用户名: 密码: 验证码:
基于量子点荧光探针的H5N1亚型禽流感病毒快速检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
H5N1亚型高致病性禽流感(highly pathogenic avian influenza,HPAI)的频繁爆发不仅给养禽业带来巨大的经济损失,也威胁着人类的生命健康。目前,针对H5亚型禽流感病毒的检测方法主要有VI、ELISA、RT-PCR、RRT-PCR等,但这些方法存在耗时耗力、敏感性低、需要昂贵的仪器且操作要求较高等缺点。因此,建立一种简单、快速、灵敏、高通量检测H5亚型禽流感病毒(AⅣ)的新方法对于尽早地对禽流感做出初诊和进行治疗、防止病毒的进一步传播具有重要意义。本实验共分为以下三部分:
     1.兔抗H5亚型禽流感病毒血凝素特异性多克隆抗体的制备及纯化。
     根据设计好的免疫程序,用原核表达的H5亚型AⅣ血凝素(HA)蛋白免疫健康家兔,当抗体滴度达到所需水平时,获得抗H5亚型AⅣ的高免血清。所得高免血清分别采用辛酸—硫酸铵盐法粗提IgG和G—200凝胶柱过滤纯化,成功制备了高纯度的兔抗H5亚型AⅣ血凝素蛋白多克隆抗体。
     2.量子点—兔抗H5亚型AⅣIgG荧光探针的制备
     采用共价偶联的方法,利用交联剂EDC和NHS使水溶性量子点与兔抗H5亚型AⅣIgG偶联,并对偶联条件进行了摸索,成功确立了量子点与兔抗H5亚型AⅣIgG偶联的最适条件;对量子点—兔抗AⅣIgG偶联物的生物学活性进行检测后发现该标记是十分有效的,偶联物保持了抗体原有的生物学活性,适合下一步的免疫反应分析。
     3.H5N1亚型禽流感病毒夹心荧光免疫法的建立
     本研究以抗H5亚型禽流感病毒血凝素单克隆抗体为捕捉抗体,以量子点—兔抗H5亚型AⅣ血凝素特异性多克隆抗体荧光探针为检测抗体,采用双抗体夹心法,成功地建立了一种基于量子点荧光探针的夹心荧光免疫法(sFLISA),为临床早期快速检测H5亚型AⅣ提供了行之有效的方法。
     用所建立的方法对H5N1亚型AⅣ进行定量检测,研究结果表明该方法检测H5N1亚型AⅣ的灵敏度可达0.15 ng/mL,标准曲线8 ng/mL~510 ng/mL范围内线性良好。通过与双抗体夹心ELISA进行比较,所建立的sFLISA表现出更高的灵敏度,且耗时较短。初步运用于临床检测,与Ⅵ试验同时检测103份临床鸡组织样品,相对Ⅵ试验而言,sFLISA的敏感性为93.6%,特异性为91.1%,两者的符合率为92.2%。实验结果表明,本方法特异性强,灵敏度高,可以运用于H5N1亚型AⅣ的快速检测。
     本实验所建立的H5N1亚型禽流感病毒夹心荧光免疫检测方法有良好的应用价值,也为量子点标记新技术用于动物重大传染病的研究提供了重要的参考依据。
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Currently, there are several analytical methods for the detection of H5 virus were proposed, such as virus isolation (VI), standard reverse transcription-PCR (RT-PCR), real-time RT-PCR, enzyme-linked immunosorbent assay (ELISA), and so on. However, these assays have their limitations, such as time-consuming, low sensitivity, technically demanding and so on. Therefore, a simple, rapid and sensitive detection assay for the early diagnosis of H5 is required to lower the chances of spread and reduce the risk of development into an epidemic. This research include the following three parts:
     1. Preparation of polyclonal antibody angainst HA protein of AIV subtype H5 and IgG extraction
     According to the designed immunization schedule, two SPF rabbits were chosen and immunized with the E.coli expressed HA protein. When the antibody titer of agarose-gel precipitation(AGP) get to the level that we want, we can obtain the rabbits'serum. After these sera were purified by n-Caprylic acid-ammonium sulphate and gel column G-200 respectively, we successfully got the highly depurated rabbit anti-AIV IgG.
