用户名: 密码: 验证码:
可高效利用太阳光谱的ZnO透明导电薄膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺杂ZnO透明导电氧化物(TCO)薄膜以电阻率低、可见光透过率高、成本低、无毒等优势广泛地应用于太阳电池、平板显示等器件。在硅(Si)基薄膜太阳电池中,采用溅射后腐蚀方法制备的A1掺杂ZnO (AZO)薄膜已经成为Si基薄膜太阳电池重要的TCO材料之一。然而,通常所用的AZO薄膜存在长波透过率低、腐蚀后“弹坑”状绒面结构对长波光散射特性差的缺点,严重地制约了其在宽光谱高效Si基薄膜太阳电池中的应用。制备可高效利用太阳光谱的ZnO-TCO薄膜的关键在于提升Si基薄膜太阳电池的长波响应,以与太阳光的宽光谱匹配,才对提高电池的转换效率具有重要的意义。当前影响TCO长波响应的因素在于追求提高薄膜电导,而忽视了因高自由载流子浓度导致的长波波段吸收增加、使透过率下降。若以提高迁移率为目标,在维持电导不变的前提下降低载流子的浓度,就能提高该TCO薄膜长波透过率。
     基于此,本文利用高价态元素掺杂(每个原子可提供多个自由载流子),在维持高电导前提下,由于可减少掺杂量、降低了杂质散射、提高载流子迁移率,有利于延展ZnO薄膜长波透过率,以实现TCO的宽光谱透过特性;利用复合特征尺寸陷光结构的选择,分别实现提升不同光波段的散射特性的原理,从以上两个方面对可高效利用太阳光谱的ZnO-TCO薄膜进行研究,具体研究内容和创新工作如下:
     第一,利用基于密度泛函理论的Castep软件和磁控溅射技术,采用第一性原理和实验两个方面对高价态的W掺杂ZnO (WZO)进行研究。从模拟方面对WZO薄膜的光电特性进行预测;实验方面,系统地研究了沉积参数对制备的WZO薄膜的光电特性及腐蚀后的形貌等特性的影响。通过优化溅射工艺,取得的结果如下:①实现了掺W的ZnO薄膜确实在长波具有良好的透过响应,以空气为参比,在400-1800nm波段其平均透过率高于85%(衬底温度>200℃);②借鉴ZnO薄膜中微量H的介入能提高薄膜的结晶性能,采用W、H共掺方式制备HWZO薄膜并进行优化,在室温下获得了电阻率8.33×10-4Ω.cm、载流子迁移率40.8cm2/Vs,以空气为参比,400-1800nm平均透过率高于80%的HWZO薄膜,这为柔性衬底太阳电池的应用研究提供实用化的技术基础;③通过优化影响溅射薄膜质量的沉积参数(溅射气压和溅射功率),结合溅射后腐蚀工艺,在室温条件下获得了以溅射法难于得到的、有良好陷光特性的HWZO薄膜。用作μc-Si:H电池的前电极,其量子效率高于参比用FTO/AZO的薄膜。良好的光电特性和光学散射特性表明:WZO薄膜具有作为高效宽光谱Si基薄膜叠层太阳电池用ZnO薄膜的潜力。
     第二,对Mo掺杂ZnO (MZO)薄膜进行了系统的理论与实验研究。①模拟结果表明:Mo掺入ZnO后,MZO薄膜表现出具有宽光谱透过、且呈n型导电特性。通过优化制备的沉积参数,获得了以空气为参比,在400-1100nm波段平均透过率高于75%,电学特性(7.68×10-4Ω·cm)优于文献报道的MZO薄膜。②引入H2共溅射方式,MZO薄膜的光、电学特性进一步提升,电阻率减小到4.71×10-4Ω·cm,400-1100nm的平均透过率提高到80%以上。③优化后HMZO薄膜和MZO薄膜分别作为前电极应用于μc-Si:H电池和μc-SiGe:H电池,均取得了优于参比用FTO/AZO薄膜和工业AZO薄膜作电极的转换效率。
     第三,基于复合特性尺寸陷光结构分别实现改善不同波段光散射特性的思想,制备了对长波光散射特性高的AZO和AZO/HAZO、AZO/ZnO薄膜。①制备的复合特征尺寸的AZO薄膜较传统溅射后腐蚀AZO薄膜无论在电学特性、400-1100nm光散射特性还是在μc-Si:H电池应用的转换效率等方面均优于后者。550nm、800nm和1100nm的Haze值分别由传统溅射后腐蚀AZO薄膜的42.69%、18.82%和3.07%提高到89.91%、70.53%和17.63%,分别提高了94.2%,274.76%和468.71%;制备了短路电流密度(Jsc)提高.9.05%和电池效率提高14.64%的μc-Si:H电池。②进一步优化工艺条件之后,制备的复合特征尺寸的AZO薄膜对光的散射特性进一步增强,应用于μc-Si:H电池的转换效率进一步提升。③尝试采用低掺杂AZO薄膜和本征ZnO薄膜作为小特征尺寸陷光结构薄膜,制备了具有复合特征尺寸且长波区域透过率高的AZO/HAZO和AZO/ZnO薄膜,并将制备的AZO/ZnO薄膜在a-Si:H/μc-Si:H叠层太阳电池中的应用进行了研究。
Doped ZnO, as transparent electrodes, has been widely used in thin film solar cells, flat panel display devices, owing to its intrinsic advantages, such as low resistivtiy, high visible transmittance, low cost and nontoxic. Textured Al doped ZnO, prepared by post-etched method has been one of the main TCO materials for silicon based thin film solar cells. However, all commonly used AZO films possess the following drawbacks, low transmittance and weak light scattering properties in the