用户名: 密码: 验证码:
超薄CIGS太阳电池及组件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜铟镓硒(CIGS)薄膜太阳电池具有高光吸收系数、高转化效率、可调的禁带宽度、高稳定性、较强的抗辐射能力等优点,是一种非常有前途的薄膜太阳电池。随着铜铟镓硒薄膜电池逐渐进入量产阶段,如何降低生产成本成为科研工作者共同追求的目标。发展超薄CIGS吸收层电池不但可以减少In、Ga、Se等稀有元素的用量,降低原料成本,更能减少CIGS薄膜的沉积时间,减少能源消耗与人力成本,提高生产效率。此外,发展超薄电池可以用有限的资源生产更多的产品,对提高资源的利用效率也是非常重要的。因此,超薄吸收层电池己成为目前世界上CIGS电池研究的一个热点。本文在综合国内外研究现状的基础上,对超薄CIGS吸收层电池及组件进行了系统研究,主要取得如下研究成果:
     通过理论计算和实验研究了不同CIGS吸收层厚度对材料及电池特性的影响,确定了超薄电池的最佳临界厚度在0.8-1.0μm之间。分别采用恒定衬底温度顺序蒸发法和三步法制备超薄CIGS电池,比较衬底温度对超薄CIGS电池性能的影响。采用恒定衬底温度顺序蒸发法制备CIGS吸收层,发现在衬底温度为350℃时,由于CdS/CIGS (?)自光结构及低含Ga相的存在,电池的短路电流升高明显,进而引起转换效率增加,而在三步法工艺中没有发现此现象。
     研究了Ga在超薄电池中的作用:对比研究了Ga含量对超薄及常规厚度CIGS材料及电池性能影响的差异。研究发现Ga/(Ga+In)在0.20-0.36之间变化时,对1μm的CIGS薄膜结晶质量影响不大,而2μm薄膜晶粒尺寸随Ga含量的增加而明显减小;随着Ga含量的增加,1μm薄膜的(112)衍射峰强度降低,而2μm薄膜的(112)衍射峰强度增加,但两种厚度薄膜的择优取向同时逐渐减弱;在相同Ga含量情况下,1μm薄膜的最小带隙值大于的2μm的薄膜,且1gm薄膜的最小带隙值随Ga含量增长的更快,对Ga含量的变化更敏感;随着Ga含量的增加,1μm薄膜电阻率降低,而2μm薄膜电阻率逐渐增加。通过不同厚度的电池器件特性对比,发现Ga含量对超薄电池性能的影响更明显,其增加会导致1μm厚度的电池开路电压快速增加,进而引起电池转化效率较大提升。在Ga/(Ga+In)约为0.37时,1μm的超薄电池的转换效率达到最高。在三步法中第一步采用不同Ga-In间隔时间制备Ga的背梯度,虽然较大的间隔时间可提高Ga的背梯度,但由于影响了薄膜结晶质量,对超薄电池性能改善微弱。第三步采用In/Ga沉积工艺,可以改善薄膜内部Ga的V型分布,增大超薄电池的开路电压和短路电流密度,使电池效率得到提升,1μm厚吸收层电池转换效率达到了13.2%。
     在超薄CIGS材料制备工艺优化的基础上,尝试了一些其他改善超薄电池的工艺技术:①提出了在CIGS/Mo界面处添加CIS或CGS界面层的工艺技术,研究发现该工艺可以改善薄膜结晶状况、使薄膜更加致密均匀,有效降低了超薄电池的并联电导值,提高了电池的开路电压和转换效率。②对蒸发法制备CIGS薄膜表面的三角形小岛及孔洞的特性和形成过程进行了研究,认为三角形小岛的形成受薄膜Cu含量影响很大,而三角形孔洞的形成则主要是三角形小岛生长扩展不充分引起的。对含有三角形小岛和没有三角形小岛的薄膜制备的超薄电池进行了比较,发现没有三角形小岛的电池效率有所提高。③采用前掺NaF工艺制备超薄CIGS电池,发现仅靠从苏打玻璃(SLG)衬底扩散来的Na无法满足超薄CIGS电池,需要额外补充Na;由于Na对薄膜缺陷的钝化,以及CIGS/Mo界面处有NaF的残留,使得电池并联电导值降低,长波光生载流子收集增强,超薄电池特性得到改善。通过SMS测试发现CIGS薄膜内Na与Ga的分布形状相同,认为造成这种现象的原因与薄膜生成过程中晶粒尺寸的变化以及Na在不同CIGS相中的固溶度有关。
     最后,在CIGS材料及小面积电池的研究基础上研究组件,包括划线工艺、Ga含量、Cu含量、子电池宽度、CdS缓冲层厚度、i-ZnO和ZnO:Al厚度等试验条件对常规厚度和超薄CIGS组件的影响,为发展大面积高效率CIGS组件提供了可靠的数据依据。
Cu(In,Ga)Se2(CIGS) thin film solar cell is considered as the most promising photovoltaic device. This is due to the excellent properties of CIGS thin films, such as high absorption coefficient, suitable and tunable band gap, high stability and strong anti-radiation. At present, CIGS solar cells have been steadily progressing and transfered for mass production. How to reduce the cost of production has became the common goal of researchers around the world.
