用户名: 密码: 验证码:
Ag/N共改性TiO_2中空纳米棒阵列的制备及光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前环境问题和能源危机成为制约人类发展的两大瓶颈,半导体光催化技术有望成为解决环境和能源问题的有效方法。TiO_2由于其廉价、稳定、无毒、活性较好,在光催化研究中被人们经常采用。但是TiO_2能隙较宽,光生电子空穴分离能力差而限制了其实际应用。
     近年来,人们尝试各种方法来提高光催化剂的效率:TiO_2纳米结构的形貌,尺寸的控制;利用理想匹配电子能级结构耦合不同半导体;贵金属纳米簇负载于TiO_2颗粒表面;金属,非金属元素掺杂TiO_2等。
     本文从两个方面来实现对TiO_2的改性:
     1. TiO_2纳米结构的形貌控制以ZnO纳米棒阵列为模板,利用液相沉积法制备TiO_2纳米棒/管阵列结构。通过改变前驱液中n(Ti)/n(B)摩尔比,反应温度等来控制TiO_2纳米结构的形貌。
     2.金属、非金属元素共改性TiO_2纳米结构光催化剂以氟钛酸铵为原料,液相沉积法制备TiO_2中空纳米棒阵列(THNA)能够容易实现N掺杂,此基础上进行Ag负载,研究不同Ag浓度对光催化的影响。我们利用拉曼,扫描电子显微镜,透射电子显微镜,紫外可见吸收谱,光电子能谱等手段对样品进行表征。结果表明:Ag元素不仅能够促进锐钛矿相TiO_2向金红石转变,而且能够影响催化剂中N掺杂的含量。
     以亚甲基蓝(MB)水溶液为模拟污染物,评价了催化剂在可见和紫外光照下的光催化性能。实验结果表明:当Ag/Ti摩尔比为0.02时,Ag、N共掺杂的TiO_2中空纳米棒阵列(Ag/N-THNA)的紫外光催化效果最佳,其MB降解率约为N单掺杂的TiO_2中空纳米棒阵列(N-THNA)的1.8倍;Ag/Ti摩尔比为0.026时,Ag/N-THNA的可见光催化效率达到最高,约为N-THNA的5.5倍。Ag、N共改性TiO_2中空纳米棒阵列的光催化性能的显著提高,归因于Ag负载,N掺杂以及多相结构(锐钛矿/金红石)等因素的协同效应。
Nowadays, environmental issues and energy crisis have seriously hindered the human development, and the semiconductor photocatalysis is a promising method for solving the environmental and energy problems. Due to relatively high reactivity, low cost, chemical stability and non-toxicity, TiO_2 is often applied in the field of photocatalysis. However, the practical applications of TiO_2 catalyst has been suppressed, due to its wide band gap, low quantum yield.
     Recently, several attempts have been made to improve the photocatalytic activity,such as the control of TiO_2 nano-structure’s morphology or size, metal / non-metal doping, noble metal deposition on the surface of TiO_2, coupled semiconductor, etc.
     This paper focues on two aspects as following:
     1.The control of TiO_2 hollow nanorod arrays’morphology TiO_2 hollow nanorod arrays were synthesized by liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The factors ( n(Ti) / n(B) molar ratio, reaction temperature) effecting on the morphology of TiO_2 hollow nanorod arrays were discussed.
     2. TiO_2 nano-structure catalysts co-modified by both metal and non-metal elements
     Using ammonium hexafluorotitanate ((NH4)2TiF6) as law material, N doped TiO_2 hollow nanorod arrays were easily achieved by liquid phase deposition (LPD) method. The effect of Ag loading with different content on the photocatalytic activity was also discussed. The catalysts were characterized by Raman spectrum, FESEM, HRTEM, UV-vis absorption spectrum and XPS. The results suggest that AgNO3 additive in the precursor solutions not only can promote the anatase to rutile phase transition, but also influence the amount of N doping in the samples.
     The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The results show that the photocatalytic degradation rate of Ag/N-THNA is 1.8 and 5.5 times higher than N-TANA under UV and Visble light irradiation, corresponding to the optimum Ag/Ti mole ratio of 0.02 and 0.026, respectively, which were attributed to the synergetic effect of Ag loading, N doping, and the multiphase structure (anatase/rutile).