long-wavelength region, which seriously restricted the long-wavelength response of broad spectral high conversation efficiency Si based thin film solar cells. Therefore, fabrication of ZnO-TCO with wide broad spectral range light trapping ability was great importance for improving the long-wavelength response and enhancing the conversion efficiency of Si based thin film solar cells. In this thesis, wide broad spectral range light trapping ZnO-TCO films were achieved using two methods by magnetron sputtering technique. The first one was based on the theory of high valence difference dopants introducing lower doping content and lower ion scattering for improving carrier mobility and long-wagelength transmittance. The other was based on broad surface feature distributions can improve light trapping effect in different region. All the fabricated ZnO-TCO films were used as front contact in p-i-n type Si based thin film solar cells. Detailed description of the research was listed as following.
     Firstly, the properties of high valence difference W doped ZnO films (WZO) are investigated by means of Castep software based on the density-functional theory (DFT) and pulsed magnetron sputtering technique. The influence of deposition condition on the optical, electrical properties as well as morphologies characteristics of WZO films was systematically investigated. The results were listed below:①The theoretical result shows that after incorporation of W into ZnO, the WZO film shows a typical n-type metallic characteristic and high transmittance in the long-wavelength region.②The experimental result shows that WZO film possesses good broad spectral range transmittance characteristics with an average transmittance over85%at the wavelength region from400nm to1800nm (substrate temperature over200℃).③The conductivity was improved after co-doped with H2. With the optimal H2/Ar doping ratio of7.84%, low resistivity and broad spectral range transmittance HWZO film was achieved at room temperature (Rt), with resistivity of8.33×10-4Ω·cm, carrier mobility of40.8cm2/Vs and average transmittance between400nm to1800nm over80%.④Good light trapping HWZO film was fabricated at Rt by optimizing the deposition paramaters, sputtering pressure and sputtering power. Higher EQE compared to FTO/AZO film used as front contact in μc-Si:H solar cell, showing that the WZO thin film has a great potential application as front contact for high efficiency broad spectral range Si based tandem solar cells.