     If the thickness of the CIGS absorber layer is reduced with no, or minor, loss in solar cell performance, the deposition time will be shorter at the same deposition rate, then the labor and power costs will be cut down. In addition, a ultra-thin absorber layer will also reduce the materials usage and thereby materials costs. Furthermore, more CIGS solar cells can be fabricated using the limited In, Ga and Se resources. So it is important to study the ultra-thin CIGS absorber layer and solar cell. So far, the study of the ultra-thin CIGS solar cells has became a hot research topic around the world. In this paper, a series intensive studies on the properties of ultra-thin CIGS absorber layer material and solar cells has been carried based on the previous research results. And then, CIGS modules are also studied based on results of the small area solar cells. The innovative researches are as following.
     The impact of CIGS absorber layer thickness on the properties of CIGS material and solar cell is studied by theoretical calculations and actual experiments. It is found that the best critical thickness of the ultra-thin CIGS absorber is between0.8-1.0μm.
     CIGS films are prepared respectively by the metal elements sequential evaporation on the constant substrate temperature and three-stage evaporation process, it is comparatively studied the influence of the substrate temperature on the ultra-thin CIGS solar cells performance. It is found that the short-circuit current and conversion efficiency of the solar cell have been improved when the substrate temperature is350℃using metal elements sequential evaporation process. This may could be a reference for the development of high efficiency ultra-thin solar cell prepared on a low substrate temperature. However, it is not found this phenomenon in the three-stage process.
     The difference of influence of Ga content on the CIGS material and solar cell performance with ultra-thin and common thickness absorber is studied. When Ga/(Ga+In) changes between the0.20-0.36, little change of the crystal quality of the1μm CIGS film is found, while the grain size of2μm film decreases significantly with increasing Ga content. As Ga content increases, the intensities of (112) peaks of1μm films decrease, while that of2μm films increase, and the preferred orientation of both films decrease. In the case of the same Ga content, the value of the minimum band gap of1μm film is larger than that of2μm film. With increasing Ga content, the minimum band gap value of1μfilm grow faster than2μm film, which denotes that the band gap value of lμm film is more sensitive to the Ga content. As the Ga content increases, the resistivity of1μm film decreases, while2μm film gradually increases. By comparing the characteristics of solar cells with the different thickness absorber, it is found that the performance of ultra-thin solar cell is more strongly influenced by Ga content. The enhancement of Ga content results in the rapidly increase of the open circuit voltage of solar cells with1μabsorber, thereby the efficiency is greatly improved. When Ga/(Ga+In) is about0.37, the highest conversion efficiency of solar cells with1μm absorber is achieved. Ga back gradient are prepared using different Ga-In interval time in the first stage. As the interval time increasing, Ga back gradient is improved. However, the performance of ultra-thin solar cells is improved weakly due to the deterioration of CIGS films crystal quality. In the third stage, the deposition process of In/Ga is used, Ga distribution with V-type of CIGS films can be improved, then the open circuit voltage and short circuit current density of the ultra-thin solar cells increase, and the efficiency is improved, the efficiency of solar cells with1μm absorber has reached13.2%.
     Based on the optimization of ultra-thin CIGS materials preparation process, some other processes are tried to improve the performance of ultra-thin solar cells:①The process of deposited a CuInSe2(CIS) or CuGaSe2(CGS) buffer layer in CIGS/Mo interface in ultra-thin solar cells is first proposed. It is found that this process can improve the film crystallization, and the film surface is more compact and uniform. The shunt conductance of ultra-thin solar cells decreases using this process, thereby the open circuit voltage and efficiency are improved.②The characteristics and formation process of triangle island and cavities on the evaporated CIGS thin film surface is studied for the first time. The formation of triangle islands is strongly impacted by Cu content in the CIGS films. The triangle cavities are formed due to the insufficient coalescence of triangle islands. By compareing the performance of ultra-thin solar cells with and without triangle islands, it is found that efficiency of ultra-thin solar cells without triangle islands and cavities is improved.③Before CIGS films is deposited, NaF is evaporated. It is found that Na diffusion from soda line glass (SLG) substrate is insufficient to improve the performance of ultra-thin CIGS solar cells. Due to the passivation of defects by Na and the NaF residual at CIGS/Mo interface, shunt conductance of ultra-thin solar cells decreases and the photo-generated carrier collection in long wavelength increases, therefor, the performance of ultra-thin solar cells is improved. The depth profiles of elements are measured using a secondary ion mass spectroscopy (SIMS). It is found that the distributions of Na show a double grading as the depth profiles of Ga. It is believed that the formation mechanism of Na double grading is related to the growth process of CIGS films.
     Finally, the influence of scribing process, width of the cells, Ga and Cu content of CIGS basorber, thickness of CdS buffer layer, i-ZnO and ZnO:Al window layer on the performance of moudles with common thickness and ultra-thin absorber is studied based on the previous research of the CIGS material and small area soalr cells, which could provide a reliable basis data for the development of a large area CIGS modules.
