用户名: 密码: 验证码:
渭—库绿洲土壤电导率反演模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是干旱半干旱地区土地资源退化形式之一。经常发生在蒸发强度大,降水量少且地下水位高的地区。土壤盐渍化直接或间接地影响着人类生活和农业生产与发展。为了管理和准确评价盐渍化情况,定量描述盐渍化的程度与分布是非常重要的。但随着定量遥感研究的发展,定量提取盐渍化信息的要求也提高,像元尺度的数据不能满足需求。同时,国内外已有研究表明,盐渍化土壤遥感监测研究中,单一利用盐渍化土壤光谱特征是不能全面、准确地反映土壤盐渍化信息。因此有必要加以修改或发展图像识别算法,适应定量提取区域尺度盐渍化土壤信息的新要求。
     本研究以混合像元提纯为突破口,减少了由于地物波普的复杂性,传感器空间分辨率的局限性所导致的混合像元普遍存在而引起的影像信息不确定性的问题。在此基础上,选择植被和土壤光谱特征作为盐渍化土壤的两个关键指标,利用光谱角制图模型(SAM)获取土壤盐渍化图并计算归一化差异植被指数(NDVI)。同时考虑土壤水分,利用土壤水分遥感监测模型(PDI)提取土壤水分信息。最后建立综合反应电导率,植被光谱响应指数与土壤水分之间的非线性回归模型。结果表明:SAM获取的土壤盐渍化图与野外实测的点尺度电导率数据扩展到区域尺度进行验证,相关性达到0.76,较好的表示地表土壤盐渍化程度。所建立的非线性回归模型中因变量与自变量的相关系数R=0.78,相应的显著值为0.001,表示结果在0.05的水平上是显著的。同时采用F检验法对回归方程进行显著性检验,F=15.384说明此模型有很好的拟合作用。
Soil salinization is one of the soil degradation form in arid and semi-arid areas and it always occurs in high evaporotion , low precipitation and high ground water table area. Soil salinization affect directly or indrectly human life, agricultural productivity and development. For management purposes, quentifying both the extent and distribution of salinization is extrimly important.But with development of quantitative Remote Sensing monitoring, requirement for the quantitative extraction of salinized information is getting stricted and pixel scale data did not satisfy our demand.Domestic and overseas study shows that, in soil salinization monitoring study, using single salinized soil spectrum can not reflect salinization informatiom correctly. Therefore, modifying or advancing the image identifying algorithm is new desire for the extraction of regional soil salinization.
     This study starting with purification of mixed pixels to reduce the uncertainty of information as a result of mixed pixels widely contained in the Remote Sensing image because of the complexity of spectrum taken from the field and limit spatial resolution of sensor .Therefore, we used Spectral Angle Mapper (SAM) as a mapping method to generated soil electrical conductivity map and calculated Normalized Diffrence Vegetation Index(NDVI) togather with extracted the Soil Moisture Content (SM) through model of soil moisture monitoring by remote sensing (PDI).At last, we applied nonlinear regression model to identifying the relations among Electrical Conductivity(EC) ,Normalized Diffrence Vegetation Index(NDVI) and Soil Moisture Content(SM) .Result shows that, we used SAM to obtain soil salinization (EC) map and integrated with field data which consist of measurement of electrical conductivity (EC) are obtained by the combination of geophysical methods to validate the extended regional data. Accuracy is 0.7584, 0. 7388 respectivly and can preferably express the salinization degree.Correlation coefficient between dependent and indepentdent variables is 0.78, corresponding value is 0.001in nonlinear regression model that we used. Result refers that the function we gained is distinct on level0.05. At the same time ,we used F inspection method to inspect the distinctness of regression model, F=15.384 explains that this model has been collaborated very well.
引文
[1] Singh A N, Kristof S J, Baumgardner M R. Delineating salt-affected soils in the Gangatic Plain India by digital analysis of Landsat data [R]. Purdue University Laboratory for applications of remote sensing. Technical Report, 1977. 111-477.