     Secondly, both the theoretical and experimental investigation were conducted on Mo doped ZnO (MZO) film.①The theoretical results showing that after introducing Mo into ZnO, the MZO film shows high transmittance in broad spectral range and n type conductivity. Low resistivity (7.68×10-4Ω·cm) and high transmittance (average transmittance between400nm to1100nm over75%, air referenced) MZO film was obtained after deposition paramaters optimized. The resistivity was lower than that of the reported MZO films.②After incorporation of H2, the optical and electrical properties were further improved, the resistivity was reduced to4.71×10-4Ω·cm and average transmittance between400nm to1100nm increased to80%.③Higher conversation efficiency was obtained compared to the referenced FTO/AZO and industrial AZO film used as front.contact in μc-Si:H and μc-SiGe:H solar cell, respectively.
     Thirdly, high light trapping AZO, AZO/HAZO and AZO/ZnO films in long-wavelength region were fabricated based on the theory that with broad surface feature distributions for improving light trapping effect in different region.①Compared to the traditional post-etched AZO film, lower resistivity, higher light trapping effect (400-1100nm) was obtained. Using this novel AZO film as front contact, there is an enhancement of9.05%,2.17%,3.03%and14.64%for short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and conversation efficiency (Eff.) was achieved compared to the traditional post-etched AZO film for μc-Si:H solar cell.②The light trapping effect and Eff. were further enhanced after optimization.③Higher long-wavelength transmittance AZO/HAZO and AZO/ZnO films were fabricated using lower doped AZO and intrinsic ZnO film as the small feature size feature topography, respectively. The application of AZO/ZnO film as front contact for a-Si:H/μc-Si:H solar cell was investigated.
引文
[1]Luque M, Hegedus S. Handbook of photovoltaic science and engineering. England:John Wiley & Sons, Ltd,2003.16-19
    [2]Shah A V, Platz R, Keppner H. Thin-film silicon solar cells:A review and selected trends. Solar Energy Materials and Solar Cells,1995,38:501-520
    [3]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering,2003, R40:1-46
    [4]Kim S, Lee S E, Lee H M. Development of high efficient Si thin film solar module based on triple-junction cell technology. The 22nd International Photovoltaic Science and Engineering Conference,2012, November 05-09, Hangzhou, China
    [5]Yan B J, Yue G Z, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a> 16% efficient multi-junction thin-film silicon solar cell. Applied Physics Letter,2011,99: 113512-1-113512-3
    [6]Lewis B G, Paine D C. Applications and Processing of Transparent Conducting Oxides. MRS Bulletin,2000,8:22-27
    [7]Dagkaldiran U, Gordijn A, Finger F, et al. Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD. Materials Science and Engineering B, 2009,159-160:6-9
    [8]Lien S Y. Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films,2010,518(21):S10-S13
    [9]Fay S, Feitknecht L, Schluchter R, et al. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells,2006,90:2960-2967
    [10]Wanka H N, Schubert M B, Lotter E. et al. Growth of a-Si:H on transparent conductive oxides for solar cell applications. Solar Energy Materials and Solar Cells,1996, (41/42): 519-527
    [11]Granqvist C G. Transparent conductors as solar energy materials:A panoramic review. Solar Energy Materials & Solar Cells,2007,91:1529-1598
    [12]Sittinger V, Ruske F, Werner W, et al. ZnO:Al films deposited by in-line reactive AC magnetron sputtering for a-Si:H thin film solar cells. Thin Solid Films,2006,496:16-25
    [13]Kluth'O, Rech B, Houben L, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films,1999,351:247-253
    [14]Berginski M, Hupkes J, Schulte M, et al. The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. Journal of Applied Physics,2007,101:074903-1~074903-11
    [15]Muller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Solar Energy,2004,77:917-930
