用户名: 密码: 验证码:
基于自然计算和视觉注意的图像质量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,数字图像的科学理论和技术手段迅猛发展,在通信、工业、医学、遥感、军事等领域得到了广泛的应用,极大地促进了人类科学研究的发展、社会生产率的提高和生活方式的改善。然而,在图像的获取、处理、传输和记录的过程中,由于成像系统、处理方法、传输介质和记录设备的不完善等原因,不可避免地带来某种程度的图像失真或降质,这给人们研究解决问题、认识客观世界带来很大的不便。因此,对图像质量客观、有效、合理的评价具有非常重要的意义。
     人类视觉系统作为视觉信息的最终受体,对图像质量的感知是最可靠的。如果在图像质量评价算法中考虑视觉系统的感知特性,定将提高算法的准确性。因此基于人类视觉系统的一些感知特性和信息处理机制本文做了如下研究:1)结合视觉系统的多通道和对比度敏感特性,提出了一种基于自然计算Wavelet域尺度因子优选的全参考型图像质量评价方法,该算法利用小波分解模拟视觉系统的多通道特性,利用自然计算优化各个尺度的对比度敏感因子,实验结果表明该算法与主观评价有较高的一致性。2)根据人眼对结构信息的敏感性,提出了一种SSIM的改进算法,该算法区别对待图像的形成因子:亮度、对比度和结构,利用自然计算优化结构因子的敏感系数,从而突出结构信息的重要性。3)利用视觉注意机制选择性地获取图像中所关注的区域,提出了一种基于视觉注意区域综合感知误差的全参考型图像质量评价方法,该方法区别对待图像中显著性不同的区域,可作为一种加权方式优化现有的基于像素域综合感知误差的质量评价算法。4)统计原始和失真图像之间亮度特征、颜色特征和方向特征对应的差异,并利用自然计算获得不同失真类型对不同特征的敏感性因子,提出了一种基于视觉注意特征的部分参考型图像质量评价方法。实验结果表明,该算法的客观评价结果与主观评价结果之间具有较好的一致性,能准确地反映人眼对图像质量的主观感受。
In recent years, the scientific theories and technical means of digital images have developed rapidly, and have been widely applied to such fields as communications, industry, medicine, remote sensing, military, etc. They promote the development of human scientific research, the gains of social productivity and the improvement of life style greatly. However, during the process of acquisition, processing, transmission and recording, images will inevitably suffer from distortion or degradation to some extent because of the imperfections of imaging systems, processing methods, transmission media, and recording equipments, which brings great inconvenience in studying and solving problems, and understanding the objective world. Consequently, it is of great significance to evaluate the quality of images objectively, effectively and reasonably.
     As the terminal for receiving visual information, the human visual system is the most reliable instrument to assess the quality of images. It will improve the performance of evaluating algorithms definitely if we take the characters of the human visual perception into account. So based on the perceptual features and information processing mechanism of the human visual system, some methods have been given in this paper: 1) Combining the perceptual characteristics of visual system, including multi-channel and contrast sensitivity, a natural computation based full reference image quality evaluation method in wavelet domain is proposed, which uses the wavelet decomposition to simulate the multi-channel characteristic of human visual system and utilizes natural computation to obtain the scale factor(i.e. the contrast sensitivity factor of each subband). Experimental results show that the proposed method has better consistency with the subjective mean opinion score (MOS). 2) According to that the human eyes are more sensitive to structural information, an improved version of structural similarity (SSIM) algorithm is presented, which differently treats the images’forming factors, including luminance, contrast and structure, and captures the sensitivity coefficient of the structural factor by natural computation to highlight the importance of structural information. 3) Using visual attention mechanism to acquire the attentive regions of an image selectively, a type of attentive regions based pooling perceptual error image quality evaluation method is developed, which differently handles the image regions with different saliency. It can be used as a weighting form to optimize the existing image quality evaluation algorithms which pool perceptual error in pixel domain. 4) A reduced reference image quality assessment metric based on visual attentive features is proposed, which computes the differences of intensity, color and orientation between the original and the distorted images respectively, and furthermore obtains the sensitivity factors of the three features(i.e. intensity, color and orientation) corresponding to different distortion types with natural computation. Experimental results demonstrate that the proposed method has better consistency with the subjective MOS, which can accurately reflect the human eyes’subjective feelings for the image quality.
