用户名: 密码: 验证码:
NDV HN基因和CAV Apoptin基因对宫颈癌细胞的体外杀伤作用及其体内抑瘤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以新城疫病毒(NDV)血凝素-神经氨酸酶(HN)基因和鸡贫血病毒(CAV)凋亡素(Apoptin)基因为效应基因,以真核表达质粒pSFV为载体,分别构建了含HN和Apoptin基因的重组真核表达质粒pSFVHN、pSFVApoptin。利用以鸡痘病毒为载体的重组鸡痘病毒vFVHN、vFVApoptin及上述重组真核表达质粒对其进行了体内外抑瘤实验研究和抑瘤机制的初步探索,为上述两种基因在肿瘤生物治疗中的应用奠定实验和理论基础。
     本研究以真核表达质粒pSFV为载体,分别构建了能够有效表达NDVHN和CAV Apoptin的重组真核表达质粒pSFVHN和pSFVApoptin。通过电穿孔法将pSFVHN和pSFVApoptin转染入人宫颈癌Hela细胞通过RT-PCR、western-blot法及间接免疫荧光检测了重组体中外源基因在Hela细胞内表达,结果表明外源基因Apoptin和HN在Hela细胞中获得了有效转录和正确表达;采用MTT法分别检测了pSFVHN和pSFVApoptin对Hela肿瘤细胞的体外杀伤作用,结果表明,上述重组体对Hela细胞具有明显的杀伤作用;通过吖锭橙/溴化乙锭染色、DAPI染色、流式细胞仪结合DCFA染色、罗丹明123染色分别探讨了两种重组体对Hela肿瘤细胞的抑制机制,结果表明,pSFVHN和pSFVApoptin可诱导Hela肿瘤细胞凋亡,并可上调细胞内活性氧水平,降低线粒体膜电位,由此推测其所诱导的细胞凋亡可能是通过线粒体途径发生的;通过流式细胞仪结合MHC-Ⅰ分子表达检测等方法检测了两种重组体对细胞免疫功能的影响,结果表明,pSFVHN和pSFVApoptin可不同程度的上调肿瘤细胞表面MHC-Ⅰ分子的表达,提高肿瘤细胞的免疫原性。
     本研究利用重组鸡痘病毒vFVHN和vFVApoptin感染体外培养的人宫颈癌Hela细胞,运用Western blot、RT-PCR和间接免疫荧光等方法检测外源基因的表达,实验结果显示,重组鸡痘病毒所携带的外源基因可在Hela细胞中有效转录和正确表达。采用MTT法、吖锭橙/溴化乙锭染色、DAPI染色、流式细胞仪检测细胞内活性氧水平、线粒体膜电位及MHC-Ⅰ分子的表达等方法观察重组鸡痘病毒vFVHN和vFVApoptin对Hela肿瘤细胞的体外杀伤作用及其对肿瘤细胞免疫原性的影响,实验结果显示,上述重组病毒可有效抑制Hela细胞的生长,并可推测其可通过线粒体途径诱导人宫颈癌Hela细胞发生凋亡。
     另外,其次本研究还复制了C57BL/6小鼠荷H22肿瘤模型,利用瘤内注射的方法,通过抑瘤率检测和生存期检测等方法探讨了重组真核表达质粒pSFVHN、pSFVApoptin和重组鸡痘病毒vFVHN和vFVApoptin的体内抑瘤作用。结果显示,上述重组体可有效抑制荷瘤动物模型肿瘤组织的生长,并在一定程度上延长动物模型生存期。本研究还通过小鼠脾CD4+、CD8+T细胞亚群的数量、脾细胞特异性CTL杀伤活性等检测,探讨了上述重组体对荷瘤动物模型免疫功能的影响,结果显示,上述重组体可在不同程度内提高荷瘤动物模型CD4+、CD8+T细胞亚群的数量,并诱导产生抗肿瘤特异性CTL杀伤活性。
     本研究通过对重组真核表达质粒pSFVHN、pSFVApoptin和重组鸡痘病毒vFVHN和vFVApoptin的体内外抑瘤作用研究,说明了其对体外培养的人宫颈癌Hela细胞和C57BL/6小鼠荷H22肿瘤模型的抑制作用。提示,NDV HN和CAV Apoptin可作为效应基因应用于肿瘤生物治疗领域,但对其确切机制尚需进一步研究。
Cancer constitutes one of the most important medico-biological problems remaining generally unsolved at the beginning of the new century. Although involvement of numerous genetic factors in the pathogenesis of neoplasia is well proven, understanding of the complex molecular mechanisms underlying neoplastic growth is still disappointingly incomplete. Intense investigation of cancer-related genetic alterations at the somatic cell level has shed some light on the sequence of molecular events leading to malignant transformation of somatic cells and clonal neoplastic growth. It is now believed that most (and probably all) types of cancer share a relatively small number of molecular, biochemical and cellular traits called acquired capabilities. As that following six alterations relevant for malignancy: self-sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis. Indeed, neoplastic growth should not be regarded as a cell-autonomous process intrinsic to the cancer cell. There is no doubt that cancer development strongly depends upon changes in interactions between malignant cells and their normal neighbours. For many cancers, conventional therapies render patients free of disease but relapse and death remains high, particularly in advanced cancers. Thus, there is great interesting developing novel therapies that can completely remove residual disease and prolong life. Although many novel approaches have been advanced in recent years, interest in cancer gene therapy has been exceptionally strong. The development of genetically engineer viruses and viral proteins that selectively target various tumors resulting in minimal toxicity in the normal tissues has emerged as a potentially important approach for cancer gene therapy.
     To investigate the mechanisms of effect on human cervical carcinoma cells Hela with Hemagglutinin-neuraminidase from Newcastle disease virus and Apoptin from from chicken anemia virus. We constructed recombinant plasmid pSFVHN and pSFVApoptin. The above recombinant expression plasmid was identified by enzyme and transfected into human cervical carcinoma Hela cells, then the recombinant was screened by using RT-PCR, western-blot and indirect immunofluorescence. The results showed that the apoptin gene and HN gene transcribed and expressed correctly in Hela cells. Hela cells were transfected with pSFVHN and pSFVApoptin and the anti-tumor effects in vitro were observed by using microscope. The results showed that the recombinants has evident lethal effects on Hela cells and the effects showed non-limit time-dose dependent relationship. The lethal effects were reinforced with the growth of transfection time and the concentration of the recombinant. The peak was reached 48 hours after infection when the concentration of the recombinant was 20μg/ml, the value is 59.3%和51.5%. AO/EB staining and DAPI staining were used to observe the cell morphological diversity, the results showed that pSFVHN and pSFVApoptin lead to the cell pyknosis, chromatin margination and apoptosis finally. DCFA staining to detect the Reactive oxygen species level, Rhodamine123 staining to detect the mitochondrial trans-memebrane potential and anti-MHC-I Mab coherent to detect the MHC-I level were used to observe the mechanism of anti-tumor effect of pSFVHN and pSFVApoptin and meanings of the pSFVHN and pSFVApoptin in activating immune. The results showed that the recombinant caused the decline of mitochondrial trans-membrane potential and step up of Reactive oxygen species level. In conclusion, the transfection of pSFVHN and pSFVApoptin ultimately induced Hela cell apoptosis and the apoptosis induce by the recombination is mainly through mitochondrial pathway.