    [16]Beyer W, Hupkes J, Stiebig H. Transparent conducting oxide films for thin film silicon photovoltaics. Thin Solid Films,2007,516:147-154
    [17]Rech B, Kluth O, Repmann T, et al. New materials and deposition techniques for highly efficient silicon thin film solar cells. Solar Energy Materials & Solar Cells,2002,74: 439-447
    [18]Pust S E, Becker J P, Worbs J, et al. Electrochemical etching of Zinc oxide for silicon thin film solar cell applications. Journal of The Electrochemical Society,2011,158 (7): D413-D419
    [19]Lin Y C, Yen W T, Shen C H, et al. Surface texturing of Ga-doped ZnO thin films by pulsed direct-current magnetron sputtering for photovoltaic applications. Journal of Electronic Materials,2012,41(3):442-450
    [20]Lee J M, Yun S J, Kim J K, et al. Texturing of Ga-doped ZnO transparent electrode for a-Si:H thin film solar cells. Electrochemical and Solid-State Letters,2011,14 (11) B124-B126
    [21]Fay S, Steinhauser J, Nicolay S, et al. Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells. Thin Solid Films,2010,518:2961-2966
    [22]Fay S, Steinhauser J, Oliveira N, et al. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films,2007,515:8558-8561
    [23]Yoo J, Lee J, Kim S, et al. High transmittance and low resistive ZnO:Al films for thin film solar cells. Thin Solid Films,2005,480-481:213-217
    [24]Muller J, Schope G, Kluth O, et al. Upscaling of texture-etched zinc oxide substrates for silicon thin film solar cells. Thin Solid Films,2001,392:327-333
    [25]Hiipkes J, Owen J, Pust S E, et al. Chemical etching of Zinc Oxide for thin-film silicon solar cells. Chem Phys Chem,2012,13:66-73
    [26]Zhu H, Hupkes J, Bunte E. Novel etchingmethod on high rate ZnO:Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells. Solar Energy Materials & Solar Cells,2011,95:964-968
    [27]Rech B, Repmann T, Van den Donker M N, et al. Challenges in microcrystalline silicon based solar cell technology. Thin Solid Films,2006,511-512:548-555
    [28]Yoshino M, Konagai M. Electrical and optical properties of boron-doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 1991,70(11):7119-7123
    [29]Selvan J A A, Delahoy A E, Guo S Y. A new light trapping TCO for nc-Si:H solar cells. Solar Energy Materials & Solar Cells,2006,90:3371-3376
    [30]孟扬.高价态差掺钼氧化物透明导电薄膜的研究:[博士学位论文].上海:复旦大学,69
    [31]Newhouse P F, Park C H, Keszler D A, et al. High electron mobility W-doped In2O3 thin films by pulsed laser deposition. Applied Physics Letters,2005,87:112108-1~112108-3
    [32]van Hest M F A M, Dabney M S, Perkins J D, et al. High-mobility molybdenum doped indium oxide. Thin Solid Films,2006,496:70-74
    [33]Meng Y, Yang X L, Chen H X, et al. A new transparent conductive thin film In203:Mo. Thin Solid Films,2001,394:219-223
    [34]Yoshida Y, Wood D M, Gessert T A, et al. High-mobility, sputtered films of indium oxide doped with molybdenum. Applied Physics Letters,2004,84(12):2097-2099
    [35]Gupta R K, Ghosh K, Mishra S R, et al. Structural, optical and electrical characterization of highly conducting Mo-doped In2O3 thin films. Applied Surface Science,2008,254: 4018-4023
    [36]Gupta R K, Ghosh K, Mishra S R, et al. Opto-electrical properties of Ti-doped In2O3 thin films grown by pulsed laser deposition. Applied Surface Science,2007,253:9422-9425
    [37]Koida T, Kondo M. High-mobility transparent conductive Zr-doped In2O3. Applied Physics Letters,2006,89:082104-1~082104-3
    [38]Gupta R K, Ghosh K, Mishra S R, et al. High mobility W-doped In2O3 thin films:Effect of growth temperature and oxygen pressure on structural, electrical and optical properties. Applied Surface Science,2008,254:1661-1665
    [39]Ngom B D, Mpahane T, Manyala N, et al. Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Applied Surface Science,2009,255:4153-4158
    [40]Zhang H F, Liu H F, Lei C X, et al. Tungsten-doped ZnO transparent conducting films deposited by direct current magnetron sputtering. Vacuum,2010,85:184-186