引文
[1]马丁·海德格尔著,孙周兴译.林中路.上海:上海译文出版社, 2004.
    [2] Castleman K. R.. Digital Image Processing. New Jersey: Prentice Hall, 1996.
    [3] Wang Z., Sheikh H. R., Bovik A. C.. Objective video quality assessment. In The Handbook of Video Database: Design and Applications, Furht B., Marqure O., eds.. Florida: CRC Press, 1041-1078, 2003.
    [4] Janssen T. J.. Understanding image quality. In Proc. IEEE Int. Conf. Image Processing, 2001, 2: 7-7.
    [5] Abodou E., Dusaussoy N. J.. Survey of image quality measurement. In Proc. ACM Fall Joint Computer Conference, Dallas, Texas, Unite States, 1986, 71-78.
    [6] Methodology for the Subjective Assessment of the Quality of Television Pictures, Recommendation ITU-R Rec. BT. 500-11.
    [7] ITU-T Recommendation P.800. Methods for Subjective Determination of Transmission Quality, 1996.
    [8] Wang Z., Bovik A. C., Modern Image Quality Assessment. New York: Morgan and Claypool Publishing Company, 2006.
    [9] Chalmers A., Daly S., McNamara A. et al. Image Quality Metrics. Special Interest Group in GRAPHics, 2000.
    [10] Safranek R. J., Johnston J. D.. A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression. In Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, 1989, 3: 1945-1948.
    [11] Avcibas I., Sankur B., Sayood K.. Statistical evaluation of image quality measures. Journal of Electronic Imaging, 2002, 11(2): 206-213.
    [12] Mannos J. L., Sakrison D. J.. The effects of a visual fidelity criterion of the encoding of images. IEEE Trans. Information Theory, 1974, 20(4): 525-536.
    [13] Daly S.. The visible difference predictor: an algorithm for the assessment of image fidelity. In Digital Images and Human Vision, Watson A. B., ed.. Cambridge: The MIT Press, 179-206, 1993.
    [14] Bradley A. P.. A wavelet difference predictor. IEEE Trans. Image Processing, 1999, 8(5): 717-730.
    [15] Damera-Venkata N., Kite T. D., Geisler W. S. et al. Image quality assessment based on a degradation model. IEEE Trans. Image Processing, 2000, 9(4): 636-650.
    [16] Wang Z., Bovik A. C., Sheikh H. R. et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing, 2004, 13(4): 600-612.
    [17] Gao X. B., Wang T., Li J.. A content-based image quality metric. In Lecture Notes in Artificial Intelligence, Slezak D. et al. eds., RSFDGrC2005, LNAI 3642, 231-240, 2005.
    [18] Sheikh H. R., Bovik A. C., de Veciana G.. An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Processing, 2005, 14(12): 2117-2128.
    [19] Sheikh H. R., Bovik A. C.. Image information and visual quality. IEEE Trans. Image Processing, 2006, 15(2): 430-444.
    [20] Chandler D. M., Hemami, S. S.. A wavelet-based visual signal-to-noise ratio for natural images. IEEE Trans. Image Processing, 2007, 16(9): 2284-2298.
    [21] Moorthy A. K., Bovik A. C..Perceptually significant spatial pooling techniques for image quality assessment. In Proc. SPIE Human Vision and Electronic Imaging XIV, 2009, 7240: 724012-724012-11.
    [22] Chou C. H., Li Y. C.. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Trans. Circuits and Systems for Video Technology, 1995, 5(6): 467-476.
    [23] Karunasekera S. A., Kingsbury N. G.. A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Trans. Image Processing, 1995, 4(6): 713-724.
    [24] Sheikh H. R., Sabir M. F., Bovik A. C.. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Processing, 2006, 15(11): 3440-3451.
    [25] Miyahara M., Kotani K., Algazi R. V.. Objective picture quality scale for image coding. IEEE Trans. Communications, 1998, 46(9): 1215-1226.
    [26] Video Quality Expert Group, RRNR-TV Group Test Plan Draft Version 1.4. http://www.vqeg.org.
    [27] Kusuma T. M., Zepernick H. J.. A reduced-reference perceptual quality metric for in-service image quality assessment. In Proc. Joint First Workshop on Mobile Future and IEEE Symposium on Trends in Communications, 2003, 71-74.