引文
[1]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.10-11,92
    [2]张力.低衬底温度沉积CIGS薄膜及在柔性聚酰亚胺衬底太阳电池中的应用:[博士论文].天津:南开大学,2008
    [3]Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics:Research and Applications,2011,19: 894-897
    [4]http://www.empa.ch/plugin/template/empa/3/131438/---/1=2
    [5]http://www.solar-frontier.com/eng/news/2013/C014763.html
    [6]Reinhard P, Chirila A, Blosch P, et al. Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE Journal of Photovoltaics, 2012,1-9
    [7]Pianezzi F, Chirila A, Blosch P, et al. Electronic properties of Cu(In,Ga)Se2 solar cells on stainless steel foils without diffusion barrier. Progress in Photovoltaics:Research and Applications,2012,20:253-259
    [8]Kessler F, Wiirz R, Spiering S, et al. New concepts for high efficiency and low cost inline manufactured flexible CIGS solar cells. In:The 22nd International Photovoltaic Science and Engineering Conference. HangZhou,2012.
    [9]Brown Q Stone P, Woodruff J, et al. Device Characteristics of a 17.1%Efficient Solar Cell Deposited by a Non-Vacuμm Printing Method on Flexible Foil. In:38th IEEE Photovoltaic Specialists Conference (PVSC). Austin,2012.3230-3233
    [10]Yagioka T, Nakada T. Cd-free flexible Cu(In,Ga)Se2 thin film solar cells with ZnS(O.OH) buffer layers on Ti foils. Applied Physics Express,2009,2:072201
    [11]Rockett A A. Current status and opportunities in chalcopyrite solar cells. Current Opinion in Solid State and Materials Science,2010,14:143-148
    [12]Voorwinden G, Kniese R, Powalla M. In-line Cu(In,Ga)Se2 co-evaporation processes with graded band gaps on large substrates. Thin Solid Films,2003,431-432:538-542
    [13]Powalla M, Dimmler B. Development of large-area CIGS modules. Solar Energy Materials and Solar Cells,2003,75:27-34
    [14]Dimmler B, Schock H W. Scaling-up of CIS technology for thin-film solar modules. Progress in Photovoltaics:Research and Applications,1996,4:425-433
    [15]Powalla M, Dimmler B. Scaling up issues of CIGS solar cells. Thin Solid Films,2000, 361-362:540-546
    [16]Voorwinden G, Powalla M. In-line Cu(In, Ga)Se2 co-evaporation on 30×30 cm2 substrates. Thin Solid Films,2001,387:37-39
    [17]Lammer M, Kniese R, Powalla M. In-line deposited Cu(In,Ga)Se2 solar cells:influence of deposition temperature and Na co-evaporation on carrier collection. Thin Solid Films,2004, 451-452:175-178
    [18]Kniese R, Hariskos D, Voorwinden G, et al. High band gap Cu(In,Ga)Se2 solar cells and modules prepared with in-line co-evaporation. Thin Solid Films,2003,431-432:543-547
    [19]Albin D S, Tuttle J R, Mooney G D, et al. A study on the optical and microstructural characteristics of quaternary Cu(In,Ga)Se2polycrystalline thin films. In:Twenty First IEEE Photovoltaic Specialists Conference. Kissimimee,1990.562-569
    [20]Han S-H, Hermann A M, Hasoon F S, et al. Effect of Cu deficiency on the optical properties and electronic structure of CuInSe2 and CuIn0.sGa0.2Se2 determined by spectroscopic ellipsometry. Applied Physics Letters,2004,85:576-578
    [21]Ramanathan K, Noufi R, To B, et al. Processing and Properties of Sub-Micron CIGS Solar Cells. In:IEEE 4th World Photovoltaic Energy Conversion Conference. Waikoloa,2006. 380-383
    [22]Gloeckler M, Sites J R. Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells. Journal of Applied Physics,2005,98:103703
    [23]Edoff M, Schleussner S, Wallin E, et al. Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules. Thin Solid Films,2011,519:7530-7533
    [24]Lundberg O, Bodegard M, Stolt L. Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells. Thin Solid Films,2003,431-432:26-30
    [25]Lundberg O, Bodegard M, Malmstrom J, et al. Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance. Progress in Photovoltaics:Research and Applications, 2003,11:77-88
    [26]Sharaman W N, Birkmire R W, Marsillac S, et al. Effect of reduced deposition temperature, time, and thickness on Cu(InGa)Se2 films and devices. In:Twenty-Sixth IEEE Photovoltaic Specialists Conference. Anaheim,1997.331-334
    [27]Ramanathan K, Bhattacharya R N, Contreras M A, et al. CIGS Thin-Film Solar Cell Research at NREL:FY04 Results and Accomplishments. In:DOE Solar Energy Technologies Program Review Meeting. Denver,2004.1-2
    [28]Jehl Z, Erfurth F, Naghavi N, et al. Thinning of CIGS solar cells:Part II:Cell characterizations. Thin Solid Films,2011,519:7212-7215
    [29]Marsillac S, Ranjan V, Aryal K, et al. Toward ultra thin CIGS solar cells. In:38th IEEE Photovoltaic Specialists Conference (PVSC). Austin,2012.1492-1494