    [41]Lin Y C, Wang B L, Yen W T, et al. Effect of process conditions on the optoelectronic characteristics of ZnO:Mo thin films prepared by pulsed direct current magnetron sputtering. Thin Solid Films,2010,518:4928-4934
    [42]Xiu X W, Zhao W J. The properties of transparent conducting molybdenum-doped ZnO films grown by radio frequency magnetron sputtering. Chinese Physics B,2012,21(6) 066802-1~066802-4
    [43]王三坡,沈杰,章壮健,等.新型透明导电ZnO:Mo薄膜.真空科学与技术学报,2008,28(1):1-5
    [44]Bessonov A, Cho Y, Jung S J, et al. Nanoimprint patterning for tunable light trapping in large-area silicon solar cells. Solar Energy Materials & Solar Cells,2011,95:2886-2892
    [45]Hongsingthong A, Krajangsang T, Yunaz I A, et al. ZnO Films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells. Applied Physics Express,2010,3:051102-1~051102-3
    [46]Boccard M, Battaglia C, Hanni S, et al. Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells. Nano Letters,2012,12: 1344-1348
    [47]Pearton S J, Norton D P, Ip K, et al. Recent propress in processing and properties of ZnO. Superlattices and Microstructures,2003,34:3-32
    [48]Look D C. Recent advances in ZnO materials and devices. Materials Science and Engineering B,2001,80:383-387
    [49]Klingshirn C. The luminescence of ZnO under high one-and two-Quantum excitation. physica status solidi (b),1975,71(2):547-556
    [50]Chen L L, Ye Z Z, Lu J G, et al. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Applied Physics Letters,2006,89:252113-1~ 252113-3
    [51]Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98(4):041301-1~041301-103
    [52]龚丽.ZnO透明导电薄膜的制备与掺杂研究:[博士学位论文].浙江:浙江大学,5-6
    [53]Wyckoff R W G Crystal Structures (2nd ed). New York:Wiley,1986.112
    [54]Ellmer K, Klein A, Rech B. Transparent conductive Zinc oxide, basics and applications in thin film solar cells. Berlin, Darmstadt:Materials Science,2007.1-11
    [55]Norton D P, Heo Y W, Ivill M P, et al. ZnO:growth, doping & processing. Materials Today, 2004,7(6):34-40
    [56]焦宝臣.超声喷雾热分解法制备法制备ZnO透明导电薄膜的研究:[博士学位论文].天津:南开大学,9-10
    [57]龚丽.ZnO透明导电薄膜的制备与掺杂研究:[博士学位论文].浙江:浙江大学,7
    [58]Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Applied Physics Letters,2001,78(9):1237-1239
    [59]Lee E C, Kim Y S, Jin Y G, et al. Compensation mechanism for N acceptors in ZnO. Physical Review B,2001,64(8):085120-1~085120-5
    [60]Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B,2002,66(7):073202-1-073202-3
    [61]Matsubara K, Fons P, Iwata K, et al. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films,2003,431-432:369-372
    [62]Kohiki S, Nishitani M, Wada T. Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. Journal of Applied Physics,1994, 75(4):2069-2072
    [63]Ito N, Sato Y, Song P K, et al. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films,2006,496:99-103
    [64]叶志镇,吕建国,吕斌,等.《半导体薄膜技术与物理》.杭州:浙江大学出版社,2008.34-36
    [65]李琳娜.适用于硅基薄膜太阳电池的ZnO陷光材料的研究:[博士学位论文].天津:南开大学,6
    [66]Jung S M, Kim Y H, Kim S I, et al. Characteristics of transparent conducting Al-doped ZnO films prepared by dc magnetron sputtering. Current Applied Physics,2011,11:S191-S196
    [67]Szyszka B. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films,1999,351:164-169
    [68]王延峰,黄茜,宋庆功,等.W掺杂ZnO透明导电薄膜的理论及实验研究.物理学报, 2012,61(13):137801-1~137801一6
    [69]刘恩科,朱秉升,罗晋升,等.《半导体物理学》.北京:电子工业出版社,2003.375-382
    [70]Nakada T, Ohkubo Y, Kunioka A. Tuxture ZnO:Al films for solar cells by DC-magetron sputtering in water vapor plasma. Conference Record of the Twenty Second IEEE. Las Vegas, NV:Photovoltaic Specialists Conference,1991,1389-1392
    [71]Sarkar A, Ghosh S, Chaudhuri S, et al. Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films,1991,204(2):255-264
    [72]Swanepoel R. Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E:Scientific Instruments,1983,16(12):1214-1222
    [73]何宇亮,陈光华,张仿清.《非晶态半导体物理学》.北京:高等教育出版社,1989.56-62
    [74]Jauncey G E M. Note on the theory of the modified reflection of x-rays by crystal. Physical Review,1941,59:456-458.