    [28] Gunawan I. P., Ghanbari M.. Reduced-reference picture quality estimation by using local harmonic amplitude information. In Proc. London Communications Symposium, 2003, 9: 137-140.
    [29] Wang Z., Simoncelli E. P.. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model, In Proc. SPIE Human Vision and Electronic Imaging X, 2005, 5666(1): 149-159.
    [30] Wang Z., Wu G. X., Sheikh H. R. et al. Quality-aware images. IEEE Trans. Image Processing, 2006, 15(6): 1680-1689.
    [31] Wang S., Zheng D., Zhao J. Y. et al. An image quality evaluation method based on digital watermarking. IEEE Trans. Circuits and Systems for Video Technology, 2007, 17(1): 98-105.
    [32] Gao X. B., Lu W., Li X. L. et al. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Processing, 2009, 18(7): 1608-1622.
    [33] Lu W., Gao X. B., Li X. L. et al. An image quality assessment metric based on contourlet. In Proc. IEEE Int. Conf. Image Processing, San Diego, California, 2008, 1172-1175.
    [34]路文,高新波,王体胜.一种基于WBCT的自然图像质量评价方法.电子学报, 2008, 36(2): 303-308.
    [35] Romberg J. K.. Multiscale Geometric Image Processing. Ph.D. thesis, Rice University, 2003.
    [36] Wang Z., Sheikh H. R., Bovik A. C.. No-reference perceptual quality assessment of JPEG compressed images. In Proc. IEEE Int. Conf. Image Processing, 2002, 1: 477-480.
    [37] Babu R. V., Perkis A.. An HVS-based no-reference perceptual quality assessment of JPEG coded images using neural networks. In Proc. IEEE Int. Conf. Image Processing, 2005, 1: 433-436.
    [38] Liu S., Bovik A. C.. Efficient DCT-domain blind measurement and reduction of blocking artifacts. IEEE Trans. Circuits and System for Video Technology, 2002, 12(12): 1139-1149.
    [39] Ong E. P., Lin W. S., Lu Z. K. et al. No reference JPEG2000 image quality metric. In Proc. IEEE Int. Conf. Multimedia & Expo, 2003, 2: 545-548.
    [40] Caviedes J., Gurbuz S.. No-reference sharpness metric based on local edge kurtosis. In Proc. IEEE Int. Conf. Image Processing, 2002, 3: 53-56.
    [41] Field D. J.. Relations between the statistics of natural images and the response properties of cortical cells. Journal of Optical Society of American, 1987, 4(12): 2379-2394.
    [42] Burton G. J., Haig N. D., Moorhead I. R.. A self-similar stack model for human and machine vision. Biological Cybernetics, 1986, 53(6): 397-403.
    [43] Lee A. B., Pedersen K. S.. Mumford D.. The nonlinear statistics of high-contrast patches in natural images. International Journal of Computer Vision, 2003, 54(1-3): 83-103.
    [44] Ruderman D. L.. The statistics of natural images. Computation in Neural Systems, 1994, 5(4): 517-548.
    [45] Srivastava A., Lee A. B., Simoncelli E. P. et al. On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision, 2003, 18(1): 17-33.
    [46] Sheikh H. R., Bovik A. C., Cormack L. K.. Blind quality assessment of JPEG2000 compressed images using natural scene statistics. In Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, 2: 1403-1407, Pacific Grove, CA, 2003.
    [47] Sheikh H. R., Bovik A. C., Cormack L. K., No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Trans. Image Processing, 2005, 14(12): 1918-1927.
    [48] LIVE. http://live.ece.utexas.edu/rese-arch/quality.
    [49] Sarnoff Corporation, Lubin J.. Sarnoff JND Vision Model. Contribution to IEEE G-2.1.6 Compression and Processing Subcommittee, 1997.
    [50] Tektronix, Inc. Picture Quality Analysis System. http://www.tektronix.com/video audio, 2007.
    [51] Tektronix, Inc. Picture Quality Analysis System PQA500, http://www2.tek.com/cmswpt/psdetails.lotr?ct=PS&cs=Data+Sheets&ci=13386&lc=EN, 2008.
    [52] Video Clarity, Inc. http://www.videoclarity.com/about.html.
    [53] Symmetricoms QoE Assurance Division. QoS Metrics. http://qoe.symmetricom.com, 2007.