     2. Preparation of QDs-rabbit anti-AIV IgG probe
     The water-soluble CdTe QDs were linked to the rabbit anti-AIV IgG using the coupling reagents ethyl-3-(dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The couple condition was optimized, and the molar QD:IgG ratio in the reaction was discussed. The resonance light scattering (RLS) was used for detection of antigen-antibody recognition reactions, and results showed that the probe retained the activity of antibody and was suitable for immunoassay.
     3. Development of sFLISA for the H5N1 subtype AIV
     In this research, a novel sandwich fluorescence-linked immunosorbent assay (sFLISA) for the determination of H5 subtype AIV was developed basd on the McAb and QDs-rabbit anti-AIV IgG, which both against HA of H5 subtype AIV. The developed sFLISA supplied an effective approach to early diagnosis of AIV subtype H5N1 in fields.
     Under the optimal conditions, the sFLISA allowed for H5N1 viral antigen determination in a linear range of 8 ng/mL~510 ng/mL with the limit of detection (LOD) of 0.15 ng/mL, which was lower than commercial ELISA. Moreover, in comparison with virus isolation (VI) for 103 clinic samples, the sFLISA was correlated with VI for 92.2%, the sensitivity and specificity of sFLISA were found to be 93.6% and 91.1% respectively. Results showed that the sFLISA was specific and sensitive for the H5N1 sbtype AIV.
     The developed sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1, and provided significant reference for QDs in the application of animal-borne diseases.
引文
1.包红梅,田国彬,陈化兰,李雁冰,李艳华.禽流感的诊断技术与防制措施.中国兽医科技,2003,33:75-79.
    2.陈创,陈良冬,张志凌,李雁.量子点在肿瘤标志物研究中的应用进展.中国癌症杂志,2007,17:813-818.
    3.陈宏伟,刘红莉,王一理,司履生.量子点:新的荧光标记物质.中华病理学杂志,2005,34:47-49.
    4.陈伟,沈鹤柏,陈艳,周丽佳,徐文.荧光物质—量子点在生命科学领域的应用研究进展..化学通报,2007,403-408.
    5.付志英,李朝辉,何晓晓,王柯敏,谭蔚泓,李慧敏.水溶性量子点荧光探针用胞相关抗原CA242的检测.分析化学,2006,34,1669-73.
    6.甘孟侯.中国禽病学[M].北京:中国农业出版社,1999,66.
    7.黄庚明,辛朝安.PCR制备地高辛标记的探针检测禽流感病毒核酸.中国兽医杂志,2001,37:3-7.
    8.卢受昇,余业东,廖明,任涛,孙彦伟,罗开健,张桂红,辛朝安.H5亚型禽感病毒间接免疫荧光快速诊断方法的建立.中国预防兽医学报,2006,28:76-79.
    9.林章碧,张皓,陈奇丹,万异,杨柏,苏星光,张家骅,金钦汉.利用水相合成的量子点标记木瓜蛋白酶的研究.高等学校化学学报,2003,24:609-611.
    10.马强.量子点及量子点荧光微球的生物医学应用.[博士学位论文].吉林:吉林大学,2008.
    11.毛湘冰,刘毅.杨惠麟.禽流感及其分子生物学诊断研究进展.甘肃畜牧兽医,2005,35:38-40.
    12.宁佳,王德平,黄文,姚爱华,郁美娟.CdSe量子点的制备及荧光性能改善.功能材料,2007,38:1531-1536.
    13.邱婷,彭洪亮,何治柯.水溶性CdSe/ZnS与蛋白质非特异性相互作用研究.化学传感器.2007,27:26-30.
    14.王贵华,金梅林,陈焕春.RT-PCR快速诊断禽流感.中国预防兽医学报,2004,26:67-70.
    15.王传涛,刘道杰,王术皓.量子点在标记免疫分析中的应用研究进展.临床检验杂志,2007,25:73-74.
    16.王雪婷,于俊生,谢颖.水溶性CdSe/CdS量子点的合成及其与牛血清蛋白的共轭作用.无机化学学报,2007,23:1185-1193.
    17.王志亮,刘华雷,赵永刚.禽流感与人类健康.中华实验和临床病毒学杂志.2006,20:80-82.
    18.魏泉德,谭爱军.禽流感病毒实验检测研究进展.微生物学通报,2007,34:986-90.
    19.熊蕊.H5亚型高致病性禽流感病毒感染禽的抗体竞争ELISA诊断方法的建立.[硕士学位论文].新疆:新疆农业大学,2007.