    [75]Patterson A L. The Scherrer formula for X-ray particle size determination. Physical Review, 1939,56:978-982.
    [76]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code. Journal of Physics:Condensed matter,2002,14:2717-2744
    [77]Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters,1980,45(7):566-569
    [78]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B,1981,23:5048-5079
    [79]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B,1990,41:7892-7895
    [80]Monkhorst H J, Pack J D. Special point for Brillouin-zone integrations. Physical Review B, 1976,13(12):5188-5192
    [81]Pfrommer B G, Cote M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics,1997,131(1):233-240
    [82]李鲁艳ZnO基稀磁半导体的铁磁性机理:[博士学位论文].天津:南开大学,37~38
    [83]沈学础.《半导体光谱和光学性质》(第二版).北京: 科学出版社,1992,76-94
    [84]Sato T, Suzuki H, Kido O, et al. Novel method of doping tungsten into zinc oxide ultrafine particle using RF plasma system. Journal of Crystal Growth,2004,265:149-153
    [85]Van de Walle C G, Neugebauer J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature,2003,423:626-628
    [86]Liu X D, Jiang E Y, Li Z Q, et al. Electronic structure and optical properties of Nb-doped anatase TiO2. Applied Physics Letters,2008,92:252104-1~252104-3
    [87]Chun B S, Wu H C, Abid M, et al. The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films. Applied Physics Letters,2010,97:082109-1-082109-3
    [88]Zhou X H, Hu Q H, Fu Y. First-principles LDA+U studies of the In-doped ZnO transparent conductive oxide. Journal of Applied physics,2008,104:063703-1~063703-6
    [89]张富春,张志勇,张威虎,等AZO (ZnO:Al)电子结构与光学性质的第一性原理计算. 光学学报,2009,29(4):1025~1031
    [90]Kim K H, Park K C, Ma D Y. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. Journal of Applied physics,1997,81(12):7764-7772
    [91]Cao F, Wang Y D, Li L, et al. Influence of O2/Ar ratio on the structural, electrical, and optical properties of transparent conductive zirconium-doped ZnO films prepared by radiofrequency sputtering. Scripta Materialia,2009,61:231-233
    [92]Ding J J, Chen H X, Ma S Y. The Al-doping and post-annealing treatment effects on the structural and optical properties of ZnO:Al thin films deposited on Si substrate. Applied Surface Science,2010,256:4304-4309
    [93]Fang Z B, Tan Y S, Liu X Q, et al. Preparation of transparent conductive ZnO:Tb films and their photoluminescence properties. Chinese Physics,2004,13(8):1330-1333
    [94]Karazhanov S Zh, Ravindran P, Kjekshus A, et al. Coulomb correlation effects in zinc monochalcogenides. Journal of Applied physics,2006,100:043709-1~043709-11
    [95]Xu Y N, Ching W Y. Electronic, optical, and structural properties of some wurtzite crystals. Physical Review B,1993,48:4335-4351
    [96]Palacios P, Sanchez K, Wahnon P, Ab-initio valence band spectra of Al, In doped ZnO. Thin Solid Films,2009,517:2448-2451
    [97]Ghosh S, Sarkar A, Chaudhuri S, et al. Grain boundary scattering in aluminium-doped ZnO films. Thin Solid Films,1991,205(1):64-68
    [98]Burstein E, Washington D C. Anomalous optical absorption limit in InSb. Physical Review, 1954,93:632-633
    [99]Moss T S. The interpretation of the properties of Indium antimonide. Proceedings of the Physical Society. Section B,1954,67:775-782
    [100]Igasaki Y, Saito H. The effects of zinc diffusion on the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering. Thin Solid Films,1991,19(2):223-230