     To observe the therapeutic alliance effects of apoptin gene and HN gene, Hela cells were infected by recombinant fowlpox virus vFVApoptin and vFVHN. RT-PCR, Western blot and indirect immunofluorescence was used to identify the expression of vFVApoptin and vFVHN. The results showed that the recombinant transcribed and expressed foreign protein magnanimously. MTT assay was used to detect the anti-tumor effects of vFVApoptin and vFVHN on Hela cells. The results showed that the recombinant can kill the tumor cells effectively as described below: 65.9%和55.8%. AO/EB and DAPI staining was used to observe the cell morphological diversity, the results showed that the recombinant fowlpox viruses lead to the cell pyknosis, chromatin margination and apoptosis finally. DCFA staining to detect the Reactive oxygen species level, Rhodamine123 staining to detect the mitochondrial trans-memebrane potential were used to observe the mechanism of anti-tumor effect of vFVApoptin and vFVHN. The results showed that the recombinant caused the decline of mitochondrial trans-membrane potential and step up of Reactive oxygen species level. In conclusion, the transfection of vFVApoptin and vFVHN ultimately induced Hela cell apoptosis and the apoptosis induce by the recombination is mainly through mitochondrial pathway. On the other hand, we applied FCM to detect the level of MHC-I, The results showed that the recombinant fowlpox viruses lead to up-regulation of MHC-I molecule.
     Furthermore, C57BL/6 mice model bearing H22 hepatoma was constructed by transplanting H22 cells into the right hind limb of the mice and the combined or single anti-tumor effect on H22 hepatoma of HN gene and apoptin gene was observed through the detection of anti-tumor ratio, survival rate, categorization of subset of splenic lymphocyte, CTL activity and the immuneostimulation. The results showed that that the growth of established tumors in mice immunized with the recombinants was significantly inhibited and the survival rate was prolonged. Furthermore, the immunization of mice with the recombinants elicited strong tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, CD4~+、CD8~+ T cells from mice vaccinated with the recombinants were elevated. Indicating that vaccination with the recombinants may be a novel and powerful strategy for cancer bio-therapy and the precise mechanism is on going investigation.
引文
[1] Henderson, R.A., and Finn, O.J. 1996. Human tumor antigens are ready to fly. Adv. Immunol. 62:217-256.
    [2] Disis, M.L., and Cheever, M.A. 1996. Oncogenic proteins as tumor antigens. Curr. Opin. Immunol. 8:637-642.
    [3] Wang, R.-F., and Rosenberg, S.A. 1999. Human tumor antigens for cancer vaccine development. Immunol. Rev. 170:85-100.
    [4] Berzofsky, J.A., Ahlers, J.D., and Belyakov, I.M. 2001. Strategies for designing and optimizing new generation vaccines. Nat. Rev. Immunol. 1:209-219.
    [5] Yu, Z., and Restifo, N.P. 2002. Cancer vaccines: progress reveals new complexities. J. Clin. Invest. 110:289-294. doi:10.1172/JCI200216216.
    [6] Parmiani, G., et al. 2002. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J. Natl. Cancer. Inst. 94:805-818.
    [7] Salit, R.B., Kast, W.M., and Velders, M.P. 2002. Ins and outs of clinical trials with peptide-based vaccines. Front. Biosci. 7:e204-e213.
    [8] Berzofsky, J.A., and Berkower, I.J. 2003. Immunogenicity and antigen structure. In Fundamental immunology. W.E. Paul, editor. Lippincott Williams & Wilkins. Philadelphia, Pennsylvania, USA. 631-683.
    [9] Germain, R.N., and Margulies, D.H. 1993. The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 11:403-450.
    [10]Rosenberg, A.S., and Singer, A. 1992. Cellular basis of skin allograft rejection: an in vivo model of immune-mediated tissue destruction. Ann. Rev. Immunol. 10:333-358.
    [11]Waldmann, T.A. 2003. Immunotherapy: past, present and future. Nat. Med. 9:269-277.
    [12]Hung, K., et al. 1998. The central role of CD4(+) T cells in the antitumor immune response. J. Exp. Med. 188:2357-2368.
    [13]Banchereau, J., and Steinman, R.M. 1998. Dendritic cells and the control of immunity. Nature. 392:245-252.
    [14]Hurwitz, A.A., Yu, T.F.-Y., Leach, D.R., and Allison, J.P. 1998. CTLA-4 blockade synergizes with tumorderived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95:10067-10071.
    [15]Shimizu, J., Yamazaki, S., and Sakaguchi, S. 1999. Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163:5211-5218.
    [16]Sutmuller, R.P.M., et al. 2001. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative cytotoxic T lymphocyte responses. J. Exp. Med. 194:823-832.
    [17]Terabe, M., and Berzofsky, J.A. 2004. Immunoregulatory T cells in tumor immunity. Curr. Opin. Immunol. 16:157-162.
    [18]Terabe, M., et al. 2000. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat. Immunol. 1:515-520.
    [19]Terabe, M., et al. 2003. Transforming growth factor- .production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. 198:1741-1752.
    [20]Renkvist, N., Castelli, C., Robbins, P.F., and Parmiani, G. 2001. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 50:3-15.
    [21] Berzofsky, J.A., Helman, L.J., and Carbone, D.P. 2000. Cancer vaccines: cancer antigens: oncogenes and mutations. In Principles and practice of the biologic therapy of cancer. 3rd edition. S.A. Rosenberg, editor. Lippincott Williams & Wilkins. Philadelphia, Pennsylvania, USA. 526-541.
    [22]Gjertsen, M.K., et al. 1995. Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation. Lancet. 346:1399-1400.
    [23] Yanuck, M., et al. 1993. A mutant p53 tumor suppressor protein is a target for peptide-induced CD8+ cytotoxic T cells. Cancer Res. 53:3257-3261.
    [24]Pinilla-Ibarz, J., et al. 2000. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood. 95:1781-1787.
    [25]Goletz, T.J., Mackall, C.L., Berzofsky, J.A., and Helman, L.J. 1998. Molecular alterations in pediatric sarcomas: potential targets for immunotherapy. Sarcoma. 2:77-87.
    [26]Mackall, C., Berzofsky, J., and Helman, L.J. 2000. Targeting tumor specific translocations in sarcomas in pediatric patients for immunotherapy. Clin. Orthop. 25-31.
    [27]Worley, B.S., et al. 2001. Antigenicity of fusion proteins from sarcoma-associated chromosomal translocations. Cancer Res. 61:6868-6875.
