.96 ms, P<0.05) in responders, while there were no significant changes with respect to all the parameters in non-responders (all NS). Ts-12SD is relatively valuable in predicting CRT responders (AUC=0.703, P=0.019), Ts-12SD≥34.65ms has the relatively high sensitivity of 61.8% and specificity of 70.6%。The level of log (NT-ProBNP) preoperation could predict the response to CRT (AUC=0.751, P=0.005), log (NT-ProBNP)≤3.04 (NT-ProBNP<1096pg/ml) has the sensitivity of 48.3%, specificity of 94.1% to predict the response to CRT. The QRSd,△QRSd and other synchrony parameters could not predict the response to CRT (NS).
     Conclusions:Tissue Doppler imaging is relatively better than M-mode echocardiography and pulsed Doppler parameters, but it is still not satisfactory. It is necessary to look for more reliable echocardiography parameters to predict the response to CRT. The level of NT-ProBNP before CRT implantation is valuable in predicting the response to CRT. The QRSd and AQRSd could not predict the response to CRT.
     Part Three:The Animal Study of the Impact of Cardiac Resynchronization Therapy on Left Ventricular Synchrony and Cardiac Function
     3.1:The Value of New Echocardiography Parameters in Evaluating and Predicting the Response to Cardiac Resynchronization Therapy: An Animal study
     Objective:To establish the animal model in terms of rapid pacing induced heart failure and possible mechanism of cardiac resynchronization therapy (CRT) in treating heart failure, and to investigate the value of new echocardiography parameters in appraising the therapeutic effect of CRT.
     Methods:Twenty-one adult Beagle dogs were divided into Group A (CRT group, n= 10), Group B (non-CRT group, n=7) and Group C (control group, n=4). All of them were implanted left ventricle epicardial electrodes, right atrium and right ventricle leads. Group A and'B received rapid right ventricular pacing (VOO mode,260bpm) to induce heart failure. When their LVEF decreased below 35%, dogs in Group A treated with CRT and dogs in Group B were just terminated pacing. Dogs in Group C were not received rapid pacing and used as control group. Echocardiography including Tissue Doppler Imaging (TDI), Real-time three-dimensional echocardiography (RT3DE) and Speckle tracking strain imaging (STSI) and electrocardiography were performed at baseline, heart failure,2 and 4 weeks after CRT or termination of pacing. The dyssynchrony parameters included the standard deviation of time to maximum systolic velocity of the 12 LV segments (Ts-12SD) by TDI, the standard deviation of time to minimum systolic volume of the 16 LV segments (Tmsv-16SD) by RT3DE, standard deviation of time from onset of QRS to peak radial strain (Trs-6SD) and peak circumferential strain (Tcs-6SD) of the 6 middle LV segments by STSI. LV ejection fraction (LVEF), LV end diastolic volume (LVEDV) and LV end systolic volume (LVESV) were measured by RT3DE. At least 15% reduction in LVEDV at the 4-weeks after CRT was defined as responders. We aimed to compare the changes of all parameters in the animal model and to investigate the predictive value of all the parameters.
     Results:Two dogs in Group A and one dog in Group B died of severe heart failure. The success rate was 82.4%(14/17). In Group A and B,2 weeks of rapid right ventricular pacing decreased LVEF (58.67±3.26% vs 31.97±1.84%, P<0.05), enlarged LVEDV (26.53±3.17ml vs 35.50±6.46 ml, P<0.05) and LVESV (9.61± 2.01 ml vs 24.32±4.60 ml, P< 0.05), increased Ts-12SD (1.98±0.88% vs 5.47±2.28%,P<0.05)、Trs-6SD (1.70±0.78% vs 11.12±7.53%, P<0.05)、Tcs-6SD (3.50±0.89% vs 9.13±1.65%, P<0.05) and Tmsv-16SD (0.94±0.24% vs 3.70±0.82%, P<0.05), dyssynchronized LV segments and prolonged QRS duration (57.62±13.00 ms vs 81.18±20.27 ms, P<0.05). After 4 weeks of CRT, the LVEF, LVEDV, LVESV, Ts-12SD, Tmsv-16SD, Trs-6SD and Tcs-6SD of Group A were all improved (P<0.05). After 4 weeks of pacing termination, LVEF, LVESV and the dyssynchronized index of Group B also recovered significantly (P<0.05), but LVEDV remained enlarged (34.6±5.1 ml vs 33.8±3.3 ml, NS). Covariance analysis showed that LVEF (57.0±2.4% vs 47.5±7.5%, P<0.05), LVESV (14.3±2.2 ml vs 17.9±2.2 ml, P<0.05), Ts-12SD (2.26±1.21% vs 3.61±0.80%, P<0.05), Trs-6SD (4.04±1.58% vs 6.83±3.15%, P<0.05), Tcs-6SD (6.10±1.70% vs 7.80±1.22%, P<0.05) and Tmsv-16SD (1.95±0.64% vs 3.29±0.93%, P<0.05) in Group A were better than in Group B. Ts-12SD, Tmsv-16SD, Trs-6SD and Tcs-6SD had good negative correlation with LVEF (r was-0.77、-0.86、-0.75、-0.83 relatively, all P<0.01) and positive correlation with LVEDV (r was 0.44、0.66、0.66、0.73 relatively, all P<0.01). Trs-6SD is relatively valuale in predicting the response to CRT (AUC=0.85, P=0.054), Trs-6SD≥12.16% has the relatively high sensitivity of 83.3% and specificity of 100%。
     Conclusions:Rapid right ventricular pacing in 260 bpm could induce obvious heart failure, and in the canine model of CRT after rapid right ventricular pacing induced heart failure, RT3DE and STS1 can effectively detect left ventricular dyssynchrony. CRT improved cardiac dyssynchrony. Among the new echocardiography parameters, Trs-6SD might be an optimal parameter to predict the effect of CRT.