    [2] Rao B. R. M., Dwivedi R. S., Venkataratnam L, et al. Mapping the magnitude of sodicity in part of the Indio-Gangetic Plains of Uttar Pradesh,Northern India Using Landsat-TM data[J]. Int. Journal of Remote Sensing.1991, 13(3):419-425.
    [3] Rao B R M , Sankar T R, Dwivedi R S, et al. Spectral Behavior of salt-affected soils[J]. International Journal of Remote Sensing. 1995, 16(12):2125-2136.
    [4] G.I. Metternicht. Fuzzy classification of JERS-1 SAR data an evaluation of its performance for soil salinity mapping[J]. Ecological Modelling.1998, 111:61-74.
    [5] Dehaan R L,Taylor G R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization[J]. Remote Sensing of Environment .2002,(80):406-418.
    [6] Silvestri S, Marani M, Settl J etal. Salt marsh vegetation radiometry Data analysis and scaling[J]. Remote Sensing of Environment.2002, 80 :473-482.
    [7] Dehaan R L. Tay1or G R.FieId-derived Spectra of Sa1inized Soi1s and Vegetation as India ca—tors of Irrigation—induced Soi1 Sa1inization [J].Remote Sensing.Envir.2002,(80):406-417.
    [8] D.WANG,C.WILSON,M.C.SHANNON.Interpretation of sa1inity and irrigation effects on soybean canopy ref1ectance in vi sib1e and near infra—red spectrum domain[J].Int.J.remote sensing. 2002, 23(5):8ll一824.
    [9] Taylor G R, Mah A H, et al. Characterization of saline soils using Airbrone Radar Imagery [J]. Remote Sensing of Environment.1996, 57(3): 127-142.
    [10] Fouad A1一Khaier,2003,Soi1 Sa1inity Detection Using Sate11ite Remote Sensing, Ph.D Thesis,Internationa1 Institute For Geo—Information Science And Earth Observation Enschede.Nether1ands[EB/OL].http://www.itc.nl/library/Papers-003/msc/wrem/khaier.pdf.2004-04-09.
    [11] Abd EI Kadar Douaoui, Herve Nibolas, Christian Walter. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data [J]. Geoderma.2006, 134:217-230
    [12] SIMóN M ,GARCíA I. Physico-chemical properties of the soil saturation extracs: estimation from electrical conductivity [J].Geoderma.1999, 90 (1):99-109.
    [13] G.I. Metternicht. Fuzzy classification of JERS-1 SAR data an evaluation of its performance for soil salinity mapping[J]. Ecological Modelling.1998,111:61-74.
    [14] Ben - Dor R, Patkin A, Banin A, et al. Mapping of several soil properties usingDA IS - 7915 hyperspectral scanner data—a case study over clayey soils in Israel [ J ]. International Journal of Remote Sensing. 2002, 23 (6) : 1043 - 1062.
    [15]曾志元.卫星图像土壤类型自动识别与制图研究:计算机分类及其结果的光谱学分析[J].土壤学报.1984,21(2):183-193.
    [16]曾志远.卫星图像土壤类型自动识别与制图研究:计算机分类及其结果的光谱学分析[J].土壤学报.1984,21(2):183-193.
    [17]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2000.(4):12-15.
    [18]李海涛, P.Brunner ,李文鹏,等. ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质.2006(5):75-79.
    [19]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报.2001,5(1):46-52.
    [20]塔西甫拉提·特依拜,张飞,赵睿,等.新疆干旱区土地盐渍化信息提取及实证分析[J].土壤通报. 2007,38(4):625~630.
    [21]丁建丽,张飞,江红南,等.塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究--以渭干河-库车河三角洲绿洲为例[J].干旱区地理. 2008, 31(4): 624~632.
    [22]买买提·沙吾提.微波遥感数据在盐渍地信息提取中的应用研究[D].乌鲁木齐:新疆大学,2008.
    [23]依力亚斯江.雷达与TM图像融合及分类的土壤盐渍化信息遥感监测研究[D].乌鲁木齐:新疆大学,2008.