    [30]Li-Kao Z J, Naghavi N, Erfurth F, et al. Towards ultrathin copper indium gallium diselenide solar cells:proof of concept study by chemical etching and gold back contact engineering. Progress in Photovoltaics:Research and Applications,2012,20:582-587
    [31]Thompson J O. The importance of elemental stacking order and layer thickness in controlling the formation kinetics of copper indiμm diselenide:[Ph.D Thesis]. Oregon:University of Oregon,2007
    [32]Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films,2005,480-481:520-525
    [33]Dullweber T, Lundberg O, Malmstrom J, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells. Thin Solid Films,2001,387:11-13
    [34]Hegedus S S, Shafarman W N. Thin-film solar cells:device measurements and analysis. Progress in Photovoltaics:Research and Applications,2004,12:155-176
    [35]Dullweber T, anna G H, Rau U, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells,2001,67:145-150
    [36]Walter T, Schock H W. Crystal growth and diffusion in Cu(In, Ga)Se2 chalcopyrite thin films. Thin Solid Films,1993,224:74-81
    [37]Jehl Z, Bouttemy M, Lincot D, et al. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells. Journal of Applied Physics,2012,111:114509
    [38]Kluth O, Rech B, Houben L, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin solid film,1999,351:247-253
    [39]Campa A, Krc J, Malmstrom J, et al. The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2007,515:5968-5972
    [40]Rostan P J, Mattheis J, Bilger G, et al. Formation of transparent and ohmic ZnO:Al/MoSe2 contacts for bifacial Cu(In,Ga)Se2 solar cells and tandem structures. Thin Solid Films,2004, 480-481:67-70
    [41]Nakada T, Hirabayashi Y, Tokado T, et al. Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts. Solar Energy,2004, 77:739-747
    [42]Shafarman W N, Phillips J E. Direct current-voltage measurements of the Mo/CuInSe2contact on operating solar cells. In:Twenty Fifth IEEE Photovoltaic Specialists Conference. Washington,1996.917-919
    [43]Wada T, Kohara N, Negami T, et al. Chemical and Structural Characterization of Cu(In,Ga)Se2/Mo Interface in Cu(In,Ga)Se2 Solar Cells. Japanese Journal of Applied Physics, 1996,35:L1253-L1256
    [44]Orgassa K, Schock H W, Werner J H. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells. Thin Solid Films,2003,431-432:387-391
    [45]Nishiwaki S, Kohara N, Negami T, et al. MoSe2 layer formation at Cu(In,Ga)Se2/Mo interfaces in high efficiency Cu(In1-xGax)Se2 solar cells. Japanese Journal of Applied Physics, 1998,37:L71-L73
    [46]Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films,2001,387:118-122
    [47]Dimmler B. CIGS and CdTe based thin film PV modules, an industrial r/evolution. In:38th IEEE Photovoltaic Specialists Conference (PVSC). Austin,2012.2494-2499-
    [48]Mitchell K, Eberspacher C, Ermer J, et al. Single and tandem junction CuInSe2 cell and module technology. In:Twentieth IEEE Photovoltaic Specialists Conference. Las Vegas, 1988.1384-1389
    [49]Wallin E, Malm U, Jarmar T, et al. World-record Cu(In,Ga)Se2-based thin-film sub-module with 17.4% efficiency. Progress in Photovoltaics:Research and Applications,2012,20: 851-854
    [50]Nakamura M, Chiba Y, Kijima S, et al. Achievement of 17.5% efficiency with 30 x 30cm2-sized Cu(In,Ga)(Se,S)2 submodules. In:38th IEEE Photovoltaic Specialists Conference (PVSC). Austin,2012.1807-1810
    [51]www.avancis.de.
    [52]www.miasole.com
    [1]Shafarman W N, Siebentritt S, Stolt L. Handbook of Photovoltaic Science and Engineering. Hoboken:John Wiley & Sons, Ltd,2011.546-599
    [2]Zhang S B, Wei S-H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B,1998,57:9642-9656
    [3]Masse G Concerning lattice defects and defect levels in CuInSe2 and the Ⅰ-Ⅲ-VI2compounds. Journal of Applied Physics,1990,68:2206-2210
    [4]Domain C, Laribi S, Taunier S, et al. Ab initio calculation of intrinsic point defects in CuInSe2. Journal of Physics and Chemistry of Solids,2003,64:1657-1663
    [5]Zhang S B, Wei S H. Reconstruction and energetics of the polar (112) and (-1-1-2) versus the nonpolar (220) surfaces of CuInSe2. Physical Review B,2002,65:081402
    [6]Wei S-H, Zhang S B, Zunger A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters,1998,72:3199-3201
    [7]Wei S-H, Zhang S B, Zunger A. Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics,1999,85:7214-7218
    [8]Abaab M, Kanzari M, Rezig B, et al. Structural and optical properties of sulfur-annealed CuInS2 thin films. Solar Energy Materials and Solar Cells,1999,59:299-307
    [9]Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films,2001,387:118-122