     3.2: The possible molecular mechanism of cardiac resynchronization therapy
     Objective: To study the possible molecular mechanism of cardiac resynchronization therapy (CRT) through establishing the animal model in terms of quick pacing induced heart failure and how CRT treat heart failure.
     Methods:Twenty-one adult beagle dogs were divided into Group A (CRT group, n= 10), Group B (non-CRT group, n=7) and Group C (control group, n=4). All of them were implanted left ventricle epicardial electrodes, right atrium and right ventricle leads. Group A and B received rapid right ventricular pacing (VOO mode,260bpm) to induce heart failure. When their LVEF decreased below 35%, dogs in Group A treated with CRT and dogs in Group B were just terminated pacing. Dogs in Group C were not received rapid pacing and used as control group. After 4 weeks of CRT or terminated pacing, LV myocardium was taken out for HE staining and elcectron microscope inspection. The mRNA transcription levels of contractile, calcium regulatory proteins such as phospholamban (PLN) and sarcoplasmic reticulum Ca (2+)-ATPase protein (SERCA), and mitochondria related proteins such as acetaldehyde dehydrogenase-2 (ALDH2) were measured by reverse transcription polymerase chain reaction (RT-PCR) and normalized for glycer-aldehyde 3-phosphate dehydrogenase (GAPDH).
     Results:Two dogs in Group A and one dog in Group B died because of severe heart failure. By HE staining of the heart failure myocardium, we observed small vessel congestion, myofilament thinningz, and myofilament of group A thickened obviously compared with group B. Electron microscope showed cellular edema, mitochondrial swelling and fine myofibril in heart failure cardiac muscle. After 4 weeks of CRT, there were no mitochondria swelling and on cellular edema in Group A, after terminated pacing for 4 weeks, there were still different extent of mitochondria swelling in Group B. The results of RT-PCR show that the grey level of PLN, SERCA2a and ALDH2 in Group B were all lower than in Group A, and expression of ALDH2 was significantly lower than in Group A (P=0.028), but there were no significant difference in PLN and SERCA2a among three groups (MS).
     Conclusions:In the canine model of CRT after rapid right ventricular pacing induced heart failure, functional improvement related to CRT is associated with reversal of the HF related gene programming, CRT may produce a marked effect through mitochondria ALDH2 and energy metabolism.
引文
[1]Link MS, Hellkamp AS, Estes NA,3rd, et al. High incidence of pacemaker syndrome in patients with sinus node dysfunction treated with ventricular-based pacing in the Mode Selection Trial (MOST) [J]. J Am Coll Cardiol,2004,43(11):2066-2071.
    [2]Lamas GA, Ellenbogen KA. Evidence base for pacemaker mode selection: from physiology to randomized trials [J]. Circulation,2004,109(4):443-451.
    [3]Hussein SJ, Hennekens CH, Lamas GA. An update on clinical trials in pacing: is dual chamber pacing better? [J]. Curr Opin Cardiol,2004,19(1):12-18.
    [4]van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall [J]. Circulation,1998,98(6):588-595.
    [5]Wyman BT, Hunter WC, Prinzen FW, et al. Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction [J]. Am J Physiol Heart Circ Physiol,2002,282(1):H372-379.
    [6]Cojoc A, Reeves JG, Schmarkey L, et al. Effects of single-site versus biventricular epicardial pacing on myocardial performance in an immature animal model of atrioventricular block [J]. J Cardiovasc Electrophysiol,2006, 17(8):884-889.
    [7]Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function [J]. J Am Coll Cardiol,1997,29(4):744-749.
    [8]Thambo JB, Bordachar P, Garrigue S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing [J]. Circulation,2004,110(25):3766-3772.
    [9]Siu CW, Wang M, Zhang XH, et al. Analysis of ventricular performance as a function of pacing site and mode [J]. Prog Cardiovasc Dis,2008, 51(2):171-182.
    [10]Tse HF, Lau CP. Clinical trials for cardiac pacing in bradycardia: the end or the beginning? [J]. Circulation,2006,114(1):3-5.
    [11]宿燕岗,葛均波.生理性起搏的再认识[J].中国心脏起搏与心电生理杂志,2007,21(03):196-199.
    [12]de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing:a quantitative review [J]. Europace,2003,5(3):275-278.
    [13]Tse HF, Yu C, Wong KK, et al. Functional abnormalities in patients with permanent right ventricular pacing:the effect of sites of electrical stimulation [J]. J Am Coll Cardiol,2002,40(8):1451-1458.