    20.张文东,宋建领,王金萍,李作生,冯子良,胡媛媛,郭松辉,张应国,范泉水,宋学林,邱薇,张富强.禽流感病毒H5亚型特异性抗原捕捉ELISA检测方法的研究.云南大学学报(自然科学版),2007,29:633-637.
    21.赵翠燕,崔恒敏.禽流感检测方法研究进展.中国家禽,2003,25:27-29.
    22.赵建梅,魏荣,郑东霞,宋翠平,王志亮,刘清河.禽流感病毒分离株A/Chicken/Wangcheng/4/2001(H9N2)核蛋白基因(NP)的克隆和序列分析.中国动物检疫,2004,21:24-26.
    23.周蛟.近年世界禽病流行现状.中国畜牧杂志(专家论坛),2007,43:2-7.
    24.Aaron R,Clapp I L M,Mauro J M,Fisher B R,Bawendi M G,Mattoussi H.Fluorescence resonance energy transfer between quantum dot donors and dye-labeledprotein acceptors.J Am Chem Soc,2004,126:301-310.
    25.Bao H F,Wang E K,Dong S J.One-pot synthesis ofCdTe nanocrystals and shape control ofluminescentCdTe-cystinenanocomposites.Small,2006,2:476-480.
    26.Bruchez M,Moronne M,Gin P,Weiss S,Alivisatos A P.Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2016.
    27.Chan W C W,Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopie Detection.Science,1998,281:2016-2018.
    28.Chen C,Peng J,Xia H S,Yang G F,Wu Q S,Chen L D,Zeng L B,Zhang Z L,Pang D W,Li Y.Quantum dots-based immunofluorescence technology for the quantitative determination of HER2expression inbreastcancer.Biomaterials,2009,30:2912-2918.
    29.Collins M L,Irvine B,Tyner D,Fine E,Zayati C,Chang C,Horn T,Able D,Detmer J,Shen L P.A branched DNA signal amplification assay for quantification of nucleic acid targets below 100 molecules/ml.Nucleic Acids Res,1997,25:2979-2982.
    30.Edgar R,McKinstry M,Hwang J,Oppenheim A B,Fekete R A,Giulian G,Merril C,Nagashima K,Adhya S.High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes.Proceedings of the national academy of science of the united states of America,2006,103:4841-4845.
    31.Garrett L,Fidler D P.Sharing H5N1 Viruses to Stop a Global Influenza Pandemic. PLoS Medicine, 2007, 4: 1712-1714.
    32. Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed Engl, 2008, 47: 7602-7625.
    33. Goldman E R, Anderson G P, Tran P T, Mattoussi H, Charles P T, Mauro J M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem, 2002a, 74: 841-847.
    34. Goldman ER, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc, 2002b, 124: 6378-6382.
    35. Goldman E R, Clapp A R, Anderson G P, Uyeda H T, Mauro J M, Medintz I L., Mattoussi H. Multiplexed toxin analysis using four colors of quantum dots Fluororeagents. Anal Chem, 2004, 76: 684-688.
    36. Griffin B A, Adams S R, Tsien R Y. Specific covalent labeling of recombinant protein olecules inside living cells. Science, 1998, 281: 269-272.
    37. He Q G, Velumani S, Du Q, Lim C W, Ng F K, Donis R. Kwang. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol, 2007, 14: 617-623.
    38. Hoffmann B, Harder T, Starick E, Depner K, Werner O, Beer M. Rapid and Highly Sensitive Pathotyping of Avian Influenza A H5N1 Virus by Using Real-Time Reverse Transcription-PCR. J Clin Microbiol, 2007, 45: 600-603.
    39. Hua X F, Liu T C, Cao Y C, Liu B, Wang H Q, Wang J H, Huang Z L, Zhao YD. Characterization of the coupling of quantum dots and immunoglobulin antibodies. Anal Bioanal Chem, 2006, 386: 1665-1671.
    40. Jaiswal J K, Mattoussi H, Mauro J M, Simon SM. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol, 2003, 21: 47-51.
    41. Kaul Z, Yaguchi T, Kaul S C, Hirano T, Wadhwa R, Taira K. Mortalin imaging in normal and cancer cells with quantum dot immuno conjugates. Cell Res, 2003, 13: 503-507.