    [24] Asner G, Lobell D. A biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment.2000,74(1):99-112.
    [25] Christine A Hlavka, Michael A Spanner. Unmaxing AVHRR imagery to assess clearcuts and forest regrowth in Oregon[ J].IEEE Transactionson Geoscienceand Remote Sensing.1995,33(3):788-795.
    [26] Charles Ichoku .Arson Karnleli .A review of mixture modeling techniques for sub - pixel land cover estimation [ J ] .Remote Sensing Reviews. 2004, 1(13):1 6 1—1 8 6.
    [27] David B Lobell, Gregory P Asner. Cropland distributions from temporal unmixing of MODSI data[J] . Remote Sensing of Environment.2004,93: 412-422.
    [28] Quarmby N A, Townshend J R G, Settle J J, et al. Linear mixture modeling applied to AVHRR data for crop area estimation[J]. International Journal of Remote Sensing.1992,13(3):415-425.
    [29]李霞,王飞,徐德斌等.基于混合像元分解提取大豆种植面积的应用探讨[J].农业工程学报.2008,24(1).
    [30]武永利,王云峰,张建新等.应用线性混合模型遥感监测冬小麦种植面积[J].农业工程学报.2009,24(2).
    [31]戴俣俣,丁贤荣,王文种等.基于MODIS影像的植被覆盖度提取研究[J].遥感应用.2009(2).
    [32]李素,李文正,周建军,等. ETM+影像亚像元级城市土地覆盖组分丰度提取-以南京市为例[J].地理与地理信息科学. 2008, 24(2): 17~22.
    [33] Joseph M.Piwowar. The derivation of an Arctic sea ice normal through temporal mixture analysis of satellite imager[J].International Journal of Applied Earth Observation and Geoinformation. 2008, 10: 92~108.
    [34] Palanisamy Shanmugam, Yu-Hwan Ahn, Shanmugam Sanjeevi. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India[J]. Ecological Modeling. 2006, 194: 379~394.
    [35] Terrilll w.ray, bruce c.murray. Nonlinear Spectral Mixing in Desert Vegetation [J]. Remote Sensing of Environment. 1996, 55:59~64.
    [36] F.J. Garcia-haro, M.A. Gilabert, J.Melia. Extraction of Endmembers from Spectral Mixtures[J]. Remote Sensing of Environment. 1999, 68:237~253.
    [37] Junchang Ju. Eric D. Kolaczyk. Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing [J]. Remote Sensing of Environment. 2003, 84:550~560.
    [38] Roberts, D.A., Gardner, et al. Mapping Chaparral in the Santa Monica Mountains using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment. 1998, 65: 267~279.
    [39]唐世浩,朱启疆,李小文,等.高光谱与多角度数据联合进行混合像元分解研究[J].遥感学报. 2003, 7(3): 182-189.
    [40]吕长春,王忠武,钱少猛.混合像元分解模型综述[J].遥感信息.2003.
    [41]吴柯,张良培,李平湘.一种端元变化的神经网络混合像元分解方法[J].遥感学报. 2007, 11(1): 20-26.
    [42] L.Zhang, B.Wu, B.Huang. Nonlinear estimation of subpixel proportion via kernel least square regression[J]. International journal of remote sensing. 2007, 28 (18): 4157-4172.
    [43]杨伟,陈晋,松下文经,等.基于相关系数匹配的混合像元分解算法[J].遥感学报. 2008, 12( 3) : 454-461.
    [44] R. Dehaan, G. R. Taylor. Image-derived spectral endmembers as indictors of salinization[J]. International Journal of Remote Sensing. 2003, 24(4):775-794.
    [45] Jingfeng Xiao , Aatom Moody. A comparison of methods for estimating fractional greenvegetation cover within a desert-to-upland transition zone in central New Mexico, USA[J]. Remote Sensing of Environment. 2005, 98: 237~250.
    [46] Remy Dehaan, John Louis, Andrea Wilson, et al. Discrimination of blackberry using hyperspectral imagery in Kosciuszko National Park, NSW, Australia[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 2007, 62: 13~24.