    [14]Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay [J]. N Engl J Med,2001,344(12):873-880.
    [15]Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure [J]. N Engl J Med,2005,352(15):1539-1549.
    [16]St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart faiure [J]. Circulation,2003,107(15):1985-1990.
    [17]Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure [J]. N Engl J Med,2004,350(21):2140-2150.
    [18]Vardas PE, Auricchio A, Blanc JJ, et al. Guidelines for cardiac pacing and cardiac resynchronization therapy:The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association [J]. Eur Heart J,2007,28(18):2256-2295.
    [19]Berger R, Shankar A, Fruhwald F, et al. Relationships between cardiac resynchronization therapy and N-terminal pro-brain natriuretic peptide in patients with heart failure and markers of cardiac dyssynchrony:an analysis from the Cardiac Resynchronization in Heart Failure (CARE-HF) study [J]. Eur Heart J,2009,30(17):2109-2116.
    [20]Ding LG, Hua W, Zhang S, et al. Decrease of plasma N-terminal pro beta-type natriuretic peptide as a predictor of clinical improvement after cardiac resynchronization therapy for heart failure [J]. Chin Med J (Engl),2009, 122(6):617-621.
    [21]Penicka M, Bartunek J, De Bruyne B, et al. Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography [J]. Circulation,2004,109(8):978-983.
    [22]Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay [J]. J Am Coll Cardiol, 2003,42(12):2109-2116.
    [23]Molhoek SG, L VANE, Bootsma M, et al. QRS duration and shortening to predict clinical response to cardiac resynchronization therapy in patients with end-stage heart failure [J]. Pacing Clin Electrophysiol,2004,27(3):308-313.
    [24]Mollema SA, Bleeker GB, van der Wall EE, et al. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure [J]. Am J Cardiol,2007,100(11):1665-1670.
    [25]Galderisi M, Cattaneo F, Mondillo S. Doppler echocardiography and myocardial dyssynchrony:a practical update of old and new ultrasound technologies [J]. Cardiovasc Ultrasound,2007,5:28.
    [26]Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block [J]. Circulation,2002,106(14):1760-1763.
    [27]Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial [J]. Circulation,2008,117(20):2608-2616.
    [28]Beshai JF, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes [J]. N Engl J Med,2007, 357(24):2461-2471.
    [29]Kass DA. An epidemic of dyssynchrony:but what does it mean? [J]. J Am Coll Cardiol,2008,51(1):12-17.
    [30]Armstrong PW, Stopps TP, Ford SE, et al. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure [J]. Circulation,1986, 74(5):1075-1084.
    [31]Vanderheyden M, Mullens W, Delrue L, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders [J]. J Am Coll Cardiol,2008,51(2):129-136.
    [32]Iyengar S, Haas G, Lamba S, et al. Effect of cardiac resynchronization therapy on myocardial gene expression in patients with nonischemic dilated cardiomyopathy [J]. J Card Fail,2007,13(4):304-311.
    [33]Barth AS, Aiba T, Halperin V, et al. Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level [J]. Circ Cardiovasc Genet,2009,2(4):371-378.
    [34]Aiba T, Hesketh GG, Barth AS, et al. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy [J]. Circulation,2009,119(9):1220-1230.
    [35]Chakir K, Daya SK, Aiba T, et al. Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy [J]. Circulation,2009, 119(9):1231-1240.
    [36]Tarquini R, Guerra CT, Porciani MC, et al. Effects of cardiac resynchronization therapy on systemic inflammation and neurohormonal pathways in heart failure [J]. Cardiol J,2009,16(6):545-552.
    [1]Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function [J]. J Am Coll Cardiol,1997,29(4):744-749.
    [2]Thambo JB, Bordachar P, Garrigue S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing [J]. Circulation,2004,110(25):3766-3772.
    [3]Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction [J]. Circulation,2003,107(23):2932-2937.
    [4]de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing:a quantitative review [J]. Europace,2003,5(3):275-278.
    [5]Yu CC, Liu YB, Lin MS, et al. Septal pacing preserving better left ventricular mechanical performance and contractile synchronism than apical pacing in patients implanted with an atrioventricular sequential dual chamber pacemaker [J]. Int J Cardiol,2007,118(1):97-106.
    [6]ten Cate TJ, Scheffer MG, Sutherland GR, et al. Right ventricular outflow and apical pacing comparably worsen the echocardiographic normal left ventricle [J]. Eur J Echocardiogr,2008,9(5):672-677.
    [7]Lewicka-Nowak E, Dabrowska-Kugacka A, Tybura S, et al. Right ventricular apex versus right ventricular outflow tract pacing:prospective, randomised, long-term clinical and echocardiographic evaluation [J]. Kardiol Pol,2006, 64(10):1082-1091; discussion 1092-1083.
    [8]Shi HY, Wang F, Meng WD, et al. [Comparison of different pacing sites of the right ventricle on left ventricular mechanical synchrony and systolic performance using tissue Doppler imaging] [J]. Zhonghua Xin Xue Guan Bing Za Zhi,2005,33(11):1002-1005.