    [28] Bos, J.L. 1989. Ras oncogenes in human cancer: a review. Cancer Res. 49:4682-4689.
    [29]Chiba, I., et al. 1990. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Oncogene. 5:1603-1610.
    [30]Smith, M.C., et al. 1997. Oncogenic mutations in ras create HLA-A2.1 binding peptides but affect their extracellular processing. Int. Immunol. 9:1085-1093.
    [31] Peace, D.J., et al. 1994. Lysis of Ras oncogene-transformed cells by specific cytotoxic T lymphocytes elicited by primary in vitro immunization with mutated Ras peptide. J. Exp. Med. 179:473-479.
    [32]Zaremba, S., et al. 1997. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 57:4570-4577.
    [33]Fong, L., et al. 2001. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 98:8809-8814.
    [34] Theobald, M., Biggs, J., Dittmer, D., Levine, A.J., and Sherman, L.A. 1995. Targeting p53 as a general tumor antigen. Proc. Natl. Acad. Sci. U. S. A. 92:11993-11997.
    [35]Correale, P., et al. 1997. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J. Natl. Cancer Inst. 89:293-300.
    [36]Roskrow, M.A., et al. 1998. Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease. Blood. 91:2925-2934.
    [37]Dranoff, G., et al. 1993. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. U.S.A. 90:3539-3543.
    [38]Simons, J.W., et al. 1999. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59:5160-5168.
    [39]Soiffer, R., et al. 1998. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U. S. A. 95:13141-13146.
    [40]Jaffee, E.M., et al. 2001. Novel allogeneic granulocyte- macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J. Clin. Oncol. 19:145-156.
    [41]Salgia, R., et al. 2003. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte- macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J. Clin. Oncol. 21:624-630.
    [42]Maio, M., et al. 2002. Vaccination of stage IV patients with allogeneic IL-4- or IL-2-gene-transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Immunol. Immunother. 51:9-14.
    [43]Antonia, S.J., et al. 2002. Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2in patients with metastatic renal cell carcinoma. J. Urol. 167:1995-2000.
    [44]Unfer, R.C., Hellrung, D., and Link, C.J., Jr. 2003. Immunity to the alpha(l,3)galactosyl epitope provides protection in mice challenged with colon cancer cells expressing alpha(1,3)galactosyl-transferase: a novel suicide gene for cancer gene therapy. Cancer Res. 63:987-993.
    [45] Stern, L.J., and Wiley, D.C. 1994. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure. 2:245-251.
    [46]Rammensee, H.-G., Friede, T., and Stevanovic, S. 1995. MHC ligands and peptide motifs: first listing. Immunogenetics. 41:178-228.
    [47]Traversari, C, et al. 1992. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176:1453-1457.
    [48]Berzofsky, J.A. 1993. Epitope selection and design of synthetic vaccines: molecular approaches to enhancing immunogenicity and crossreactivity of engineered vaccines. Ann. N. Y. Acad. Sci. 690:256-264.
    [49]Rosenberg, S.A., et al. 1998. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat. Med. 4:321-327.
    [50]Rivoltini, L., et al. 1999. A superagonist variant of peptide MART1/Melan A27-35 elicits antimelanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res. 59:301-306.
    [51]Brinckerhoff, L.H., et al. 1999. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. Int. J. Cancer. 83:326-334.
    [52]Ahlers, J.D., et al. 2002. A push-pull approach to maximize vaccine efficacy: abrogating suppression with an IL-13 inhibitor while augmenting help with GM-CSF and CD40L. Proc. Natl. Acad. Sci. U. S. A. 99:13020-13025.
    [53]Klinman, D.M., Yi, A.K., Beaucage, S.L., Conover, J., and Krieg, A.M. 1996. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl. Acad. Sci. U. S. A. 93:2879-2883.
    [54]Alexander, J., et al. 1994. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity. 1:751-761.
    [55]Shirai, M., et al. 1996. Use of intrinsic and extrinsic helper epitopes for in vivo induction of anti-hepatitis C virus cytotoxic T lymphocytes (CTL) with CTL epitope peptide vaccines. J. Infect. Dis. 173:24-31.
    [56]Melief, C.J., Van Der Burg, S.H., Toes, R.E., Ossendorp, F., and Offringa, R. 2002. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol. Rev. 188:177-182.
    [57]Ahlers, J.D., Belyakov, I.M., Thomas, E.K., and Berzofsky, J.A. 2001. High affinity T-helper epitope induces complementary helper and APC polarization, increased CTL and protection against viral infection. J. Clin. Invest. 108:1677-1685. doi:10.1172/JCI200113463.
    [58] Smith, J.W., 2nd, et al. 2003. Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J. Clin. Oncol. 21:1562-1573.
    [59]Lee, P., et al. 2001. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J. Clin. Oncol. 19:3836-3847.
    [60] Weber, J., et al. 2003. Granulocyte-macrophagecolony- stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer. 97:186-200.
    [61]Schaed, S.G., et al. 2002. T-cell responses against tyrosinase 368-376(370D) peptide in HLA*A0201+ melanoma patients: randomized trial comparing incomplete Freund's adjuvant, granulocyte macrophage colony-stimulating factor, and QS-21 as immunological adjuvants. Clin. Cancer Res. 8:967-972.
    [62]Phan, G.Q., et al. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte- associated antigen 4 blockades in patients with metastatic melanoma. Proc. Natl. Acad. Sci. U. S. A. 100:8372-8377.
    [63] Marshall, J.L., et al. 2000. Phase I study in advanced cancer patients of diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J. Clin. Oncol. 18:3964-3973.
    [64]Zhu, M.Z., Marshall, J., Cole, D., Schlom, J., and Tsang, K.Y. 2000. Specific cytotoxic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin. Cancer Res. 6:24-33.
    [65]Belyakov, I.M., Moss, B., Strober, W., and Berzofsky, J.A. 1999. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc. Natl. Acad. Sci. U. S. A. 96:4512-4517.
    [66] Hodge, J.W., et al. 1999. A triad of costimulatory molecules synergizes to amplify T-cell activation. Cancer Res. 59:5800-5807.
    [67]Oh, S., et al. 2003. Selective induction of high avidity CTL by altering the balance of signals from antigen presenting cells. J. Immunol. 170: 2523-2530.
    [68] Tang, D., DeVit, M., and Johnston, S.A. 1992. Genetic immunization is a simple method for eliciting an immune response. Nature. 356:152-154.
    [69]Ulmer, J.B., et al. 1993. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 259:1745-1749.
    [70] Timmerman, J.M., et al. 2002. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res. 62:5845-5852.
    [71]Conry, R.M., et al. 2002. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in Colorectal carcinoma patients. Clin. Cancer Res. 8:2782-2787.
    [72]Fong, L., and Engleman, E.G. 2000. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18:245-273.
    [73]Schuler, G., Schuler-Thurner, B., and Steinman, R.M. 2003. The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15:138-147.