    [101]Van de Walle C G. Hydrogen as a Cause of Doping in Zinc Oxide. Physical Review Letters, 2000,85(5):1012-1015
    [102]Liu W F, Du G T, Sun Y F, et al. Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar+H2 ambient at low temperature. Applied Surface Science,2007, 253:2999-3003
    [103]Lee S H, LeeT S, Lee K S, et al. Characteristics of hydrogen co-doped ZnO:Al thin films. Journal of Physics D:Applied Physics,2008,41:095303-1~095303-7
    [104]Wang Y F, Zhang X D, Huang Q, et al. Room temperature deposition of highly conductive and transparent hydrogen and tungsten co-doped ZnO films for thin film solar cells applications. Solar Energy Materials & Solar Cells,2013,110:94-97
    [105]Liu W F, Du G T, Sun Y F, et al. Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering:H2-induced property changes. Thin Solid Films,2007,515: 3057-3060
    [106]Masetti G, Severi M, Solmi S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Transactions on Electron Devices, 1983,30:764-769
    [107]Singh A V, Mehra R M, Buthrath N, et al. Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. Journal of Applied Physics,2001,90:5661-5665
    [108]Wang Y P, Lu J G, Bie X, et al. Transparent conductive Al-doped ZnO thin films grown at room temperature. Journal of Vacuum Science and Technology A,2011,29: 031505-1-031505-6
    [109]Oliveira C, Rebouta L, de Lacerda-Aroso T, et al. Structural and electrical properties of Al doped ZnO thin films deposited at room temperature on poly(vinilidene fluoride) substrates. Thin Solid Films,2009,517:6290-6293
    [110]Lee J, Lee D, Lim D, et al. Structural, electrical and optical properties of ZnO:Al films deposited on flexible organic substrates for solar cell applications. Thin Solid Films,2007, 515:6094-6098
    [111]Oh B Y, Jeong M C, Lee W, et al. Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Groth,2005,274:453-457
    [112]王延峰,张晓丹,黄茜,等.室温制备低电阻率高透过率H,W共掺杂ZnO薄膜.物理学报,2013,62(1):017803-1~017803-7
    [113]Strohmeier B R, Hercules D M. Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina. Journal of Catalysis,1984,86(2):266-279
    [114]Chen M, X Wang, Yu Y H, et al. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science,2000,158:134-140
    [115]Nefedov V I, Gati D, Dzhurinskii B F, et al. Zh. Neorg. Khimii,1975,20:2307
    [116]Ng K T, Hercules D M. Journal of Physical Chemisty,1976,80:2095
    [117]Lv M S, Pang Z Y, Xiu X W, et al. Effect of RF power on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering. Chin Phys,2007,16(2):548-552
    [118]Zhang D H, Yang T L, Ma J, et al. Preparation of transparent conducting ZnO:Al films on polymer substrates by r.f. magnetron sputtering. Applied Surface Science,2000,158(1-2): 43-48
    [119]Kluth O, Schope G, Hupkes J, et al. Modified Thornton model for magnetron sputtered zinc oxide:film structure and etching behaviour. Thin Solid Films,2003,442:80-85
    [120]Zhu F R,Huan C H A, Zhang K R, et al. Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy. Thin Solid Films,2000,359: 244-250
    [121]Miyata T, Suzuki S, Ishii M, et al. New transparent conducting thin films using multicomponent oxides composed of ZnO and V2O5 prepared by magnetron sputtering. Thin Solid Films,2002,411:76-81