    [10]Hegedus S S, Shafarman W N. Thin-film solar cells:Device measurements and analysis. Progress in Photovoltaics:Research and Applications,2004,12:155-176
    [11]Shafarman W N, Klenk R, McCandless B E. Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap. Journal of Applied Physics,1996,79: 7324-7328
    [12]Miguel A. Contreras, Ramanathan K, AbuShama J, et al. Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells. Progress in Photovoltaics:Research and Applications,2005,13:209-216
    [13]Mise T, Nakada T. Narrow-bandgap CuIn3Tes thin-film solar cells. Progress in Photovoltaics: Research and Applications,2011', n/a-n/a
    [14]Rau U and Schock H W. Solar Cells:Materials, Manufacture and Operation. London: Imperial College Press,2001.326-329
    [15]Rau U, Jasenek A, Schock H W, et al. Electronic loss mechanisms in chalcopyrite based heterojunction solar cells. Thin Solid Films,2000,361-362:298-302
    [16]王家骅,李长健,牛文成.半导体器件物理.北京:科学出版社,1983.5
    [17]熊绍珍;朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.370
    [18]Stegemann B, Fink F, Endert H, et al. Novel concept for laser patterning of thin film solar cells. Laser Technik Journal,2012,9:25-29
    [19]Burgelman M, Niemegeers A. Calculation of CIS and CdTe module efficiencies. Solar Energy Materials and Solar Cells,1998,51:129-143
    [20]Westin P-O, Watjen J T, Zimmermann U, et al. Microanalysis of laser micro-welded interconnections in CIGS PV modules. Solar Energy Materials and Solar Cells,2012,98: 172-178
    [21]Komaki H, Furue S, Yamada A, et al. High-efficiency CIGS submodules. Progress in Photovoltaics:Research and Applications,2012,20:595-599
    [22]Seike S, Shiosaki K, Kuramoto M, et al. Development of high-efficiency CIGS integrated submodules using in-line deposition technology. Solar Energy Materials and Solar Cells, 2011,95:254-256
    [23]Lundberg O. Band gap profiling and high speed deposition of Cu(In,Ga)Se2 for thin film solar cells:[Ph.D Thesis]. Polhensalen:Uppsala University,2003
    [24]王赫.顺序蒸发法制备Cu(In, Ga)Se2薄膜的反应机理及太阳电池研究:[博士论文].天津:南开大学,2011
    [25]Schfldstrfm J, Kessler J, Edoff M. Two-stage growth of smooth Cu(In,Ga)Se2 films using end-point detection. Thin Solid Films,2005,480-481:61-66
    [1]Gloeckler M, Sites J R. Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells. Journal of Applied Physics,2005,98:103703
    [2]Edoff M, Schleussner S, Wallin E, et al. Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules. Thin Solid Films,2011,519:7530-7533
    [3]Lundberg O, Bodegard M, Malmstrom J, et al. Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance. Progress in Photovoltaics:Research and Applications, 2003,11:77-88
    [4]Schfldstrfm J, Kessler J, Edoff M. Two-stage growth of smooth Cu(In,Ga)Se2 films using end-point detection. Thin Solid Films,2005,480-481:61-66
    [5]Cullity B D. Elements of x-ray Diffraction. Reading:Addison-Wesley,1956.270,466-7
    [6]Bodegard M, Lundberg O, Lu J, et al. Re-crystallisation and interdiffusion in CGS/CIS bilayers. Thin Solid Films 2003,431-432:46-52
    [7]Beck M E, Swartzlander-Guest A, Matson R, et al. CuIn(Ga)Se2-based devices via a novel absorber formation process. Solar Energy Materials and Solar Cells,2000,64:135-165
    [8]Liao D, Rockett A. Epitaxial growth of Cu(In,Ga)Se2 on GaAs(110). Journal of Applied Physics,2001,91:1978-1983
    [9]Hanna Q Mattheis J, Laptev V, et al. Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films. Thin Solid Films 2003,431-432:31-36
    [10]Contreras M A, Brian Egaas, David King, et al. Texture manipulation of CuInSe2 thin films Thin solid film,2000,361-362:167-171
    [11]Kim K H, Yoon K H, Yun J H, et al. Effects of Se flux on the microstructure of Cu(In,Ga)Se2 thin film deposited by a three-stage co-evaporation process. Electrochemical and Solid State Letters,2006,9:A382-A385
    [12]O.Lundberg, M.Bodegard, L.Stolt. Rapid growth of thin Cu(In,Ga)Se2 layers for solar cells. Thin Solid Films,2003,431-432:26-30
    [13]Schlenker T, Laptev V, Schock H W, et al. Substrate influence on Cu(In,Ga)Se2 film texture. Thin Solid Films,2005,480-481:29-32
    [14]Nishiwaki S, Siebentritt S, Giersig M, et al. Growth model of CuGaSe2 grains in a Cu-rich/Cu-poor bilayer process. Journal of Applied Physics,2003,94:6864-6870
    [15]Kessler J, Chityuttakan Y C, Lu J, et al. Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence:growth model and structural considerations. Progress in Photovoltaics:Research and Applications,2003,11:319-331
    [16]Ramanathan K, Noufi R, To B, et al. Processing and Properties of Sub-Micron CIGS Solar Cells. In:Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on.2006.380-383