引文
[1] Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238(5358):37-+.
    [2] Hoffmann M R, Martin S T. 1995. Environmental Applications of Semiconductor photocatalysis[J].Chem.Rev, 5:69-96
    [3]施利毅,李春忠,房鼎业. 1999. TiCl4-O_2体系高温反应制超细TiO_2光催化材料的研究[J].无机材料学报,14(5)717
    [4] Salvador P, Goazalez M L, Manoz F. 1992. Catalytic role of lattice defects in the photo-assisted oxidation of water at (001)n-TiO_2 rutile[J]. J.Phys.Chem, 96(25):10349-10353
    [5] Xiaobo Chen, Samuel S. Mao. 2007. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev,107: 2891-2959
    [6]魏宏斌,李田等.1994.水中有机污染物的光催化氧化[J].环境科学进展,2(3):50-57
    [7] Matthews R W. 1990. Purification of water with near-U.V. illumination suspensions of titanium dioxide[J]. Wat.Res, 24(5):653
    [8]胡春,王怡中,汤鸿霄.1995.光催化氧化的理论与实践[J].环境科学进展,3(1):55-64
    [9] Miao L, Tanemura S, Toh S, et al. 2004. Characterization and Raman study of anatase TiO_2 nanorods by a heating-sol-gel template process[J]. Journal of Crystal Growth, 264(1-3):246-252.
    [10] Miao L, Tanemura S, Toh S, et al. 2004. Heating-sol-gel template process for the growth of TiO_2 nanorods with rutile and anatase structure[J]. Applied Surface Science, 238(1-4):175-179.
    [11] Qiu JJ, Yu WD, Gao XD, et al. 2006. Sol-gel assisted ZnO nanorod array template to synthesize TiO_2 nanotube arrays[J]. Nanotechnology, 17(18):4695-4698.
    [12] Wei MD, Konishi Y, Zhou HS, et al. 2004. A simple method to synthesize nanowires titanium dioxide from layered titanate particles[J]. Chemical Physics Letters, 400(1-3):231-234.
    [13] Schroden RC, Al-Daous M, Stein A. 2001. Self-modification of spontaneous emission by inverse opal silica photonic crystals[J]. Chemistry of Materials, 13(9):2945-2950.
    [14] Holland BT, Blanford CF, Stein A. 1998. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids[J]. Science, 281(5376):538-540.
    [15] Holland BT, Blanford CF, Do T, et al. 1999. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites[J]. Chemistry of Materials, 11(3):795-805.
    [16] Han XG, Kuang Q, Jin MS, et al. 2009. Synthesis of Titania Nanosheets with a HighPercentage of Exposed (001) Facets and Related Photocatalytic Properties[J]. Journal of the American Chemical Society, 131(9):3152-+.
    [17] Yang HG, Sun CH, Qiao SZ, et al. 2008. Anatase TiO_2 single crystals with a large percentage of reactive facets[J]. Nature, 453(7195):638-U634.
    [18] Asahi R, Morikawa T, Ohwaki T, et al. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 293(5528):269-271.
    [19] Ghicov A, Macak JM, Tsuchiya H, et al. 2006. Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes[J]. Nano Lett, 6(5):1080-1082.
    [20] Sakthivel S, Janczarek M, Kisch H. 2004. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2[J]. J Phys Chem B, 108(50):19384-19387.
    [21] Diwald O, Thompson TL, Goralski EG, et al. 2004. The effect of nitrogen ion implantation on the photoactivity of TiO_2 rutile single crystals[J]. J Phys Chem B, 108(1):52-57.
    [22] Batzill M, Morales EH, Diebold U. 2006. Influence of nitrogen doping on the defect formation and surface properties of TiO_2 rutile and anatase. Phys Rev Lett, 96(2):-.
    [23] Lin ZS, Orlov A, Lambert RM, et al. 2005. New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2[J]. Journal of Physical Chemistry B, 109(44):20948-20952.
    [24] Nakamura R, Tanaka T, Nakato Y. 2004. Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes[J]. Journal of Physical Chemistry B, 108(30):10617-10620.