    [9]Yu CM, Lin H, Yang H, et al. Progression of systolic abnormalities in patients with "isolated" diastolic heart failure and diastolic dysfunction [J]. Circulation, 2002,105(10):1195-1201.
    [10]Yu CM, Lin H, Zhang Q, et al. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration [J]. Heart,2003,89(1):54-60.
    [11]Yu CM, Zhang Q, Yip GW, et al. Diastolic and systolic asynchrony in patients with diastolic heart failure:a common but ignored condition [J]. J Am Coll Cardiol,2007,49(1):97-105.
    [12]史浩颖,汪芳,孟伟栋,等.组织多普勒评价右室不同部位起搏对左室收缩功能和同步性的影响[J].中华心血管病杂志,2005,(11):1002-1005.
    [13]Stambler BS, Ellenbogen K, Zhang X, et al. Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation [J]. J Cardiovasc Electrophysiol,2003,14(11):1180-1186.
    [14]Victor F, Mabo P, Mansour H, et al. A randomized comparison of permanent septal versus apical right ventricular pacing:short-term results [J]. J Cardiovasc Electrophysiol,2006,17(3):238-242.
    [15]Galderisi M, Cattaneo F, Mondillo S. Doppler echocardiography and myocardial dyssynchrony:a practical update of old and new ultrasound technologies [J]. Cardiovasc Ultrasound,2007,5:28.
    [16]Schwaab B, Frohlig G, Alexander C, et al. Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing [J]. J Am Coll Cardiol,1999,33(2):317-323.
    [17]Schuster I, Habib G, Jego C, et al. Diastolic asynchrony is more frequent than systolic asynchrony in dilated cardiomyopathy and is less improved by cardiac resynchronization therapy [J]. J Am Coll Cardiol,2005,46(12):2250-2257.
    [18]Wang J, Kurrelmeyer KM, Torre-Amione G, et al. Systolic and diastolic dyssynchrony in patients with diastolic heart failure and the effect of medical therapy [J]. J Am Coll Cardiol,2007,49(l):88-96.
    [19]Fornwalt BK, Cummings RM, Arita T, et al. Acute pacing-induced dyssynchronous activation of the left ventricle creates systolic dyssynchrony with preserved diastolic synchrony [J]. J Cardiovasc Electrophysiol,2008, 19(5):483-488.
    [20]Yu CM, Lin H, Fung WH, et al. Comparison of acute changes in left ventricular volume, systolic and diastolic functions, and intraventricular synchronicity after biventricular and right ventricular pacing for heart failure [J]. Am Heart J,2003,145(5):E18.
    [21]Kang SJ, Song JK, Yang HS, et al. Systolic and diastolic regional myocardial motion of pacing-induced versus idiopathic left bundle branch block with and without left ventricular dysfunction [J]. Am J Cardiol,2004, 93(10):1243-1246.
    [22]Doshi RN, Daoud EG, Fellows C, et al. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study) [J]. J Cardiovasc Electrophysiol,2005,16(11):1160-1165.
    [23]Kindermann M, Hennen B, Jung J, et al. Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction:the Homburg Biventricular Pacing Evaluation (HOBIPACE) [J]. J Am Coll Cardiol,2006,47(10):1927-1937.
    [24]Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure [J]. N Engl J Med,2005,352(15):1539-1549.
    [25]Muto C, Ottaviano L, Canciello M, et al. Effect of pacing the right ventricular mid-septum tract in patients with permanent atrial fibrillation and low ejection fraction [J]. J Cardiovasc Electrophysiol,2007,18(10):1032-1036.
    [26]Sweeney MO, Hellkamp AS. Heart failure during cardiac pacing [J]. Circulation,2006,113(17):2082-2088.
    [27]Chiladakis JA, Koutsogiannis N, Kalogeropoulos A, et al. Permanent and atrial-synchronized ventricular stimulation for clinically stable patients with normal or impaired left ventricular systolic function [J]. Pacing Clin Electrophysiol,2007,30(2):182-187.
    [28]俞霏,宿燕岗,柏瑾,等.长期右室心尖部起搏对Ⅲ度房室传导阻滞患者心功能的影响[J].中华心律失常杂志,2010,14(2):140-144.
    [1]Landolina M, Lunati M, Gasparini M, et al. Comparison of the effects of cardiac resynchronization therapy in patients with class Ⅱ versus class Ⅲ and IV heart failure (from the InSync/InSync ICD Italian Registry) [J]. Am J Cardiol,2007,100(6):1007-1012.
    [2]Abraham WT, Young JB, Leon AR, et al. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure [J]. Circulation,2004,110(18):2864-2868.
    [3]St John Sutton M, Ghio S, Plappert T, et al. Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class Ⅰ/Ⅱ heart failure [J]. Circulation,2009, 120(19):1858-1865.
    [4]Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events [J]. N Engl J Med,2009, 361 (14):1329-1338.
    [5]Henry WL, DeMaria A, Gramiak R, et al. Report of the American Society of Echocardiography Committee on Nomenclature and Standards in Two-dimensional Echocardiography [J]. Circulation,1980,62(2):212-217.
    [6]Yu CM, Bleeker GB, Fung JW, et al. Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy [J]. Circulation,2005,112(11):1580-1586.