    [17]Han S-H, Hermann A M, Hasoon F S, et al. Effect of Cu deficiency on the optical properties and electronic structure of CuInSe2 and CuIn0.8Ga0.2Se2 determined by spectroscopic ellipsometry. Applied Physics Letters,2004,85:576-578
    [18]Miguel A Contreras, Ramanathan K, AbuShama J, et al. Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells. Progress in Photovoltaics:Research and Applications,2005,13:209-216
    [19]Miguel A Contreras, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells. Progress in Photovoltaics:Research and Applications,1999,7:311-316
    [20]Virtuani A, Lotter E, Powalla M, et al. Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. Journal of Applied Physics,2006,99:014906
    [1]Han A J, Zhang Y, Song W, et al. Structure, morphology and properties of thinned Cu(In, Ga)Se2 films and solar cells. Semiconductor Science and Technology,2012,27:035022
    [2]Otte K, Lippold G, Hirsch D, et al. XPS and raman investigations of nitrogen ion etching for depth profiling of CuInSe2 and CuGaSe2. Thin Solid Films,2000,361-362:498-503
    [3]Roy S, Guha P, Kundu S N, et al. Characterization of Cu(In,Ga)Se2 films by Raman scattering. Materials Chemistry and Physics,2002,73:24-30
    [4]张有为,毕大炜,公祥南等.表面粗糙化来提高Si02中纳米硅的拉曼强度.中国科学:物理学力学天文学,2011,41:845-849
    [5]Djessas K, Yapi S, Masse G, et al. Diffusion of Cu, In, and Ga in In2Se3/CuGaSe2/Sn02 thin film photovoltaic structures. Journal of Applied Physics,2004,95:4111-4116
    [6]Gabor A M, Tuttle J R, Bode M H, et al. Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors. Solar Energy Materials and Solar Cells,1996,41-42: 247-260
    [7]Schleussner S M, Torndahl T, Linnarsson M, et al. Development of gallium gradients in three-stage Cu(In,Ga)Se2 co-evaporation processes. Progress in Photovoltaics:Research and Applications,2012,20:284-293
    [8]Marudachalam M, Birkmire R W, Hichri H, et al. Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films. Journal of Applied Physics,1997,82:2896-2905
    [9]Purwins M, Weber A, Berwian P, et al. Kinetics of the reactive crystallization of CuInSe2 and CuGaSe2 chalcopyrite films for solar cell applications. Journal of Crystal Growth,2006,287: 408-413
    [10]韩安军,张建军,李林娜等.衬底温度对太阳电池铝背反射电极性能的影响.太阳能学报,2011,5:698-703
    [11]Cho D-H, Lee K-S, Chung Y-D, et al. Electronic effect of Na on Cu(In,Ga)Se2 solar cells. Applied Physics Letters,2012,101:023901
    [12]Tuttle J R, Contreras M, Bode M H, et al. Structure, chemistry, and growth mechanisms of photovoltaic quality thin-film Cu(In,Ga)Se2 grown from a mixed-phase precursor. Journal of Applied Physics,1995,77:153-161
    [1]Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films,2005,480-481:520-525
    [2]Gabor A M, Tuttle J R, Bode M H, et al. Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In.Ga)2Se3 precursors. Solar Energy Materials and Solar Cells,1996,41-42: 247-260
    [3]Schleussner S M, Torndahl T, Linnarsson M, et al. Development of gallium gradients in three-stage Cu(In,Ga)Se2 co-evaporation processes. Progress in Photovoltaics:Research and Applications,2012,20:284-293
    [4]Han A J, Zhang Y, Song W, et al. Structure, morphology and properties of thinned Cu(In, Ga)Se2 films and solar cells. Semiconductor Science and Technology,2012,27:035022
    [5]Hegedus S S, Shafarman W N. Thin-film solar cells:Device measurements and analysis. Progress in Photovoltaics:Research and Applications,2004,12:155-176
    [6]Gloeclder M, Sites J R. Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells. Journal of Applied Physics,2005,98:103703
    [7]Shafarman W N, Birkmire R W, Marsillac S, et al. Effect of reduced deposition temperature, time, and thickness on Cu(In,Ga)Se2 films and devices. In:Proceedings of the 26th IEEE PVSEC. Anaheim,1997.331-334
    [8]Dullweber T, anna G H, Rau U, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells,2001,67:145-150
    [9]ChirilS A, Buecheler S, Pianezzi F, et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Material,2011,10:857-861
    [10]http://www.empa.ch/plugin/template/empa/3/131438/---/1=2
    [11]Couzinie-Devy F, Barreau N, Kessler J. Re-investigation of preferential orientation of Cu(In,Ga)Se2 thin films grown by the three-stage process. Progress in Photovoltaics: Research and Applications,2011,19:527-536
    [12]Caballero R, Kaufmann C A, Eisenbarth T, et al. The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films,2009,517: 2187-2190
    [13]Jung S, Ahn S, Yun J H, et al. Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics,2010,10: 990-996
    [14]Balboul M R, Schock H W, Fayak S A, et al. Correlation of structure parameters of absorber layer with efficiency of Cu(In,Ga)Se2 solar cell. Applied Physics A,2008,92:557-563