    [25] Li D, Haneda H, Hishita S, et al. 2005. Visible-light-driven N-F-codoped TiO_2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chemistry of Materials, 17(10):2596-2602.
    [26] Rodriguez JA, Hrbek J, Dvorak J, et al. 2001. Interaction of sulfur with TiO_2(110): photoemission and density-functional studies[J]. Chemical Physics Letters, 336(5-6):377-384.
    [27] Li YZ, Hwang DS, Lee NH, et al. 2005. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chemical Physics Letters, 404(1-3):25-29.
    [28] Serpone N, Lawless D, Disdier J, Herrmann JM. 1994. Spectroscopic, photoconductivity, and photocatalytic studies of TiO_2 colloids- naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations[J]. Langmuir, 10(3):643-652.
    [29] Miyake H, Kozuka H. 2005. Photoelectrochemical properties of Fe2O3-Nb2O5 films prepared by sol-gel method[J]. Journal of Physical Chemistry B, 109(38):17951-17956.
    [30] Karakitsou KE, Verykios XE. 1993. Effects of alter-valent cation doping of TiO_2 on its performance as a photocatalyst for water cleavage[J]. Journal of Physical Chemistry, 97(6):1184-1189.
    [31] Osterwalder J, Droubay T, Kaspar T, et al. 2005. Growth of Cr-doped TiO_2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy[J]. Thin Solid Films, 484(1-2):289-298.
    [32] Karvinen SM. 2003. The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide[J]. Industrial & Engineering Chemistry Research, 42(5):1035-1043.
    [33] Egerton TA, Harris E, Lawson EJ, et al. 2001. An EPR study of diffusion of iron into rutile[J]. Physical Chemistry Chemical Physics, 3(3):497-504.
    [34] Wang CY, Bahnemann DW, Dohrmann JK. 2000. A novel preparation of iron-doped TiO_2 nanoparticles with enhanced photocatalytic activity[J]. Chemical Communications, 16:1539-1540.
    [35] Fuerte A, Hernandez-Alonso MD, Maira AJ, et al. 2001. Visible light-activated nanosized doped-TiO_2 photocatalysts[J]. Chemical Communications, 24:2718-2719.
    [36] Dvoranova D, Brezova V, Mazur M, et al. 2002. Investigations of metal-doped titanium dioxide photocatalysts[J]. Applied Catalysis B-Environmental, 37(2):91-105.
    [37] Bahnemann DW, Hilgendorff M, Memming R. 1997. Charge carrier dynamics at TiO_2 particles: Reactivity of free and trapped holes[J]. Journal of Physical Chemistry B, 101(21):4265-4275.
    [38] Yu JG, Xiong JF, Cheng B, et al. 2005. Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Appl Catal B-Environ, 60(3-4):211-221.
    [39] Arpac E, Sayilkan F, Asilturk M, et al. 2007. Photocatalytic performance of Sn-doped and undoped TiO_2 nanostructured thin films under UV and vis-lights[J]. Journal of Hazardous Materials, 140(1-2):69-74.
    [40] Henglein A, Lindig B, Westerhausen J. 1981. Photochemical electron storage on colloidal metals and hydrogen formation by free-radicals[J]. Journal of Physical Chemistry, 85(12):1627-1628.
    [41] Hong AP, Bahnemann DW, Hoffmann MR. Cobalt(II) tetrasulfophthalocyanine on titanium-dioxide. 2. Kinetics and mechanisms of the photocatalytic oxidation of aqueous sulfur- dioxide[J]. Journal of Physical Chemistry, 91(24):6245-6251.
    [42] Grunwaldt JD, Maciejewski M, Becker OS, et al. 1999. Comparative study of Au/TiO_2 andAu/ZrO_2 catalysts for low-temperature CO oxidation[J]. Journal of Catalysis, 186(2):458-469.
    [43] Bollinger MA, Vannice MA. 1996. A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO_2 catalysts[J]. Applied Catalysis B-Environmental, 8(4):417-443.
    [44] Li XZ, Li FB. 2001. Study of Au/Au3+-TiO_2 photocatalysts toward visible photooxidation for water and wastewater treatment[J]. Environmental Science & Technology, 35(11):2381-2387.