    [7]Ypenburg C, van Bommel RJ, Borleffs CJ, et al. Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up [J]. J Am Coll Cardiol,2009, 53(6):483-490.
    [8]Markowitz SM, Lewen JM, Wiggenhorn CJ, et al. Relationship of reverse anatomical remodeling and ventricular arrhythmias after cardiac resynchronization [J]. J Cardiovasc Electrophysiol,2009,20(3):293-298.
    [9]Daubert C, Gold MR, Abraham WT, et al. Prevention of disease progression by cardiac resynchronization therapy in patients with asymptomatic or mildly symptomatic left ventricular dysfunction:insights from the European cohort of the REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) trial [J]. J Am Coll Cardiol,2009,54(20):1837-1846.
    [10]Penicka M, Bartunek J, De Bruyne B, et al. Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography [J]. Circulation,2004,109(8):978-983.
    [11]Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy [J]. Am J Cardiol,2003, 91(6):684-688.
    [12]Zhang Q, Yu CM, Fung JW, et al. Assessment of the effect of cardiac resynchronization therapy on intraventricular mechanical synchronicity by regional volumetric changes [J]. Am J Cardiol,2005,95(1):126-129.
    [13]Gorcsan J,3rd, Kanzaki H, Bazaz R, et al. Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy [J]. Am J Cardiol,2004,93(9):1178-1181.
    [14]Chan CP, Zhang Q, Yip GW, et al. Relation of left ventricular systolic dyssynchrony in patients with heart failure to left ventricular ejection fraction and to QRS duration [J]. Am J Cardiol,2008,102(5):602-605.
    [15]Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy [J]. J Am Coll Cardiol,2004,44(9):1834-1840.
    [16]Gras D, Leclercq C, Tang AS, et al. Cardiac resynchronization therapy in advanced heart failure the multicenter InSync clinical study [J]. Eur J Heart Fail,2002,4(3):311-320.
    [17]Salukhe TV, Francis DP, Sutton R. Comparison of medical therapy, pacing and defibrillation in heart failure (COMPANION) trial terminated early; combined biventricular pacemaker-defibrillators reduce all-cause mortality and hospitalization [J]. Int J Cardiol,2003,87(2-3):119-120.
    [18]St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure [J]. Circulation,2003,107(15):1985-1990.
    [19]Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial [J]. Circulation,2008,117(20):2608-2616.
    [20]Yu CM, Lin H, Zhang Q, et al. High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration [J]. Heart,2003,89(1):54-60.
    [21]Yu CM, Zhang Q, Fung JW, et al. A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging [J]. J Am Coll Cardiol,2005,45(5):677-684.
    [22]Yu CM, Fung JW, Chan CK, et al. Comparison of efficacy of reverse remodeling and clinical improvement for relatively narrow and wide QRS complexes after cardiac resynchronization therapy for heart failure [J]. J Cardiovasc Electrophysiol,2004,15(9):1058-1065.
    [23]Mollema SA, Bleeker GB, van der Wall EE, et al. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure [J]. Am J Cardiol,2007,100(11):1665-1670.
    [24]Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay [J]. J Am Coll Cardiol, 2003,42(12):2109-2116.
    [25]Ding LG, Hua W, Zhang S, et al. Decrease of plasma N-terminal pro beta-type natriuretic peptide as a predictor of clinical improvement after cardiac resynchronization therapy for heart failure [J]. Chin Med J (Engl),2009, 122(6):617-621.
    [26]Berger R, Shankar A, Fruhwald F, et al. Relationships between cardiac resynchronization therapy and N-terminal pro-brain natriuretic peptide in patients with heart failure and markers of cardiac dyssynchrony:an analysis from the Cardiac Resynchronization in Heart Failure (CARE-HF) study [J]. Eur Heart J,2009,30(17):2109-2116.
    [27]Diaz-Infante E, Mont L, Leal J, et al. Predictors of lack of response to resynchronization therapy [J]. Am J Cardiol,2005,95(12):1436-1440.
    [28]Marsan NA, Bleeker GB, Ypenburg C, et al. Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy [J]. J Cardiovasc Electrophysiol,2008,19(4):392-399.
    [29]Kapetanakis S, Kearney MT, Siva A, et al. Real-time three-dimensional echocardiography:a novel technique to quantify global left ventricular mechanical dyssynchrony [J]. Circulation,2005,112(7):992-1000.
    [30]Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy [J]. Circulation,2006,113(7):960-968.
    [31]Sade LE, Demir O, Atar I, et al. Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics [J]. Am J Cardiol,2008,101 (8):1163-1169.
    [1]Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial [J]. Circulation,2008,117(20):2608-2616.
    [2]Beshai JF, Grimm RA, Nagueh SF, et al. Cardiac-resynchronization therapy in heart failure with narrow QRS complexes [J]. N Engl J Med,2007, 357(24):2461-2471.
    [3]Williams LK, Ellery S, Patel K, et al. Short-term hemodynamic effects of cardiac resynchronization therapy in patients with heart failure, a narrow QRS duration, and no dyssynchrony [J]. Circulation,2009,120(17):1687-1694.