    [74]Gabrilovich, D.I., Nadaf, S., Corak, J., Berzofsky, J.A., and Carbone, D.P. 1996. Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice are effective antigen carriers in the therapy of established tumors. Cell Immunol. 170:111-119.
    [75] Gabrilovich, D.I., et al. 1996. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [erratum 1996,2:1267]. Nat. Med. 2:1096-1103.
    [76]Mayordomo, J.I., et al. 1995. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. 1:1297-1302.
    [77]Porgador, A., and Gilboa, E. 1995. Bone marrowgenerated dendritic cells pulsed with a class Irestricted peptide are potent inducers of cytotoxic T lymphocytes. J. Exp. Med. 182:255-260.
    [78]Nair, S.K., Snyder, D., Rouse, B.T., and Gilboa, E. 1997. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int. J. Cancer. 70:706-715.
    [79]Paglia, P., Chiodoni, C., Rodolfo, M., and Colombo, M.P. 1996. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med. 183:317-322.
    [80]Zitvogel, L., et al. 1996. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183:87-97.
    [81] Ashley, D.M., et al. 1997. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induces antitumor immunity against central nervous system tumors. J. Exp. Med. 186:1177-1182.
    [82]Mayordomo, J.I., et al. 1996. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J. Exp. Med. 183:1357-1365.
    [83]Siders, W.M., Vergilis, K.L., Johnson, C., Shields, J., and Kaplan, J.M. 2003. Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells. Mol. Ther. 7:498-505.
    
    [84]Chen, H.W., et al. 2003. Inducing long-term survival with lasting antitumor immunity in treating B cell lymphoma by a combined dendritic cell-based and hydrodynamic plasmid-encoding IL-12 gene therapy. Int. Immunol. 15:427-435.
    [85] Akiyama, Y., et al. 2000. Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther. 7:2113-2121.
    [86] Wan, Y., Bramson, J., Carter, R., Graham, F., and Gauldie, J. 1997. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum. Gene Ther. 8:1355-1363.
    [87]Esslinger, C., Romero, P., and MacDonald, H.R. 2002. Efficient transduction of dendritic cells and induction of a T-cell response by third-generation lentivectors. Hum. Gene Ther. 13:1091-1100.
    [88]Bonifaz, L., et al. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196:1627-1638.
    [89]Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J. 1992. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 360:258-261.
    [90] Sallusto, F., and Lanzavecchia, A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/ macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor. J. Exp. Med. 179:1109-1118.
    [91]Banchereau, J., et al. 2001. Immune and clinical responses in patients with metastatic melanoma to CD34 (+) progenitor-derived dendritic cell vaccine. Cancer Res. 61:6451-6458.
    [92]Mackensen, A., et al. 2000. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34 (+) hematopoietic progenitor cells. Int. J. Cancer. 86:385-392.
    [93]Rosenzwajg, M., Jourquin, F., Tailleux, L., and Gluckman, J.C. 2002. CD40 ligation and phagocytosis differently affect the differentiation of monocytes into dendritic cells. J. Leukoc. Biol. 72:1180-1189.
    [94]Labeur, M.S., et al. 1999. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol. 162:168-175.
    [95]Dhodapkar, M.V., Steinman, R.M., Krasovsky, J., Munz, C., and Bhardwaj, N. 2001. Antigen-specific inhibitions of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193:233-238.
    [96] Dhodapkar, M.V., and Steinman, R.M. 2002. Antigen-bearing immature dendritic cells induce peptide-specific CD8 (+) regulatory T cells in vivo in humans. Blood. 100:174-177.
    [97]Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A.H. 2000. Induction of interleukin 10-producing, nonproliferating CD4 (+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192:1213-1222.
    [98] Steinmann, R.M., and Dhodapkar, K. 2001. Active immunization against cancer with dendritic cells. Int. J. Cancer. 94:459-573.
    [99]Nestle, F.O. 2000. Dendritic cell vaccination for cancer therapy. Oncogene. 19:6673-6679.
    [100]Hsu, F.J., et al. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2:52-58.
    [101]Timmerman, J.M., et al. 2002. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood. 99:1517-1526.
    [102]Reichardt, V.L., et al. 1999. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood. 93:2411-2419.
    [103]Liso, A., et al. 2000. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant. 6:621-627.
    [104]Valone, F.H., et al. 2001. Dendritic cell-based treatment of cancer: closing in on a cellular therapy. Cancer J. 7(Suppl. 2):S53-S61.
    [105]Fong, L., et al. 2001. Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J. Immunol. 167:7150-7156.
    [106]Nestle, F.O., et al. 1998. Vaccination of melanoma patients with peptideor tumor lysate-pulsed dendritic cells. Nat. Med. 4:328-332.
    [107]Thurner, B., et al. 1999. Vaccination with mage-3Al peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190:1669-1678.
    [108]Stift, A., et al. 2003. Dendritic cell-based vaccination in solid cancer. J. Clin. Oncol. 21:135-142.
    [109]Su, Z., et al. 2003. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 63:2127-2133.
    [110]Serody, J.S., Collins, E.J., Tisch, R.M., Kuhns, J.J., and Frelinger, J.A. 2000. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J. Immunol. 164: 4961-4967.
    [111]Egen, J.G., Kuhns, M.S., and Allison, J.P. 2002. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3:611-618.
    [112]Lee, K.M., et al. 1998. Molecular basis of T cell inactivation by CTLA-4. Science. 282:2263-2266.
    [113] Thornton, A.M., and Shevach, E.M. 2000. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164:183-190.
    [114]Kronenberg, M., and Gapin, L. 2002. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2:557-568.
    [115] Wilson, S.B., and Delovitch, T.L. 2003. Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol. 3:211-222.
    [116]Ostrand-Rosenberg, S., et al. 2002. Resistance to metastatic disease in Stat6-deficient mice requires hematopoietic and non-hematopoietic cells and is IFNγ-dependent. J. Immunol. 169:5796-5804.
    [117]Snyder, J.T., Alexander-Miller, M.A., Berzofsky, J.A., and Belyakov, I.M. 2003. Molecular mechanisms and biological significance of CTL avidity. Curr. HIV Res. 1:287-294.
    [118]Alexander-Miller, M.A., Leggatt, G.R., and Berzofsky, J.A. 1996. Selective expansion of high or low avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 93:4102-4107.
    [119]Yee, C., Savage, P.A., Lee, P.P., Davis, M.M., and Greenberg, P.D. 1999. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol. 162:2227-2234.
    [120]Zeh, H.J., III, Perry-Lalley, D., Dudley, M.E., Rosenberg, S.A., and Yang, J.C. 1999. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162:989-994.
    [121] Oh, S., Berzofsky, J.A., Burke, D.S., Waldmann, T.A., and Perera, L.P. 2003. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc. Natl. Acad. Sci. U. S. A. 100:3392-3397.