    [15]Xu C M, Sun Y, Li F Y, et al. Composition-induced structural modifications in the quaternary CuIn1-xGaxSe2 thin films:bond properties versus Ga content. Chinese Physics,2007,16: 788-794
    [16]Liao D, Rockett A. Epitaxial growth of Cu(In,Ga)Se2 on GaAs(110). Journal of Applied Physics,2001,91:1978-1983
    [17]Zhang S B, Wei S H. Reconstruction and energetics of the polar (112) and (-1-1-2) versus the nonpolar (220) surfaces of CuInSe2. Physical Review B,2002,65:081402
    [18]Wei S-H, Zhang S B, Zunger A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters,1998,72:3199-3201
    [19]Wada T, Kohara N, Nishiwaki S, et al. Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells. Thin Solid Films,2001,387:118-122
    [20]Eisenbarth T, Unold T, Caballero R, et al. Origin of defects in CuIn1-xGaxSe2 solar cells with varied Ga content. Thin Solid Films,2009,517:2244-2247
    [21]Edoff M, Schleussner S, Wallin E, et al. Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules. Thin Solid Films,2011,519:7530-7533
    [22]徐毓龙.氧化物与化合物半导体基础.西安:西安电子科技大学出版社,1991.4-15
    [23]Pyykko P, Atsumi M. Molecular Single-Bond Covalent Radii for Elements 1-118. Chemistry European Journal,2009,15:186-197
    [24]方俊鑫,陆栋.固体物理学(上册).上海:上海科学技术出版社,1980.164-174
    [25]Jasinski J, Swider W, Washburn J, et al. Crystal structure of k-In2Se3. Applied Physics Letters, 2002,81:4356-4358
    [26]Rudmann D, Kaelin M, Haug F J, et al. Impact of Na on structural properties and interdiffusion of CuInSe2 and CuGaSe2 thin films. In:Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. Osaka,2003.376-379
    [27]Lundberg O, Lu J, Rockett A, et al. Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells. Journal of Physics and Chemistry of Solids,2003,64:1499-1504
    [28]Schroeder D J, Berry G D, Rockett A A. Gallium diffusion and diffusivity in CuInSe2 epitaxial layers. Applied Physics Letters,1996,69:4068-4070
    [29]薛玉明. CIGS薄膜太阳电池材料及其表界面结构特性的研究:[博士论文].天津:南开大学,2006
    [1]Jiang C S, Contreras M A, Repins I, et al. How grain boundaries in Cu(In,Ga)Se2 thin films are charged:Revisit. Applied Physics Letters,2012,101:033903
    [2]Virtuani A, Lotter E, Powalla M, et al. Influence of Cu content on electronic transport and shunting behavior of Cu(In, Ga)Se2 solar cells. Journal of Applied Physics,2006,99: 014906-014911
    [3]刘智恩.材料科学基础.第三版.西安:西北工业大学出版社,2007.95,261-267
    [4]Couzinie-Devy F, Barreau N, Kessler J. Re-investigation of preferential orientation of Cu(In,Ga)Se2 thin films grown by the three-stage process. Progress in Photovoltaics: Research and Applications,2011,19:527-536
    [5]Barreau N, Painchaud T, Couzinie-Devy F, et al. Recrystallization of CIGSe layers grown by three-step processes:A model based on grain boundary migration. Acta Materialia,2010,58: 5572-5577
    [6]Schlenker T, Laptev V, Schock H W, et al. Substrate influence on Cu(In,Ga)Se2 film texture. Thin Solid Films,2005,480-481:29-32
    [7]李微,敖建平,何青等.衬底对Cu(In,Ga)Se2薄膜织构的影响.物理学报,2007,56:5009-5012
    [8]Miguel A. Contreras B E, David King, Amy Swartzlander and Thorsten Dullweber. Texture manipulation of CuInSe2 thin films Thin solid film,2000,361-362:167-171
    [9]Jaffe J E, Zunger A. Defect-induced nonpolar-to-polar transition at the surface of CuInSe2. Journal of Physics and Chemistry of Solids,2003,64:1547-1552
    [10]Zhang S B, Wei S H. Reconstruction and energetics of the polar (112) and (-1-1-2) versus the nonpolar (220) surfaces of CuInSe2. Physical Review B,2002,65:081402
    [11]Jaffe J E, Zunger A. Defect-induced nonpolar-to-polar transition at the surface of chalcopyrite semiconductors. Physical Review B,2001,64:241304
    [12]Liao D, Rockett A. The structure and morphology of (112)-oriented Cu(In,Ga)Se2 epitaxial films. Journal of Applied Physics,2008,104:094908
    [13]Gabor A M, Tuttle J R, Albin D S, et al. High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)Se3 precursor films. Applied Physics Letters,1994,65:198-200
    [14]Troni F, Sozzi G, Menozzi R. A numerical study of the design of ZnMgO window layer for Cadmium-free thin-film CIGS solar cells. In:Ph.D. Research in Microelectronics and Electronics (PRIME),20117th Conference on.2011.193-196
    [15]薛玉明.CIGS薄膜太阳电池材料及其表界面结构特性的研究:[博士论文].天津:南开大学,2006
    [16]张力.低衬底温度沉积CIGS薄膜及在柔性聚酰亚胺衬底太阳电池中的应用:[博士论文].天津:南开大学,2008
    [17]Wang H, Zhang Y, Kou X L, et al. Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process. Semiconductor Science and Technology,2010,25:055007
    [18]Liao D, Rockett A. Epitaxial growth of Cu(In,Ga)Se2 on GaAs(110). Journal of Applied Physics,2001,91:1978-1983