    [122]Pei Z L, Sun C, Tan M H, et al. Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films. Journal of Applied physics,2001,90:3432-3436
    [123]Wu C G, Shen J, Ma J, et al. Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering. Semiconductor Science and Technology,2009,24:125012-1~125012-6
    [124]Assuncao V, Fortunato E, Marques A, et al. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films,2003:427:401-405
    [125]Sundaram K B, Khan A. Characterization and optimization of zinc oxide films by r.f. magnetron sputtering. Thin Solid Films,1997,295:87-91
    [126]Haacke G New figure of merit for transparent conductors. Journal of Applied Physics, 1976,47(9):4086-4089
    [127]Zhang X D, Huang Q, Wang Y F, et al. Advanced light trapping materials:Double layer ZnO:B based transparent conductive oxide. Thin Solid Films,2011,520:1186-1191
    [128]Wang Y F, Huang Q, Wei C C, et al. Improvement of electrical and optical properties of molybdenum doped zinc oxide films by introducing hydrogen. Applied Surface Science, 2012,258:8797-8801
    [129]Kim D H, Lee S H, Lee G H, et al. Effects of deposition temperature on the effectiveness of hydrogen doping in Ga-doped ZnO thin films. Journal of Applied Physics,2010,108: 023520-1-023520-5
    [130]Wang F H, Chang H P, Tseng C C, et al. Effects of H2 plasma treatment on properties of ZnO:Al thin films prepared by RF magnetron sputtering. Surface & Coatings Technology, 2011,205:5269-5277
    [131]Chen L Y, Chen W H, Wang J J, et al. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Applied Physics Letters,2004,85: 5628-5630
    [132]Kim W M, Kim Y H, Kim J S, et al. Hydrogen in polycrystalline ZnO thin films. Journal of Physics D:Applied Physics,2010,43:365406-1-365406-5
    [133]Ellmer K. et al. Resistivity of polycrystalline zinc oxide films:current status and physical limit. Journal of Physics D:Applied Physics,2001,34:3097-3108
    [134]Soderstrom T, Haug F J, Terrazzoni-Daudrix V, et al. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics. Journal of Applied Physics,2008,103: 114509-1-114509-8
    [135]Python M, Vallat-Sauvain E, Bailat J, et al. Relation between substrate surface morphology and microcrystalline silicon solar cell performance. Journal of Non-Crystalline Solids, 2008,354:2258-2262
    [136]Isabella O, Krc J, Zeman M. Modulated surface textures for enhanced light trapping in thin-film silicon solar cells. Applied Physics Letters,2010,97:101106-1-101106-3
    [137]Wang Y F, Zhang X D, Bai L S, et al. Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions. Applied Physics Letters,2012,100:263508-1~263508-4
    [138]Hong R J, Jiang X, Szyszka B, et al. Comparison of the ZnO:Al films deposited in static and dynamic modes by reactive mid-frequency magnetron sputtering. Journal of Crystal Growth,2003,253:117-128
    [139]Sun K W, Zhou W C, Huang S S, et al. Effect of Sputtering Pressure on Al-doped ZnO Films by DC Magnetron Sputtering. Journal of Inorganic Materials,2012,27(10): 1112-1116
    [140]Huang Q, Liu Y, Yang S S, et al. Hydrogen mediated self-textured zinc oxide films for silicon thin film solar cells. Solar Energy Materials & Solar Cells,2012,103:134-139
    [141]Yang S S, Wang Y F, Bai L S, et al. Transparent double-period electrode with effective light management for thin film solar cells. RSC Advances,2013,3:208-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700