    [122]Janssen, E.M., et al. 2003. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 421:852-856.
    [123]Sun, J.C., and Bevan, M.J. 2003. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science. 300:339-342.
    [124]Shedlock, D.J., and Shen, H. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science. 300:337-339.
    [125]Gett, A.V., Sallusto, F., Lanzavecchia, A., and Geginat, J. 2003. T cell fitness determined by signal strength. Nat. Immunol. 4:355-360.
    [126] Yu Jl, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS. Effect of p53 status on tumor response to antiangiogenic therapy. Science 2002; 295:1526-8.
    [127]Lowe SW, Ruley HE, Jacks T, Housman DE. P53-dependent apoptosis modulates the cytotoxicity of anticancer agent. Cell 1993; 74:957-67.
    [128]Roth JA, Swisher SG, Merritt JA, Lawrence DD, Kemp BL, Carrasco CH et al. Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Seminars in Oncology 1998; 25(Suppl):33-7.
    [129] Roth JA, Grammer SF, Swisher SG, Komaki R, Nemunaitis J, Merritt J et al. Gene therapy approaches for the management of non-small cell lung cancer. Seminar in Oncology 2001; 28( Suppl):50-6.
    [130] Swisher SG, Roth JA, Carbone DP. Genetic and immunologic therapies for lungcancer. Seminar in Oncokogy 2002; 29(Suppl):95-101.
    [131]Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 763; 386:761.
    [132]Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science 1998; 280:1036-7.
    [133]Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9:1799-805.
    [134]Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. Noxa, a GH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288:1053-8.
    [135] Oda K, A rakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori et al. p53AIPI, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell2000; 102:849-32.
    [136]Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7:683-94.
    [137]Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of Colorectal cancer cells. Mol Cell 2001; 7:637-82.
    [138]Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T et al. Wildtype human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995; 15:3032-40.
    [139] Wu GS, Burns TF, McDonald ER,III, Jiang W, Meng R, Krantz ID et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Gene 1997; 17:141-3.
    [140]Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature 1997; 389:300-5.
    [141] el Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAFI, a potential mediator of p53 tumor suppression. Cell 1993; 75:817-25.
    [142]Chen TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 1999; 401:616-20.
    [143] Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. 14-3-3Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1:3-11.
    [144]Tanaka H, Arakawa H, Yamaguchi T, Shirashi K, Fukuda S, Matsui K et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000; 404:42-9.
    [145] Morris GF, Bischoff JR, Mathews MB. Transcriptional activation of the human proliferating-cell nuclear antigen promoter by p53. Proc Natl Acad Sci USA1996; 93:895-9.
    [146]Levine AL. p53, the cellular gatekeeper for the growth and division. Cell 1997; 88:323-31.
    [147]Xu H, Raafat el-Gewely M. P53-responsive genes and the potential for cancer diagnostics and therapeutics development. Biotech Ann Rev 2001; 7:131-64.
    [148]Zhao R, Gish K, Murphy M, Yin Y, Notterman D, Hoffman WH et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 2000; 14:981-93.
    [149]Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 2000; 14:34-44.
    [150]Hakem R, Mak TW. Animal models of tumor-suppressor genes. Ann Rev Genet 2001; 35:209-41.
    [151]Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 2000; 407:642-8.
    [152]Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 2000; 407:6452-5.
    [153] Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 1996; 85:537-48.
    [154]Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescene. Exp Gerontol 2000;35:317-29.
    [155]Macleod K. Tumor suppressor genes. Curr Opin Genet Dev 2000; 10:81-93.
    [156]Morin PJ, Vogelstein B, Kinzler KW. Apoptosis and APC in Colorectal tumorigenesis. Proc Natl Acad Sci U S A 1996; 93:7950-4.
    [157]Nikitin AY, Juarez-Perez MI, Li S, Huang L, Lee WH. RB-mediated suppression of spontaneous multiple neuroendocrime neoplasia and lung metastase in Rb+/- mice. Proc Natl Acad Sci USA 1999; 96:3916-21.
    [158]Demers GW, Harris MP, Wen SF, Engler H, Nielsen LL, Maneval DC. A recombinant adenoviral vector expressing full-length human retinoblastoma susceptibility gene inhibits human tumor cell growth. Cancer Gene Ther 1998;5:207-14.
    [159] Sanding V, Brand K, Herwig S, Lukas J, Bartek J, Strauss M. A denovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nature Med 1997; 3:313-9.
    [160]Fueyo J, Gomez-Manzano C, Yung WK, Clayman GL, Liu TL, Bruner J et al. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 1996; 12:103-10.
    [161]Schrump DS, Chen GA, Consuli U, Jin X, Roth JA. Inhibition og\f esophageak\1 cancer proliferation by adenovirally mediated delivery of p16INK4. Cancer Gene Ther 1996; 3:357-64.
    [162]Tsao YP, Huang SJ, Chang JL, Hsieh JT, Pong RC, Chen SL. Adenovirus-mediated p21((WAF1/SDII/CIPI)) gene transfer induces apoptosis of human cervical cancer cell lines. J Virol 1999; 73:4983-30.
    [163]Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, McDonnell TJ et al. Overexppression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nature Med 1998; 4:685-90.
    [164] Dong YB, Yang HL, Elliott MJ, McMasters KM. Adenovirus-mediated E2F-1 gene transfer sensitizes melanoma cells to apoptosis induced by topoisomerase II inhibitors. Cancer Res 2002; 68:1776-83.
    [165]Tanaka M, Koul D, Davies MA, Liebert M, Steck PA, Grossman HB. MMAC1/PTEN inhibits cell growth and induces chemosensitivity to doxorubicin in human bladder cancer cells. Oncogene 2000; 19:5406-12.
    [166]Minaguchi T, Mori T, Kanamori Y, Matsushima M, Yoshikawa H, Taketani Y et al. Growth suppression of human ovarian cancer cells by adenovirus- mediated transfer of the PTEN gene. Cancer Res 1666; 59:6063-7.
    [167] Ji L, Fang B, Yen N, Fong K Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Res 1666; 59:3333-9.
    [168]Dummon KR, Ishii H, Fong LY, Zanesi N, Fidanza V, Mancini R et al. FHIT gene therapy prevents tumor development in Fhit-deficient mice, Proc Natl Acad Sci USA 2001 ;98:3346-51.
    [169] Sasaki Y, Morimoto I, Ishida S, Yamashita T, Imai K, Tokino T. Adenovirus-mediates transfer of the p53 family genes, p73 and p51/p61 induces cell cycle arrest and apoptosis in Colorectal cancer cell lines: potential application to gene therapy of Colorectal cancer. Gene Ther 2001; 8:1401-8.
    [170] Roth JS, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nature Med 1996; 2:985-91.
    [171] Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA. Adenovirus-mediated wild-type p53 gene expression sensitizes Colorectal cancer cells to ionizing radiation. Clin Cancer Res 1996; 2:1665-71.