    [4]Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block [J]. Circulation,2002,106(14):1760-1763.
    [5]Tanabe M, Lamia B, Tanaka H, et al. Echocardiographic speckle tracking radial strain imaging to assess ventricular dyssynchrony in a pacing model of resynchronization therapy [J]. J Am Soc Echocardiogr,2008, 21(12):1382-1388.
    [6]Moe GW, Armstrong P. Pacing-induced heart failure:a model to study the mechanism of disease progression and novel therapy in heart failure [J]. Cardiovasc Res,1999,42(3):591-599.
    [7]Moe GW, Stopps TP, Howard RJ, et al. Early recovery from heart failure: insights into the pathogenesis of experimental chronic pacing-induced heart failure [J]. J Lab Clin Med,1988,112(4):426-432.
    [8]Laurent G, Moe G, Hu X, et al. Experimental studies of atrial fibrillation:a comparison of two pacing models [J]. Am J Physiol Heart Circ Physiol,2008, 294(3):H1206-1215.
    [9]Stambler BS, Fenelon G, Shepard RK, et al. Characterization of sustained atrial tachycardia in dogs with rapid ventricular pacing-induced heart failure [J]. J Cardiovasc Electrophysiol,2003,14(5):499-507.
    [10]Soloviev MV, Hamlin RL, Shellhammer LJ, et al. Variations in hemodynamic parameters and ECG in healthy, conscious, freely moving telemetrized beagle dogs [J]. Cardiovasc Toxicol,2006,6(1):51-62.
    [11]Spragg DD, Akar FG, Helm RH, et al. Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts [J]. Cardiovasc Res,2005,67(1):77-86.
    [12]van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall [J]. Circulation,1998,98(6):588-595.
    [13]Marsan NA, Bleeker GB, Ypenburg C, et al. Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy [J]. J Cardiovasc Electrophysiol,2008,19(4):392-399.
    [14]Kapetanakis S, Kearney MT, Siva A, et al. Real-time three-dimensional echocardiography:a novel technique to quantify global left ventricular mechanical dyssynchrony [J]. Circulation,2005,112(7):992-1000.
    [15]Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy [J]. Circulation,2006,113(7):960-968.
    [16]Sade LE, Demir O, Atar I, et al. Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics [J]. Am J Cardiol,2008,101 (8):1163-1169.
    [17]YS Wang, X Gong, YG Su, et al. Ideal dyssynchrony parameters for predicting the response to cardiac resynchronization therapy in the canine model of pacing-induced heart failure [abstract]. Eur J Echocardiography Abstracts Supplement, December 2009.
    [1]Moe GW, Armstrong P. Pacing-induced heart failure:a model to study the mechanism of disease progression and novel therapy in heart failure [J]. Cardiovasc Res,1999,42(3):591-599.
    [2]Chakir K, Daya SK, Aiba T, et al. Mechanisms of enhanced beta-adrenergic reserve from cardiac resynchronization therapy [J]. Circulation,2009, 119(9):1231-1240.
    [3]Aiba T, Hesketh GG, Barth AS, et al. Electrophysiological consequences of dyssynchronous heart failure and its restoration by resynchronization therapy [J]. Circulation,2009,119(9):1220-1230.
    [4]Tarquini R, Guerra CT, Porciani MC, et al. Effects of cardiac resynchronization therapy on systemic inflammation and neurohormonal pathways in heart failure [J]. Cardiol J,2009,16(6):545-552.
    [5]Quigley AF, Kapsa RM, Esmore D, et al. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy [J]. J Card Fail,2000, 6(1):47-55.
    [6]孙爱军,王克强,李杰,等.心功能衰竭大鼠模型心肌线粒体蛋白的差异表达分析[J].中国动脉硬化杂志,2007.
    [7]孙爱军,邹云增,贾剑国,等.乙醛脱氢酶2对心力衰竭大鼠的心脏保护作用[J].上海医学,2007.
    [8]徐丹令,孙爱军,付晗,等.乙醛脱氢酶2抑制剂daidzin对大鼠心肌细胞缺氧损伤作用的机制[J].上海医学,2007.
    [9]孙爱军,徐丹令,邹云增,等.乙醛脱氢酶2通过缺氧诱导因子/热休克蛋白因子及P53途径抑制心肌细胞凋亡[J].上海医学,2007.
    [10]俞佳艳,孙爱军,贾建国,等.转染乙醛脱氢酶2基因对心肌梗死后心衰小鼠心功能的影响[J].中国临床医学,2008,15(3):277-280.
    [11]Armstrong PW, Stopps TP, Ford SE, et al. Rapid ventricular pacing in the dog: pathophysiologic studies of heart failure [J]. Circulation,1986, 74(5):1075-1084.
    [12]O'Brien PJ, lanuzzo CD, Moe GW, et al. Rapid ventricular pacing of dogs to heart failure:biochemical and physiological studies [J]. Can J Physiol Pharmacol,1990,68(1):34-39.
    [13]O'Brien PJ, Moe GW, Nowack LM, et al. Sarcoplasmic reticulum Ca-release channel and ATP-synthesis activities are early myocardial markers of heart failure produced by rapid ventricular pacing in dogs [J]. Can J Physiol Pharmacol,1994,72(9):999-1006.