    [45] Sonawane RS, Dongare MK. 2006. Sol-gel synthesis of Au/TiO_2 thin films for photocatalytic degradation of phenol in sunlight[J]. Journal of Molecular Catalysis a-Chemical, 243(1):68-76.
    [46] Sung-Suh HM, Choi JR, Hah HJ, et al. 2004. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation[J]. Journal of Photochemistry and Photobiology a-Chemistry, 163(1-2):37-44.
    [47] Weiss H, Fernandez A, Kisch H. 2001. Electronic semiconductor-support interaction - A novel effect in semiconductor photocatalysis[J]. Angewandte Chemie-International Edition, 40(20):3825-+.
    [48] Kisch H, Weiss H. 2002. Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor-support interaction[J]. Advanced Functional Materials, 12(8):483-488.
    [49] Do YR, Lee W, Dwight K, et al. 1994. The effect of WO3 on the photocatalytic activity of TiO_2[J]. Journal of Solid State Chemistry, 108(1):198-201.
    [50] Papp J, Soled S, Dwight K, et al. 1994. Surface-acidity and photocatalytic activity of TiO_2, WO3, TiO_2, and MOO3 TiO_2 photocatalysts[J]. Chemistry of Materials, 6(4):496-500.
    [51] Kwon YT, Song KY, Lee WI, et al. 2000. Photocatalytic behavior of WO3-loaded TiO_2 in an oxidation reaction[J]. Journal of Catalysis, 191(1):192-199.
    [52] Hidaka H, Zhao J, Pelizzetti E, et al. 1992. Photodegradarion of surfactants. 8. comparsion of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethylamimonium chloride on the TiO_2 surface [J]. Journal of Physical Chemistry, 96(5):2226-2230.
    [53] Fuerte A, Hernandez-Alonso MD, Maira AJ, et al. 2002. Nanosize Ti-W mixed oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation[J]. Journal of Catalysis, 212(1):1-9.
    [54] Keller V, Bernhardt P, Garin F. 2003. Photocatalytic oxidation of butyl acetate in vapor phaseon TiO_2, Pt/TiO_2 and WO3/TiO_2 catalysts[J]. Journal of Catalysis, 215(1):129-138.
    [55] Higashimoto S, Sakiyama M, Azuma M. 2006. Photoelectrochemical properties of hybrid WO3/TiO_2 electrode. Effect of structures of WO3 on charge separation behavior[J]. Thin Solid Films. 503(1-2):201-206.
    [56] Levy B, Liu W, Gilbert SE. 1997. Directed photocurrents in nanostructured TiO_2/SnO_2 heterojunction diodes[J]. Journal of Physical Chemistry B, 101(10):1810-1816.
    [57] Bedja I, Kamat PV. 1995. Capped semiconductor colloids- synthesis and photoeclectrochemical behavior of TiO_2- capped SnO_2 nanocrystallites[J]. Journal of Physical Chemistry, 99(22):9182-9188.
    [58] Vinodgopal K, Bedja I, Kamat PV. 1996. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye[J]. Chemistry of Materials, 8(8):2180-2187.
    [59] Hattori A, Tokihisa Y, Tada H, et al. 2000. Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO_2/SnO_2 bilayer-type catalyst[J]. Journal of the Electrochemical Society. 147(6):2279-2283.
    [60] Vinodgopal K, Kamat PV. 1995. Enhanced rates of photocatalytic degradation of an azo-dye using SnO_2/TiO_2 coupled semiconductor thin films[J]. Environmental Science & Technology, 29(3):841-845.
    [61] Shang J, Yao WQ, Zhu YF, et al. 2004. Structure and photocatalytic performances of glass/SnO_2/TiO_2 interface composite film[J]. Applied Catalysis a-General, 257(1):25-32.