    [19]Mise T, Nakada T. Narrow-bandgap CuIn3 Te5 thin-film solar cells. Progress in Photovoltaics: Research and Applications,2011,
    [20]Ard M B, Granath K, Stolt L. Growth of Cu(In,Ga)Se2 thin films by coevaporation using alkaline precursors. Thin Solid Films,2000,361:9-16
    [21]Schfldstrfm J, Kessler J, Edoff M. Two-stage growth of smooth Cu(In,Ga)Se2 films using end-point detection. Thin Solid Films,2005,480-481:61-66
    [22]Liao D.{112} Polar Surfaces of Cu(In,Ga)Se2 Properties and Effects on Crystal Growth: Urbana-Champaign:University of Illinois,2003
    [23]Miguel A Contreras, Ramanathan K, AbuShama J, et al. Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells. Progress in Photovoltaics:Research and Applications,2005,13:209-216
    [24]Caballero R, Kaufmann C A, Eisenbarth T, et al. The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates. Thin Solid Films,2009,517: 2187-2190
    [25]Wei S-H, Zhang S B, Zunger A. Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics,1999,85:7214-7218
    [26]Cho D-H, Lee K-S, Chung Y-D, et al. Electronic effect of Na on Cu(In,Ga)Se2 solar cells. Applied Physics Letters,2012,101:023901
    [27]Niles D W, Al-Jassim M, Ramanathan K. Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1999,17:291-296
    [28]Kronik L, Cahen D, Schock H W. Effects of sodium on polycrystalline Cu(In,Ga)Se2 and its solar cell performance. Advanced Materials,1998,10:31
    [29]Ishizuka S, Yamada A, Islam M M, et al. Na-induced variations in the structural, optical, and electrical properties of Cu(In,Ga)Se2 thin films. Journal of Applied Physics,2009,106: 034908
    [30]Rudmann D, Kaelin M, Haug F J, et al. Impact of Na on structural properties and interdiffusion of CuInSe2 and CuGaSe2 thin films. In:Proceedings of 3rd World Photovoltaic Energy ConversionConference. Osaka,2003.376-379
    [31]Rudmann D, Bilger G, Kaelin M, et al. Effects of NaF coevaporation on structural properties of Cu(In,Ga)Se2 thin films. Thin Solid Films 2003,431-432:37-40
    [32]Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films,2005,480-481:520-525
    [33]Gabor A M, Tuttle J R, Albin D S, et al. High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films. Applied Physics Letters,1994,65:198-200
    [34]Rudmann D. Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells:[Ph.D Thesis]. Basel:University of Basel,2004
    [35]Braunger D, Hariskos D, Bilger G, et al. Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin Solid Films,2000,361-362:161-166
    [36]Schroeder D J, Berry G D, Rockett A A. Gallium diffusion and diffusivity in CuInSe2 epitaxial layers. Applied Physics Letters,1996,69:4068-4070
    [37]Lundberg O, Lu J, Rockett A, et al. Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells. Journal of Physics and Chemistry of Solids,2003,64:1499-1504
    [38]Tan X H, Ye S L, Fan B, et al. Effects of Na incorporated at different periods of deposition on Cu(In,Ga)Se2 films. Applied optics,2010,49:3071-3074
    [39]Yan Y, Noufi R, Al-Jassim M M. Grain-boundary physics in polycrystalline CuInSe2 revisited: Experiment and theory. Physical Review Letters,2006,96:205501
    [1]Compaan A D, Matulionis I, Nakade S. Laser scribing of polycrystalline thin films. Optics and Lasers in Engineering,2000,34:15-45
    [2]Heise G, Englmaier M, Hellwig C, et al. Laser ablation of thin molybdenum films on transparent substrates at low fluences. Applied Physics A,2011,102:173-178
    [3]Nolte S, Momma C, Jacobs H, et al. Ablation of metals by ultrashort laser pulses. Journal of the Optical Society of America B,1997,14:2716-2722
    [4]Hermann J, Benfarah M, Bruneau S, et al. Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. Journal of Physics D:Applied Physics, 2006,39:453
    [5]Kijima S. High-Temperature Degradation Mechanism of Cu(In,Ga)Se2-Based Thin Film Solar Cells. Applied Physics Express,2008,1:075002
    [6]Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version 39). Progress in Photovoltaics:Research and Applications,2012,20:12-20
    [7]Nishiwaki S, Siebentritt S, Giersig M, et al. Growth model of CuGaSe2 grains in a Cu-rich/Cu-poor bilayer process. Journal of Applied Physics,2003,94:6864-6870
    [8]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.10-11,92
    [9]Ishizuka S, Sakurai K, Yamada A, et al. Fabrication of wide-gap Cu(In1-xGax)Se2 thin film solar cells:a study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar Energy Materials and Solar Cells,2005,87:541-548
    [10]陈新亮MOCVD技术生长的ZnO薄膜及其在太阳电池上的应用研究:[博士论文].天津:南开大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700