    [172] Zhang WW, Alemany R, Wang J, Koch PE, Ordonez NG, Roth JA. Safety evaluation of Ad5CMV-p53 in vitro and in vivo. Hum Gene Ther 1995; 6:155-64.
    [173]Meijerink JP, Smetsers TF, Sloetjes AW, Linders EH, Mensink EJ. Bax mutations in cell lines derived from hematological malignancies. Leukemia 1995; 9:1828-32.
    [174]Ouyang H, Furukawa T, Abe T, Kato Y, Horii A. The BAX gene, the promoter of apoptosis, is mutated in genetically unstable cancers of the colorectum, stomachm, and endometrium. Clin Cancer Res 1998;4:1071-4.
    [175]Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Roth JA et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancer. Cancer Res 2000; 60:5359-64.
    [176] Kagawa S, Gu J, Swisher SG, Lin J, Roth JA, Lai D et al. Antitumor effect of adenovirus-mediated Bax gene transfer on p53-sensitive and p53-resistant cancer lines. Cancer Res 2000; 60:1157-31.
    [177] Kagawa S, Pearson SA, Ji L, Xu K, McDonnell TJ, Swisher S et al. A binary adenoviral vector for expressing high level of the proapoptotic gene bax. Gene Ther 2000; 7:75-9.
    [178]GU J, Andreeff M, Roth JA, Fang B. Htert Promoter Induces Tumor-Specific Bax Gene Exppression and Cell Killing in Syngenic Mouse Tumor Model and Prevents Systemic Toxicity. Gene Ther 2002;9:30-7.
    [179]Andriani F, Nan B, Yu J, Li X, Weigel NK, McPhaul MJ et al. Use of the probasin promoter ARR2PB to express Bax in androgen receptor-positive prostate cancer cells. J Natl Cancer Inst 2001; 93:1314-24.
    [180] Clary BM, Lyerly HK. Transcription targeting for cancer gene therapy. Surg Oncol Clin North Am 1998; 7:565-74.
    [181]Nettelbeck DM, Jerome V, Muller R. Gene therapy: designer promoters for tumour targeting. Trend Genet 2000; 19:174-81.
    [182]Gu J, Zhang L, Huang X, Lin T, Yin M, Xu K et al. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo. Oncogene 2002; 21:4757-64.
    [183]Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Sumiyashi H et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transscriptase) gene promoter. Cancer Res 2001; 61:5796-802.
    [184]Feldman E, Ahmed T, Lutton JD, Farley T, Tani K, Freund M et al. Adenovirus mediated alpha interferon (IFN-alpha) gene transfer into CD34+ cells and CML mononuclear cells. Stem Cell 1997; 15:386-95.
    [185] Watanabe T, Kelsey L, A geitos A, Kuszynski C, Ino K, Heimann DG et al. Enhancement of adenovirus-mediated gene transfer to human bone marrow cells. Leukemia Lymphoma 1998; 29:439-51.
    [186] Holt SE, Aisner DL, Shay JW, Wright WE. Lack of cell cycle regulation of telomerase activity in human cells. Proc Natl Acad Sci USA 1997;94:10687-92.
    [187]Chiu CP, Dragowska W, Kim NW, Vaziri H, Yui J, Thomas TE et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cell 1996; 14:239-48.
    [188] Koch P, Guo ZS, Kagawa S, Gu J, Roth JA, Fang B. Augmenting transgene expression from carcinoembryonic antigen (CEA) promoter via a GAL4 gene regulatory system. Mol Ther 2001; 3:278-83.
    [189] Lin T, Gu J, Zhang L, Huang X, Stephens LC,Curley SA et al. Targeted expression of green fluorescent protein/Tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcri[tase promoter elicits antitumor activity without toxic effect on primary human hepatocytes. Cancer Res 2002; 62:3620-5.
    [190] Anonymous. Human gene marker/therapy clinical protocols (complete updated listings). Hum Gene Ther 2001; 12:2251-37.
    [191]Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 89:21-39.
    [192]Habib NA, Hodgson HJ, Lemoine G, Pignatelli M. A phase I/II study of hepatic artery infusion with wtp53-CMV-Ad in metastatic malignant liver tumours. Hum Gene Ther 1999; 10:2019-34.
    [193]Herman JR, Adler HL, Aguilar- Cordova E, Rojas-Martinez A, Woo S, Timme TL et al. Insitu gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10:1239-49.
    [194]Croyle MA, Chirmule N, Zhang Y, Wilson JM. "Stealth" adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 2001; 75:4792-801.
    [195]Yotnda P, Chen DH, Chiu W, Piedra PA, Davis A, Templeton NS et al. Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol Ther 2002; 5:266-41.
    [196]Bouvet M, Ellis LM, Nishizaki M, Fujiwara T, Liu W, Bucana CDet al. Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Caner Res 1998; 58:2288-92.
    [197]Dameron KM, Volpert OV, Tainsky MA, Bouck N. The p53 tumor suppressor gene inhibits angiogenesis by stimulating the production of thrombospondin. Cold Spring Harbor Symp Quant Biol 1664;59:483-9.
    [198]Buckbinder L, Talbott R,Velasco-Miguel S, Takenaka I, Faha B, Seizinger BR et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1665; 377:646-9.
    [199]Grimberg A. P53 and IGFBP-3: apoptosis and cancer protection. Mol Genet M etabolism 2000; 70:85-98.
    [200]Rajah R, Valentinis G, Cohen P. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor- beta 1 on programmed cell death through a p53-and IGF-independent mechanism. J Biol Chem 1997; 272:12181-8.
    [201]Abina MA,Lee MG,Descamps V,Cordier L,Lopez M,Perricaudet Met al.LacZ gene transfer into tumor cells abrogates tumorigenicity and protects mice against the development of the further tumor.Gene Ther 1996;3:212-6.
    [202]Bowen GP,Borgland SL,Lam M,Libermann TA,Wong NC,Muruve DA.Adenovirus vector-induced inflammation:capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B.Hum Gene Ther 2002;13:367-79.
    [203]Zoltic PW,Chirmule N,Schnell MA,GAO GP,Hughes JV,Wilson JM.Biology of El-dependent adenovirus vectors in nonhuman primate muscle.J Virol 2001;75:5222-9.
    [204]Whitmore M,Li S,Huang L.LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth.Gene Ther 1999;6:1867-75.
    [205]Whitmore M,Li S,Falo L,Jr.,Huang L.Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses.Cancer Immunol Immunother 2001;50:503-14
    [206]Masatoshi Takagi,Michael J.Absalon,Kevin G.McLure,and Michael B.Kastan(2oo5)Regulation of p53 Translation and Induction after DNA Dam age by Ribosomal Protein L26 and Nucleolin CelL Vol.123,49-63
    [207]IkeguchiM,SatioH,KondoA,etal.Mutated p53 protein expression and proliferative activity in advan ed gastric can cer Hepato-Gastroenterology,1999,46(28):2648-2653
    [208]WANG Y C,CHEN C Y,CHEN S K,et al.High frequency of deletion mutations in p53 gene from squamous cell lung cancer patients in Taiwan[J].Cancer Res,1998,58:28-333.