    [14]Wilson JR, Douglas P, Hickey WF, et al. Experimental congestive heart failure produced by rapid ventricular pacing in the dog:cardiac effects [J]. Circulation,1987,75(4):857-867.
    [15]Shoffner JM, Wallace DC. Heart disease and mitochondrial DNA mutations [J]. Heart Dis Stroke,1992,1(4):235-241.
    [16]Karpawich PP, Mital S. Comparative left ventricular function following atrial, septal, and apical single chamber heart pacing in the young [J]. Pacing Clin Electrophysiol,1997,20(8 Pt 1):1983-1988.
    [17]Heinke MY, Wheeler CH, Chang D, et al. Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis [J]. Electrophoresis,1998,19(11):2021-2030.
    [18]Heinke MY, Wheeler CH, Yan JX, et al. Changes in myocardial protein expression in pacing-induced canine heart failure [J]. Electrophoresis,1999, 20(10):2086-2093.
    [19]Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure [J]. Cardiovasc Res,2001,52(1):103-110.
    [20]Marin-Garcia J, Goldenthal MJ, Damle S, et al. Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure [J]. J Card Fail,2009,15(8):700-708.
    [21]Aiba T, Tomaselli GF. Electrical remodeling in the failing heart [J]. Curr Opin Cardiol,25(1):29-36.
    [22]Mullens W, Bartunek J, Wilson Tang WH, et al. Early and late effects of cardiac resynchronization therapy on force-frequency relation and contractility regulating gene expression in heart failure patients [J]. Heart Rhythm,2008, 5(1):52-59.
    [23]Gupta RC, Shimoyama H, Tanimura M, et al. SR Ca(2+)-ATPase activity and expression in ventricular myocardium of dogs with heart failure [J]. Am J Physiol,1997,273(1 Pt2):H12-18.
    [24]Gupta RC, Mishra S, Mishima T, et al. Reduced sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholamban in left ventricular myocardium of dogs with heart failure [J]. J Mol Cell Cardiol,1999, 31(7):1381-1389.
    [25]Vanderheyden M, Mullens W, Delrue L, et al. Endomyocardial upregulation of beta1 adrenoreceptor gene expression and myocardial contractile reserve following cardiac resynchronization therapy [J]. J Card Fail,2008, 14(2):172-178.
    [26]Vanderheyden M, Mullens W, Delrue L, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders [J]. J Am Coll Cardiol,2008,51(2):129-136.
    [27]Iyengar S, Haas G, Lamba S, et al. Effect of cardiac resynchronization therapy on myocardial gene expression in patients with nonischemic dilated cardiomyopathy [J]. J Card Fail,2007,13(4):304-311.
    [28]Barth AS, Aiba T, Halperin V, et al. Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level [J]. Circ Cardiovasc Genet,2009,2(4):371-378.
    [29]Chakir K, Daya SK, Tunin RS, et al. Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization [J]. Circulation,2008, 117(11):1369-1377.
    [30]Mak S, Lehotay DC, Yazdanpanah M, et al. Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure [J]. J Card Fail,2000,6(2):108-114.
    [31]Endo J, Sano M, Katayama T, et al. Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart [J]. Circ Res,2009,105(11):1118-1127.
    [32]Agnetti G, Kaludercic N, Kane LA, et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts [J]. Circ Cardiovasc Genet,2010,3(1):78-87.
    [1]Hussein SJ, Hennekens CH, Lamas GA. An update on clinical trials in pacing: is dual chamber pacing better? [J]. Curr Opin Cardiol,2004,19(1):12-18.
    [2]Link MS, Hellkamp AS, Estes NA,3rd, et al. High incidence of pacemaker syndrome in patients with sinus node dysfunction treated with ventricular-based pacing in the Mode Selection Trial (MOST) [J]. J Am Coll Cardiol,2004,43(11):2066-2071.
    [3]Lamas GA, Ellenbogen KA. Evidence base for pacemaker mode selection: from physiology to randomized trials [J]. Circulation,2004,109(4):443-451.
    [4]Andersen HR, Thuesen L, Bagger JP, et al. Prospective randomised trial of atrial versus ventricular pacing in sick-sinus syndrome [J]. Lancet,1994, 344(8936):1523-1528.
    [5]Andersen HR, Nielsen JC, Thomsen PE, et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome [J]. Lancet,1997,350(9086):1210-1216.
    [6]Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing:meta-analysis of randomized trials, using individual patient data [J]. Circulation,2006, 114(1):11-17.
    [7]Lamas GA, Orav EJ, Stambler BS, et al. Quality of life and clinical outcomes in elderly patients treated with ventricular pacing as compared with dual-chamber pacing. Pacemaker Selection in the Elderly Investigators [J]. N Engl J Med,1998,338(16):1097-1104.
    [8]Lamas GA, Lee KL, Sweeney MO, et al. Ventricular pacing or dual-chamber pacing for sinus-node dysfunction [J]. N Engl J Med,2002, 346(24):1854-1862.