    [62] Kaneco S, Kurimoto H, et al. 1999. Photocatalytic reduction of CO_2 using TiO_2 powders in supercritical fluid CO_2[J]. Eenergy, 24:21-30
    [63] Magdy W R, Malati M A.1987. The Photocatalysed reduction of aqueous sodium carbonate to carbon using platinised titania[J]. J.Chem.Soc.Chem.Comm, 1418-1420
    [64] Ishitani O, Inoue C, Suzuki Y, et al. 1993. Photocatalytic reduction of carbon–dioxide to methane and acetic-acid by an aqueous suspension of metal-deposited TiO_2[J]. Journal of Photochemistry and Photobiology a-Chemistry, 72(3):269-271.
    [65] Wong W K, Malati M A. 1986. Doped TiO_2 for solar energy applications[J]. Solar Energy, 36(2):163-168.
    [66] Yue P L, Khan F, Rizzuti L. 1983. The measurement of light transmission through an irradiated fluidized-bed[J]. Chemical Engineering Science,38(11):1893
    [67] Hoffman AJ, Carraway ER. Hoffmann MR. 1994. Photocatalytic production of H2O_2 and organic peroxides on quantum-sized semiconductor colloids[J]. Environmental Science & Technology, 28(5):776-785.
    [68] Tada H, Hyodo M, Kawahara H. 1991. Photoinduced polymerization of 1,3,5,7-tetrmethylcyclotetrassloxane by TiO_2 particles[J]. J. Phys. Chem., 95:10185
    [1] Ozgur U, Alivov YI, Liu C, et al. 2005. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 98(4):-.
    [2] Tang ZK, Wong GKL, Yu P, et al. 1998. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters, 72:3270-3272.
    [3] Ryu YR, Lee TS, Lubguban JA, et al. 2006. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes[J]. Applied Physics Letters, 88(24).
    [4] Chi DH, Binh LTT, Binh NT, et al. 2006. Band-edge photoluminescence in nanocrystalline ZnO : In films prepared by electrostatic spray deposition[J]. Applied Surface Science, 252:2770-2775.
    [5] Erwin SC, Zu LJ, Haftel MI, et al. 2005. Doping semiconductor nanocrystals[J]. Nature, 436:91-94.
    [6] Akimoto K, Ishizuka S, Yanagita M, et al. 2006. Thin film deposition of Cu2O and application for solar cells[J]. Solar Energy, 80:715-722.
    [7] Yang JL, An SJ, Park WI, et al. 2004. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J]. Advanced Materials, 16:1661-+.
    [8] Akyol A, Bayramoglu M. 2005. Photocatalytic degradation of Remazol Red F3B using ZnO catalyst[J]. Journal of Hazardous Materials, 124:241-246.
    [9] Pal B, Sharon M. 2002. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process[J]. Materials Chemistry and Physics, 76:82-87.
    [10] Ohyama M, Kozuka H, Yoko T. 1997. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution[J]. Thin Solid Films, 306:78-85.
    [11] Qiu JJ, Yu WD, Gao XD, et al. 2006. Sol-gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays[J]. Nanotechnology, 17:4695-4698.
    [1] Hoffmann MR, Martin ST, Choi WY, et al. 1995. Environmental applications of semiconductor photocatalyis[J]. Chemical Reviews, 95:69-96.
    [2] Linsebigler AL, Lu GQ, Yates JT. 1995. Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results[J]. Chemical Reviews, 95:735-758.
    [3] Mills A, LeHunte S. 1997. An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology a-Chemistry, 108:1-35.
    [4] Barbe CJ, Arendse F, Comte P, et al. 1997. Nanocrystalline titanium oxide electrodes for photovoltaic applications[J]. Journal of the American Ceramic Society, 80:3157-3171.
    [5] Nazeeruddin MK, Kay A, Rodicio I, et al. 1993. Conversion of light to electricity by cis-x2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge- transfer sensitizers (x= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes[J]. Journal of the American Chemical Society, 115:6382-6390.
    [6] Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye- sensitized colloidal TiO2 films[J]. Nature, 353:737-740.
    [7]刘正朋,李卫兵. 2009.液相法制备纳米TiO2光催化剂的研究进展[J].自然科学, 1-2
    [8]陈文新等. 2004.微波法制备纳米TiO2[J].化学研究与应用, 16(5): 561.