    [209]1 GROMOVA I,GROMOV P,CELIS J E.Identification of true differentially ex2pressed mRNAs in a pair of human bladdertransitional cell carcinomas us2ing an improved differential display procedure [J-I.Electrophoresis,2000,20(2):241-248.
    [210]伍欣星,刘娟,熊金虎.人膀胱癌相关蛋白基因及其编码蛋白质的结构及功能预测[J-I.武汉大学学报:医学版,2004,25(3),1O1-1O3
    [211]Wolff JA,Malone RW,Williams P,et al.Direct gene transfer into mouse muscle in vivo.Science.1990,247(4949 Pt 1):1465-1468.
    [212]Tighe H,Corr M,and Roman M,et al.Gene vaccination:plasmid DNA is more than just a blueprint.Immunol Today.1998,19(2):89-97.
    [213]Levitsky HI.Accessories for naked DNA vaccines.Nat Biotechnol.1997,15(7):619-620.
    [214]Sato Y,Roman M,Tighe H,et al.Immunostimulatory DNA sequences necessary for effective intradermal gene immunization.Science.1996,273(5273):352-354.
    [215]Carson DA,Raz E.Oligonucleotide adjuvants for T helper 1(Yh1)-specific vaccination.J Exp Med.1997,186(10):1621-1622.
    [216]Watts IS,Bright RK,Kennedy RC.DNA cancer vaccination strategies target SV40 large tumour antigen in a murine experimental metastasis model.Dev Biol(Basel).2000,104:143-147.
    [217]郑洪玲,金宁一,李霄,等.pIRAApoptinHNIL18对结肠癌细胞HCT-116的抑制效应.肿瘤生物治疗杂志.2007,14(1):42-46.
    [218]Csatary LK,Moss RW,Benth J,et al.Beneficial treatment of patients with advanced cancer using a Newcastle disease virus vaccine (MTH-68/H).Anticancer Res.1999,19(1B):635-638.
    [219]Schirrmacher V,Haas C,Bonifer R,et al.Virus potentiation of tumor vaccine T-cell stimulatory capacity requires cell surface binding but not infection.Clin Cancer Res.1997,3(7):1135-1148.
    [220]Zeng J,Fournier P,Schirrmacher V.Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus.Virology.2002,297(1):19-30.
    [221]Pietersen A,Noteborn HM.Apoptin.Adv Exp Med Biol 2000,465:153-161.
    [222]Danen-Van Oorschot AA,van der Eb A J,Noteborn MH.BCL-2stimulates Apoptin-induced apoptosis.Adv Exp Med Biol.1999,457:245-249.
    [223]Okamura H,Tsutsi H,Komatsu T,et al.Cloning of a new cytokine that induces IFN-gamma production by T cells.Nature.1995,378(6552):88-91.
    [224]Micallef MJ,Yoshida K,Kawai S,et al.In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites.Cancer Immunol Immunother.1997,3(6):361-367.
    [225]Wolff JA,Malone RW,Williams P,et al.Direct gene transfer into mouse muscle in vivo.Science.1990,247(4949 Pt 1):1465-1468.
    [226]Tighe H,Corr M,and Roman M,et al.Gene vaccination:plasmid DNA is more than just a blueprint.Immunol Today.1998,19(2):89-97.
    [227]Levitsky HI. Accessories for naked DNA vaccines. Nat Biotechnol. 1997, 15(7):619-620.
    [228] Sato Y,Roman M,Tighe H,et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science. 1996, 273(5273):352-354.
    [229]Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-gamma inducing factor,interleukin-18 (IL-18)[J].Gene Ther, 1999,6(5): 808-815.
    [230]Micallef MJ,Yoshida K,Kawai S,et al.In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother.1997,43(6):361-367.
    [231] Wang Q,Yu H,Ju DW,et al.Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma.Gene Ther.2001,8(7):542-550.
    [232]Hara S, Nagai H,Miyake H,et al. Secreted type of modified interleukin-18 gene transduced into mouse renal cell carcinoma cells induces systemic tumor immunity.J Urol.2001,165(6Pt1):2039-2043.
    [233]Yoshimura K,Hazama S,Iizuka N,et al.Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igkappa leader sequence.Cancer Gene Ther.2001, 8(1):9-16.
    [234] Kim JJ, Yang JS,Dang K ,et al. Engineering enhancement of immune responses to DNA-based vaccines in a prostate cancer model in rhesus macaques through the use of cytokine gene adjuvants. Clin Cancer Res. 2001, 7(3):882-889.
    [235]Kishida T, Asada H, Satoh E, et al. In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice. Gene Ther. 2001 , 8(16):1234-1240.
    [236] Son YI, Dallal RM, Mailliard RB, et al. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-gamma production, and expansion of natural killer cells. Cancer Res. 2001, 61 (3):884-888.
    [237]Ju DW,Yang Y,Tao Q, et al. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of antitumor immunity. Gene Ther. 2000, 7(19): 1672-1679.
    [238] Ajiki T, Murakami T, Kobayashi Y, et al. Long-lasting gene expression by particle-mediated intramuscular transfection modified with bupivacaine: combinatorial gene therapy with IL-12 and IL-18 cDNA against rat sarcoma at a distant site. Cancer Gene Ther 2003, 10(4):318-329.
    [239]Hara I, Nagai H, Miyake H,et al.Effectiveness of cancer vaccine therapy using cells transduced with the interleukin-12 gene combined with systemic interleukin-18 administration[J].Cancer Gene Ther,2000,7(1), 83-90.
    [240]Tasaki K,Yoshida Y,Maeda T,et al.Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells[J]. Cancer Gene Ther, 2000, 7(2):247-254.
    [241] Carson WE, Dierksheide JE, Jabbour S, et al. Coadministration of interleukin-18 and interleukin-12 induces a fatal inflammatory response in mice: critical role of natural killer cell interferon-gamma production and STAT-mediated signal transduction [J]. Blood, 2000, 96(4), 1465-1473.
    [242]Kaneda M, Kashiwamura S, Ueda H, et al. Inflammatory liver steatosis caused by IL-12 and IL-18[J]. J Interferon Cytokine Res, 2003, 23(3):155-162.
    [243]Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin 18 using dendritic cells and natural killer cells[J].Cancer Res,2000,60(17): 4838-4844.
    [244] Yamanaka R, Tsuchiya N, Yajima N, et al. Induction of an antitumor immunological response by an intratumoral injection of dendritic cells pulsed with genetically engineered Semliki Forest virus to produce interleukin-18 combined with the systemic administration of interleukin-12. J Neurosurg. 2003,99(4):746-753.
    [245]Tatsumi T, Huang J, Gooding WE, et al. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tcl-type immunity[J].Cancer Res,2003,63(19):6378-6386.