    [54] Opticom GmbH. Perceptual Voice, Audio and Video Quality. http://www.opticom.de, 2007.
    [55] Semaca, Inc. http://www.semaca.co.uk/content.php?produs=2.
    [56]叶佳,张建秋,胡波.客观评估彩色图像质量的超复数奇异值分解法.电子学报, 2007, 35(1): 28-33.
    [57]殷晓丽,方向忠,翟广涛.一种JPEG图片的无参考图像质量评价方法.计算机工程与应用, 2006, 42(18): 79-81.
    [58]骞森,朱剑英.基于奇异值分解的图像质量评价.东南大学学报(自然科学版), 2006 ,36(4): 643-646.
    [59]魏崇奎,成礼智.一种基于掩盖效应的感知域图像质量评价方法.中国图象图形学报, 2004, 9(2):195-200.
    [60] Tong H. H., Li M. J., Zhang H. J. et al. Learning no-reference quality metric by examples. In Proc. of the 11th International Multimedia Modeling Conference, 2005, 247-254.
    [61] Sandon P. A.. Simulating visual attention. Journal of Cognitive Neuroscience, 1990, 2(3):213-231.
    [62] Marr D.. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: Freeman W. H. and Company Press, 1982.
    [63] Cai Z. X., Xu G. Y.. Artificial Intelligence: Principles & Applications. 3rd Edition. Beijing: Tsinghua University Press, 2004.
    [64] Ballard D. H.. An Introduction to Natural Computation, Cambridge: The MIT Press, 1997.
    [65] Jiao L. C., Gong M. G., Wang S. et al. Advances in Natural Computation, Machine Learning and Image Understanding. Xi’an: Xidian University Press, 2008.
    [66] Fogel D. B.. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press Series on Computational Intelligence, 1995.
    [67] Back T., Hammel U., Schwefel H. P.. Evolutionary computation: comments on the history and current state. IEEE Trans. on Evolutionary Computation, 1997, 1(1):3-17.
    [68] Davis L., Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991.
    [69] Goldberg D. E.. Genetic Algorithms in Search, Optimization and Machine Learning. MA: Addison-Wesley Publish Company, 1989.
    [70] Carlson N. R.. Foundations of Physiological Psychology. 6th Edition. Boston: Allyn & Bacon, 2004.
    [71] Norton T. T., Bailey J. E. Corliss D. A.. Psychophysical Measurement of Visual Function. Boston: Butterworth Heinemann, 2002.
    [72] Watson A. B.. Digital Images and Human Vision. Cambridge: MIT Press, 1993.
    [73] Westheimer G.. The eye as an optical instrument, In Handbook of Human Perception and Performance, Boff K. R., Kaufman L., Thomas J. P., eds.. New York: Wiley and sons, 1986.
    [74] Rodieck R. W.. The primate retina. Comparative Primate Biology, 4: 203-278, 1986.
    [75] Shou T. D.. Brain Mechanisms of Visual Information Processing. Shanghai:Shanghai Science and Education Press, 1997.
    [76] Crick F.. The Astonishing Hypothesis: The Scientific Search for the Soul. New York: Scribner reprint edition, 1995.
    [77] Li Z.. A neural model of contour in integration in the primary visual cortex. Neural computation, 1998, 10(4): 903-940.
    [78] Hubel D. H., Wiesel T. N.. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 1962, 160(1): 106-154.
    [79] Michelson A. A.. Studies in Optics. Chicago: Univ. of Chicago Press, 1927.
    [80] Peli E., Arend L. E., Young G. M. et al. Contrast sensitivity to patch stimuli: Effects of spatial bandwidth and temporal presentation. Spatial Vision, 1993, 7(1): 1-14.
    [81] Legge G. E., Foley J. M.. Contrast masking in human vision. Journal of the Optical Society of America, 1980, 70(12):1458-1471.
    [82] Campbell F. W., Robson J. G.. Application of fourier analysis to the visibility of gratings. Journal of Physiology, 197(3):551-566, 1968.
    [83] Treisman A. M., Gelade G.. A feature-integration theory of attention. Cognitive Psychology, 12(1):97-136, 1980.
    [84] Posner M. I., Petersen S. E.. The attention system of the human brain. Annual Review of Neuroscience, 1990, 13: 25-42.