    [9]李明等. 2007.纳米二氧化钛的制备及其在环保领域中的应用[J].材料导报, 21(10):776
    [10]赵小芳. 2009.一种简单的制备氧化物薄膜的方法——液相沉积法[J].西部探矿工程, 1 134-136
    [11] Yu JG, Xiong JF, Cheng B, et al. 2005. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Appl Catal B-Environ, 60:211-221.
    [12] Yu JG, Yu HG, Cheng B, et al. 2003. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. Journal of Physical Chemistry B, 107:13871-13879.
    [13] Lee JH, Leu IC, Hsu MC, et al. Fabrication of aligned TiO2 nanostructured arrays using a one-step templating solution approach[J]. Journal of Physical Chemistry B, 109:13056-13059.
    [14] Shi JY, Chen J, Feng ZC, et al. 2007. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture[J]. Journal of Physical Chemistry C, 111:693-699.
    [15] Serpone N, Lawless D, Khairutdinov R. 1995. Size effects on the photophysical properties ofcolloidal anatase TiO2 particles- size quantization or direct transitions in this indirect semiconductor[J]. Journal of Physical Chemistry, 99:16646-16654.
    [16] Asahi R, Morikawa T, Ohwaki T, et al. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 293:269-271.
    [17] Sakthivel S, Janczarek M, Kisch H. 2004. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2[J]. J Phys Chem B, 50:19384-19387.
    [18] Gole JL, Stout JD, Burda C, et al. 2004. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J]. J Phys Chem B, 108:1230-1240.
    [19] Peng F, Cai LF, Yu H, et al. 2008. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 181:130-136.
    [20] Di Valentin C, Finazzi E, Pacchioni G, et al. 2007. N-doped TiO2: Theory and experiment[J]. Chemical Physics, 339:44-56.
    [1] Kamat PV. 1993. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J]. Chemical Reviews, 93:267-300.
    [2] Linsebigler AL, Lu GQ, Yates JT. 1995. Photocatalysis on TiO_2 surfaces - principles mechanisms and selected results[J]. Chemical Reviews, 95:735-758.
    [3] Wang P, Huang BB, Qin XY, et al. 2008. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Angew Chem Int Edit, 47:7931-7933.
    [4] Arabatzis IM, Stergiopoulos T, Bernard MC, et al. 2003. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J]. Applied Catalysis B-Environmental, 42:187-201.
    [5] Asahi R, Morikawa T, Ohwaki T, et al. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 293:269-271.
    [6] Lee JH, Leu IC, Hsu MC, et al. 2005. Fabrication of aligned TiO_2 nanostructured arrays using a one-step templating solution approach[J]. Journal of Physical Chemistry B, 109:13056-13059.
    [7] Yu JG, Yu HG, Cheng B, et al. 2003. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition[J]. Journal of Physical Chemistry B, 107:13871-13879.
    [8] Shi JY, Chen J, Feng ZC, et al. 2007. Photoluminescence characteristics of TiO_2 and their relationship to the photoassisted reaction of water/methanol mixture[J]. Journal of Physical Chemistry C, 111:693-699.
    [9] Liu FX, Tang M, Liu L, et al. 2000. Enhanced optical properties of Ag-TiO_2 (rutile) hybrid nanopowder[J]. Physica Status Solidi a-Applied Research, 179:437-443.
    [10] Ma HL, Yang JY, Dai Y, et al. 2007. Raman study of phase transformation of TiO_2 rutile single crystal irradiated by infrared feratosecond laser[J]. Applied Surface Science, 253:7497-7500.
    [11] Chao HE, Yun YU, Xingfang HU, et al. 2003. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder[J]. Journal of the European Ceramic Society, 23:1457-1464.
    [12] Sahoo S, Arora AK, Sridharan V. 2009. Raman Line Shapes of Optical Phonons of Different Symmetries in Anatase TiO_2 Nanocrystals[J]. Journal of Physical Chemistry C, 113:16927-16933.
    [13] Li YL, Ishigaki T. 2004. Controlled one-step synthesis of nanocrystalline anatase and rutileTiO_2 powders by in-flight thermal plasma oxidation[J]. Journal of Physical Chemistry B, 108:15536-15542.
    [14] Zhang J, Li MJ, Feng ZC, et al. 2006. UV Raman spectroscopic study on TiO_2. I. Phase transformation at the surface and in the bulk[J]. Journal of Physical Chemistry B, 110:927-935.