    [246]Kanduc D, Geliebter J, Lucchese A, et al. Gene therapy in cancer: the missing point. J Exp Ther Oncol., 2005, 5(2): 151-158.
    [247]Anderson W F, Blaese R M, Culver K, et al. The ADAhuman gene therapy clinical protocol: points to considerresponse with clinical protocol. Hum Gene Ther, 1990,1: 331-362.
    [248]Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al.Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 2000, 288(5466): 669-672.
    [249] Pearson S, Jia H, Kandachi K. China approves first genetherapy. Nat Biotechnol, 2004, 22(1): 3-4.
    [250]Prados J, Melguizo C, Boulaiz H, et al. Cancer gene therapy: strategies and clinical trials. Cell Mol Biol, 2005, 51(1):23-36.
    [251] Palmer DH, Young LS, Mautner V. Cancer gene-therapy: clinical trials. Trends Biotechnol, 2006, 24(2):76-82.
    [252]Stoklsa T, Golab J. Prospects for p53-based cancer therapy. Acta Biochim Pol, 2005, 52(2):321-328.
    [253]Fillat, C., Carrio, M., Cascante, A., et al. Suicide Gene Therapy Mediated by the Herpes Simplex Virus Thymidine Kinase Gene/Ganciclovir System: Fifteen Years of Application. Curr. Gene.Ther, 2003, 3:13-26.
    [254]Laheru DA, Pardoll DM, Jaffee EM. Genes to vaccines for immunotherapy: how the molecular biology revolution has influenced cancer immunology. Mol Cancer Ther, 2005, 4(11): 1645-1652.
    [255]Zhang, W. W., Fang, X., Mazur, W., et al. High-efficiency Gene Transfer and High-level Expression of Wild-type p53 in Human Lung Cancer Cells Mediated by Recombinant Adenovirus. Cancer Gene. Ther, 1994, 1:5-13.
    [256]Kimura, M., Tagawa, M., Takenaga, K., et al. Inability to Induce the Alteration of Tumorigenicity and Chemosensitivity of p53-null Human Pancreatic Carcinoma Cells after the Transduction of Wild-type p53 Gene. Anticancer Res, 1997, 17: 879-883.
    [257]Calbo, J., Marotta, M., Cascallo, M., et al. Adenovirus-mediated wt-p16 Reintroduction Induces Cell Cycle Arrest or Apoptosis in Pancreatic Cancer. Cancer Gene Ther, 2001, 8:740-750.
    [258]DiMaio, J. M., Clary, B. M., Via, D. F., et al. Directed Enzyme Pro-drug Gene Therapy for Pancreatic Cancer In Vivo. Surgery, 1994, 116:205-213.
    [259]Benali, N., Cordelier, P., Calise, D., et al. Inhibition of Growth and Metastatic Progression of Pancreatic Carcinoma in Hamster after Somatostatin Receptor Subtype 2 (sst2) Gene Expression and Administration of Cytotoxic Somatostatin Analog AN-238. Proc. Natl. Acad. Sci. USA, 2000, 97:9180-9185.
    [260] Kobayashi H, Eckhardt SG, Lockridge JA, et al. Safety and pharmacokinetic study of RPI.4610 (ANGIOZYME), an anti-VEGFR-1 ribozyme, in combination with carboplatin and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol, 2005, 56(4):329-336.
    [261]Hao ZM, Luo JY, Cheng J, et al. Intensive Inhibition of hTERT Expression by a Ribozyme Induces Rapid Apoptosis of Cancer Cells through a Telomere Length-Independent Pathway. Cancer Biol Ther, 2005, 4(10):1098-1103.
    [262]Varghese, S., Rabkin, S. D. Oncolytic Herpes Simplex Virus Vectors for Cancer Virotherapy. Cancer Gene. Ther, 2002, 9:967-978.
    [263]Yamamoto, M. Conditionally Replicative Adenovirus for Gastrointestinal Cancers. Expert Opin. Biol. Ther, 2004, 4:1241-1250.
    [264]Hecht, J. R., Bedford, R., Abbruzzese, J. L., et al. A Phase I/II Trial of Intratumoral Endoscopic Ultrasound Injection of ONYX-015 with Intravenous Gemcitabine in Unresectable Pancreatic Carcinoma.Clin. Cancer Res, 2003, 9:555-561.
    [265]Yoshida, J., Mizuno, M., Wakabayashi, T. Interferon-beta Gene Therapy for Cancer: Basic Research to Clinical Application. Cancer Sci, 2004, 95:858-865.
    [266]Rigg, A. S., Lemoine, N. R. Adenoviral Delivery of TIMP1 or TIMP2 can modify the Invasive Behavior of Pancreatic Cancer and can have a Significant Antitumor Effect in Vivo. Cancer Gene. Ther, 2001, 8:869-878.
    [267]Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell, 2004,116:205-219
    [268]Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell, 2000,100:57-70
    [269]Nicholson, D. W. From bench to clinic with apoptosis based therapeutic agents. Nature, 2000, 407:810-816.
    [270]Zhuang SM, Shvarts A, van Ormondt H, et al. Apoptin ,a potein derived from chicken anemia virus,induces p53-independent apoptosis in human osteosarcoma cells. Cancer Res, 1995, 55(3):486-489.
    [271]Danen-Van-Oorschot AA, Fischer DF, Grimbergen JM, et al. Apoptin induces apoptosis in human transformed and malignant cells but not in humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990, 323 (9):570-578.
    [285]Scheerlinck JY. Genetic adjuvants for DNA vaccines. Vaccine. 2001, 19(17-19):2647-2656.
    [286] Singh M, O'Hangan D. Advances in vaccine adjuvants. Nat Biotechnol. 1999 , 17(11):1075-1081.
    [287]Forsthuber T, Yip HC, Lehmann PV. Induction of TH1 and TH2 immunity in neonatal mice. Science. 1996, 271(5256): 1728-1730.
    [288]Newman MJ. Heterologous prime-boost vaccination strategies for HIV-1: augmenting cellular immune responses. Curr Opin Investig Drugs. 2002, 3(3):374-378.
    [289]McShane H. Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther. 2002 Feb; 4(1):23-27.
    [290] Ramsay AJ, Leong KH, Ramshaw IA. DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunization with DNA and viral vectors. Immunol Cell Biol. 1997, 75(4):382-388.
    [291] Ramshaw IA, Ramsay AJ. The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today. 2000, 21(4):163-165.
    [292] Atkins MB, Lotze MT, and Dutcher JP, et al. High-dose recombinant interleukin 2 therapies for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999, 17(7):2105-2016.
    [293] Germain RN, Margulies DH, et al. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol. 1993,11: 403-450.
    [294] Schirrmacher V, Haas C, Bonifer R, et al. Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 1999,6(1):63-73.Zeng J, Fournier P, Schirrmacher V. Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology. 2002 ,297(1):19-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700