    [85] Winkler S.. Vision Models and Quality Metrics for Processing Applications, Ph.D. thesis. Diplom-Ingenieur der Elektrotechnik, Technische University Wien de nationality autrichienne, 2000.
    [86] Schreiber W. F.. Fundamentals of Electronic Imaging Systems. 3rd Edition. New York: Springer-Verlag, 1993.
    [87] Watson A. B., Borthwick R., Taylor M.. Image quality and entropy masking. In Proc. SPIE Human vision and electronic imaging. Conference, San Jose, CA, 1997, 3016: 2-12.
    [88] Klein S. A., Carney T., Lauren S. B. et al. Seven models of masking. In Proc. SPIE Human vision and electronic imaging, San Jose, CA, 1997, 3016: 13-24.
    [89] DeYoe E. A., Van Essen D. C.. Concurrent processing streams in monkey visual cortex. Trends in Neurosciences, 1988, 11(5): 219-226.
    [90] Hering E.. Outlines of a Theory of the Light Sense. Mass., Cambridge: Harvard University Press, 1964.
    [91] Hafed Z. M., Krauzlis R. J.. Ongoing eye movements constrain visual perception. Nature Neuroscience, 2006, 9: 1449-1457.
    [92] Van Gompel R. P. G., Fischer M. H., Murray W. S. et al. Eye Movements: A Window on Mind and Brain, Elsevier Science Ltd, 2007.
    [93] Ditchburn R. W., Ginsborg B. L.. Vision with a stabilized retinal image. Nature, 1952, 170: 36-37.
    [94] Parasuraman R.. The Attentive Brain. Mass., Cambridge: The MIT Press, 1998.
    [95]傅世敏.视觉选择性注意的机制及其在视觉信息处理中的作用.中国科学技术大学,博士论文, 1998.
    [96] Scholl B. J.. Objects and attention: the state of the art. Cognition, 2001, 80(1-2): 1-46.
    [97] Desimone R., Duncan J.. Neural mechanism of selective visual attention. Annual Review of Neuroscience, 1995, 18: 193-222.
    [98] Saenz M., Buracas G. T., Boynton G. M.. Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 2002, 5(7): 631-632.
    [99] James W., The Principles of Psychology. New York: H. Holt, 1890.
    [100] Crick F.. Function of the thalamic reticular complex: the searchlight hypothesis. In Proc. National Academy of Science, USA, 1984, 81(14): 4586-4590.
    [101] Lowe D. G.. Object recognition from local scale-invariant features. In Proc. Int. Conf. Computer Vision, 1999, 2: 1150-1157.
    [102] Itti L., Koch C., Niebur E.. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    [103] Harel J., Koch C., Perona P.. Graph-based visual saliency. Advances in Neural Information Processing Systems, 2007, 19: 545-552.
    [104] Rajashekar U., Bovik A. C., Cormack L. K.. GAFFE: A gaze-attentive fixation finding engine. IEEE Trans. Image Processing, 2008, 17(4): 564-573.
    [105] Holland J. H.. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 2nd Edition. Cambridge, MA: MIT Press, 1992.
    [106] Nadenau M. J.. Integration of Human Color Vision Models into High Quality Image Compression, Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 2000.
    [107] Stephane M.. A theory for signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, 11(7): 67-93.
    [108] ITU-R Rec. BT.500-11. Methodology for the Subjective Assessment of the Quality of Television Pictures, 2002.
    [109] VQEG, Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment. http://www.vqeg.org/, 2000.
    [110] Ninassi A., Meur O. L., Callet P. L. et al. Does where you gaze on an image affect your perception of quality? Applying visual attention to image quality metric. In Proc. IEEE Int. Conf. Image Processing, 2007, 2: 169-172.
    [111] Moorthy A. K., Bovik A. C.. Visual importance pooling for image quality assessment. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2): 193-201.
    [112] Wang Z., Shang X. L.. Spatial pooling strategies for perceptual image quality assessment. In Proc. IEEE Int. Conf. Image Processing, 2006, 2945-2948.
    [113] Koch C., Ullman S.. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 1985, 4(4): 219-227.
    [114] Itti L., Koch C.. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 2000, 40(10-12): 1489-1506.
    [115] Rodieck R. W.. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 1965, 5(11): 583-601.
    [116] Itti L., Koch C.. Feature combination strategies for saliency-based visual attention systems, Journal of Electronic Imaging, 2001, 10(1): 161-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700