    42. Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using FL Microscopy. Talanta, 2007, 71: 1494-1499.
    43. Lee M S, Chang P C, Shien J H, Cheng M C, Shieh H K. Identification and subtyping of avian influenza viruses by reverse transcription-PCR. J Virol Methods, 2001, 97: 13-22.
    44. Lin S, Xie, X Y, Patel, M R, Yang, Y H, Li, ZJ, Cao, F, Gheysens, O, Zhang, Y, Gambhir, S S, Rao, J, Wu, J C Quantum dot imaging for embryonic stem cells. BMC Biotechnol, 2007, 7: 67-71.
    45. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang X W, Zhang X L, Zhao D, Wang G,, Feng Y, Ma J, Liu W, Wang J, Gao G F. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science, 2005, 309: 1206.
    46. Ma Q, Wang X, Li Y, Su X, Jin Q. The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip system. Luminescence, 2007, 22: 438-445.
    47. Majidi J, Abdolalizadeh J, Amirkhiz, M B, Majidi S. Production and purification of polyclonal antibody against bovine immunoglobulins in rabbits. African J Biotechnol, 2007, 6: 1369-1372.
    48. Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B, Mauro J M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat Mater, 2003, 2: 630-638.
    49. Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G,, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells in vivo imaging, and diagnostics. Science, 2005, 307: 538-544.
    50. Nida D L, Rahman M S, Carlson K D, Richards-Kortum R, Follen M. Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol Oncol, 2005, 99: 89-94.
    51.Ng L F, Barr I, Nguyen T, Noor S M, Tan R S, Agathe L V, Gupta S,Khalil H, To T L, Hassan S S, Ren E C. Specific detection of H5N1 avian influenza A virus in field specimens by a one-step RT-PCR assay. BMC Infect Dis, 2006, 6: 40.
    52. Peng F H, Wang Z, Zhang S H, Wu R W, Hu S S, Li Z L, Wang X L, Bi D R. Development of an immunochromatographic strip for rapid detection of H9 subtype avian influenza viruses. Clin Vaccine Immunol, 2008, 15: 569-574.
    53. Shen J, Xu F, Jiang H, Wang Z, Tong J, Guo P, Ding S. Characterization and application of quantum dot nanocrystal-monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Anal Bioanal Chem, 2007, 389: 2243-2250.
    54. Shi L F, De P V, Rosenzweig N, Rosenzweig Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc, 2006, 128: 10378-10379.
    55. Stroh M, Zimmer J P, Duda D G, Levchenko T S, Cohen K S, Brown E B, Scadden D T, Torchilin V P, Bawendi M G, Fukumura D, Jain R K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med, 2005, 11: 678-682.
    56. Sun B Q, Xie W Z, Yi G S, Chen D P, Zhou Y X, Cheng J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser Confocal scanning fluorescence detection. J Immuno Methods, 2001, 249: 85-89.
    57. Soman C P, Giorgio T D. Quantum dot self-assembly for protein detection with sub-picomolar Sensitivity. Langmuir, 2008, 24: 4399-4404.
    58. Ungchusak K, Auewarakul P, Dowell S F, Kitphati R, Auwanit W, Puthavathana P, Uiprasertkul M, Boonnak K, Pittayawonganon C, Cox N J, Zaki S R, Thawatsupha P, Chittaganpitch M, Khontong R, Simmerman J M, Chunsutthiwat S. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med, 2005, 352: 333-340.
    59. Wang X, Ma Q, Li B, Li Y, Su X. The preparation of CdTe nanoparticles and CdTe nanoparticle-labelled microspheres for biological applications. Luminescence, 2007, 22: 1-8.
    60. Wang S P, Mamedova N, Kotov N A, Chen W, Studer J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett, 2002, 2: 817-822.
    
    61. Wilkomson D A. Third wave technologies's invader assays for nucleic acid detection. The Scientist, 1993, 13: 16.
    
    62. Wu X Y, Liu H J, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol, 2002, 21: 41-46.
    
    63. Yu W W, Qu L H, Guo W Z, Peng X G. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater, 2003, 15: 2854-2860.
    
    64. Zhang A D, Jin M L, Liu F F, Guo X B, Hu Q Y, Han L, Tan Y D, Chen H C. Development and evaluation of a DAS-ELISA for rapid detection of avian influenza viruses. Avian Dis, 2006, 50: 325-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700