    [15] Yu JG, Xiong JF, Cheng B, et al. 2005. Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B-Environmental, 60:211-221.
    [16] Gole JL, Stout JD, Burda C, et al. 2004. Highly efficient formation of visible light tunable TiO_2-xNx photocatalysts and their transformation at the nanoscale[J]. Journal of Physical Chemistry B, 108:1230-1240.
    [17] Sakai H, Kanda T, Shibata H, et al. 2006. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle[J]. Journal of the American Chemical Society, 128:4944-4945.
    [18] Ohko Y, Tatsuma T, Fujii T, et al. 2003. Multicolour photochromism of TiO_2 films loaded with silver nanoparticles[J]. Nature Materials, 2:29-31.
    [19] Herrmann JM, Tahiri H, AitIchou Y, et al. 1997. Characterization and photocatalytic activity in aqueous medium of TiO_2 and Ag-TiO_2 coatings on quartz[J]. Applied Catalysis B-Environmental, 13:219-228.
    [20] Haynes CL, Van Duyne RP. 2001. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. Journal of Physical Chemistry B, 105:5599-5611.
    [21] Mock JJ, Barbic M, Smith DR, et al. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J]. Journal of Chemical Physics, 116:6755-6759.
    [22] McFarland AD, Van Duyne RP. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J]. Nano Letters, 3:1057-1062.
    [23] Di Valentin C, Finazzi E, Pacchioni G, et al .2007. N-doped TiO_2: Theory and experiment[J]. Chemical Physics, 339:44-56.
    [24] Di Valentin C, Pacchioni G, Selloni A, et al. 2005. Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations[J]. J Phys Chem B, 109:11414-11419.
    [25] Peng F, Cai LF, Yu H, et al. 2008. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity[J]. Journal of Solid State Chemistry, 181:130-136.
    [26] Rodriguez JA, Jirsak T, Dvorak J, et al. 2000. Reaction of NO_2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3[J]. Journal of Physical Chemistry B, 104:319-328.
    [27] Sakthivel S, Janczarek M, Kisch H. 2004. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2[J]. Journal of Physical Chemistry B, 108:19384-19387.
    [28] Li JX, Xu JH, Dai WL, et al. 2009. Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO_2 with Twistlike Helix Structure[J]. Journal of Physical Chemistry C, 113:8343-8349.
    [29] Stathatos E, Lianos P, Falaras P, et al. 2000. Photocatalytically deposited silver nanoparticles on mesoporous TiO_2 films[J]. Langmuir, 16:2398-2400.
    [30] Ao YH, Xu JJ, Fu DG, et al. 2008. Preparation of Ag-doped mesoporous titania and its enhanced photocatalytic activity under UV light irradiation[J]. Journal of Physics and Chemistry of Solids, 69:2660-2664.
    [1] Tian BZ, Li CZ, Gu F, et al. 2009. Synergetic effects of nitrogen doping and Au loading on enhancing the visible-light photocatalytic activity of nano-TiO2[J]. Catalysis Communications, 10:925-929.
    [2] Chuang HY, Chen DH. 2009. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles[J], Nanotechnology 20(10).
    [3] Ren J, Wang WZ, Sun SM, et al. 2009. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation[J]. Applied Catalysis B-Environmental, 92:50-55.
    [4] Asahi R, Morikawa T, Ohwaki T, et al. 2001 Visible-light photocatalysis in nitrogen-doped titanium oxides. Science[J], 293:269-271.
    [5] Li G, Dimitrijevic NM, Chen L, et al. 2008. The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites[J]. Journal of the American Chemical Society, 130:5402-+.
    [1] Li G, Dimitrijevic NM, Chen L, et al. 2008. The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites[J]. Journal of the American Chemical Society, 130:5402-+.
    [2] Wang P, Huang BB, Qin XY, et al. 2008. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light[J]. Angew Chem Int Edit, 47:7931-7933.
    [3] Awazu K, Fujimaki M, Rockstuhl C, et al. 2008. A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide[J]. Journal of the American Chemical Society, 130:1676-1680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700