    [9]Toff WD, Camm AJ, Skehan JD. Single-chamber versus dual-chamber pacing for high-grade atrioventricular block [J]. N Engl J Med,2005,353(2):145-155.
    [10]Connolly SJ, Kerr CR, Gent M, et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian Trial of Physiologic Pacing Investigators [J]. N Engl J Med,2000, 342(19):1385-1391.
    [11]Kerr CR, Connolly SJ, Abdollah H, et al. Canadian Trial of Physiological Pacing:Effects of physiological pacing during long-term follow-up [J]. Circulation,2004,109(3):357-362.
    [12]Tang AS, Roberts RS, Kerr C, et al. Relationship between pacemaker dependency and the effect of pacing mode on cardiovascular outcomes [J]. Circulation,2001,103(25):3081-3085.
    [13]Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction [J]. Circulation,2003,107(23):2932-2937.
    [14]Sweeney MO, Hellkamp AS, Lee K.L, et al. Association of prolonged QRS duration with death in a clinical trial of pacemaker therapy for sinus node dysfunction [J]. Circulation,2005,111(19):2418-2423.
    [15]Wilkoff BL, Cook JR, Epstein AE, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator:the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial [J]. Jama,2002, 288(24):3115-3123.
    [16]Musilli N, Padeletti L. Pacemaker selection:time for a rethinking of complex pacing systems? [J]. Eur Heart J,2006,27(2):132-135.
    [17]Wilkoff BL, Kudenchuk PJ, Buxton AE, et al. The DAVID (Dual Chamber and VVI Implantable Defibrillator) II trial [J]. J Am Coll Cardiol,2009, 53(10):872-880.
    [18]Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome:echocardiographic and clinical outcome [J]. J Am Coll Cardiol, 2003,42(4):614-623.
    [19]Albertsen AE, Nielsen JC, Poulsen SH, et al. DDD(R)-pacing, but not AAI(R)-pacing induces left ventricular desynchronization in patients with sick sinus syndrome:tissue-Doppler and 3D echocardiographic evaluation in a randomized controlled comparison [J]. Europace,2008,10(2):127-133.
    [20]Tse HF, Lau CP. Clinical trials for cardiac pacing in bradycardia:the end or the beginning? [J]. Circulation,2006,114(1):3-5.
    [21]van Oosterhout MF, Prinzen FW, Arts T, et al. Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall [J]. Circulation,1998,98(6):588-595.
    [22]Wyman BT, Hunter WC, Prinzen FW, et al. Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction [J]. Am J Physiol Heart Circ Physiol,2002,282(1):H372-379.
    [23]Cojoc A, Reeves JG, Schmarkey L, et al. Effects of single-site versus biventricular epicardial pacing on myocardial performance in an immature animal model of atrioventricular block [J]. J Cardiovasc Electrophysiol,2006, 17(8):884-889.
    [24]Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function [J]. J Am Coll Cardiol,1997,29(4):744-749.
    [25]Thambo JB, Bordachar P, Garrigue S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing [J]. Circulation,2004,110(25):3766-3772.
    [26]Siu CW, Wang M, Zhang XH, et al. Analysis of ventricular performance as a function of pacing site and mode [J]. Prog Cardiovasc Dis,2008, 51(2):171-182.
    [27]Sweeney MO, Bank AJ, Nsah E, et al. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease [J]. N Engl J Med,2007, 357(10):1000-1008.
    [28]Deshmukh P, Casavant DA, Romanyshyn M, et al. Permanent, direct His-bundle pacing:a novel approach to cardiac pacing in patients with normal His-Purkinje activation [J]. Circulation,2000,101(8):869-877.
    [29]Occhetta E, Bortnik M, Magnani A, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation:a crossover, blinded, randomized study versus apical right ventricular pacing [J]. J Am Coll Cardiol,2006, 47(10):1938-1945.
    [30]Catanzariti D, Maines M, Cemin C, et al. Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. An intrapatient acute comparison study [J]. J Interv Card Electrophysiol,2006,16(2):81-92.
    [31]de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing:a quantitative review [J]. Europace,2003,5(3):275-278.
    [32]Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure [J]. N Engl J Med,2004,350(21):2140-2150.
    [33]Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay [J]. J Am Coll Cardiol, 2003,42(12):2109-2116.
    [34]Kindermann M, Hennen B, Jung J, et al. Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction:the Homburg Biventricular Pacing Evaluation (HOBIPACE) [J]. J Am Coll Cardiol,2006,47(10):1927-1937.
    [35]Paparella G, Sciarra L, Capulzini L, et al. Long-Term Effects of Upgrading to Biventricular Pacing:Differences with Cardiac Resynchronization Therapy as Primary Indication [J]. Pacing Clin Electrophysiol.
    [36]Funck RC, Blanc JJ, Mueller HH, et al. Biventricular stimulation to prevent cardiac desynchronization:rationale, design, and endpoints of the 'Biventricular Pacing for Atrioventricular Block to Prevent Cardiac Desynchronization (BioPace)' study [J]. Europace,2006,8(8):629-635.
    [37]Funck RC, Kolsch S, Maisch B. [Biventricular stimulation for AV block] [J]. Herzschrittmacherther Elektrophysiol,2008,19(1):41-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700