    [47] ADAMSJ B,SMITH M 0,GII LESPIE A R Imaging spectroscopy Interpretation based on spectral mixture analysis[A].Remote Geochemical Analysis:Elemental and Mineralogical Composition [C].New York Cambridge University Press,1993.145—166.
    [48] ROBERTS D A,GARDNER M,CHURCH R,et al. Mapping Chaparral in the Santa Monica Mountains using multiple endmember spectral mixture model[J].Remote Sensing of Environment.1998,65:267- 279.
    [49] RASHED T,WEEKS J R,STOW D,et a1.Measuring temporal compositions of urban morphology through spectral mixture analysis:Toward a soft approach to change analysis in crowded cities[J].International Journal of Remote Sensing.2005,26(4):10l1—1020.
    [50] GILLESPIE AR,SMITH MO,ADAMSSCW,et a1.Interpretation of residual images:Spectral mixture analysis of AVRIS images,Owens Valley California[A].Proceedings 2nd Airborne Visible/Infrared Imaging Spectrometer (AⅥIS) Workshop[c].Pasadena:JPL Publication,1990.243-270.
    [51] RASHED T,WEEKS J R,ROBERTS D,et a1.Measuring the physical composition of urban morphology using multiple endmember spectral mixture models[J].Photogrammetric Engineering& Remote Sensing .2003,69(9):10l1-1020.
    [52] SMITH M O,USTIN S L,AD AMS J B,et a1.Vegetation in deserts[J].Remote Sensing of Environment.1990,31:1-26.
    [53] LUDS,BATISTE1.LA M,MORAN E Multi-temporal spectral mixture analysis for Amazonian 1and—cover change detection[J].Canada Journal of Remote Sensing.2004,30(1):87—100.
    [54] Roberts,D.A., Adams,J.B.,Smith, M.O.Discriminating Green Vegetation, Non-Photosynthetic Vegetation and Soils in AVIRIS Data[J]. Remote Sensing of Environment. 1993, 44: 255~270.
    [55] Roberts, D.A., Batista, G., Pereira, J., et al. Change Identification using Multitemporal Spectral Mixture Analysis: Applications in Eastern Amazonia, Chapter 9 in Remote Sensing Change Detection: Environmental Monitoring Applications and Methods, (Elvidge, C. and Lunetta R., Eds.). Ann Arbor Press, Ann Arbor. 1998, MI, 137~161.
    [56] Dennison, P.E., Halligan, K. Q., Roberts, D.A. A Comparison of Error Metrics and Constraints for Multiple Endmember Spectral Mixture Analysis and Spectral Angle Mapper[J]. Remote Sensing of Environment. 2004, 93: 359~367.
    [57] Bateson, A., Curtiss, B. A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment. 1996, 55: 229~243.
    [58] BATESON A,CURTISS B A method for manual endmember selection and spectral unmixng[J].Remote Sensing of Environment.1996,55:229—243.
    [59] WINTER M E N—finder:An algorithm for fast autonomous spectral endmember determination in hyperspectral data[A] . Proceedings of SPIE , Image Spectrometry V[c].SPIE,1999.266—275.
    [60] INSELLBERG A .The plane with parallel coordinates[J].The Visual Computer.1985,1(4):69—91.
    [61] NEVII LE R A,STAENZ K T,SZEREDI J L,et a1.Automatic endmember extraction from hyperspectral data for mineral exploration[A].Proceedings of the Forth International Airborne Remote Sensing Conference and Exhibition/the 21st(Canadian Symposium on Remote sensing[C].Ottawa ,Ontario,1999.21—24.
    [62] PLAZA A,MARTINEZ P,PEREZ R,et a1.Spatial/Spectral endmember extraction by multidimensional morphological Operations[J].IEEE Transaction on Geoscience and Remote Sensing.2002,40(9):2025- 2041.
    [63] CRAIGM M D. Minimum—volume transforms for remotely sensed data [J].IEEE Transaction on Geoscience and Remote Sensing.1994, 32(3) :542-552.
    [64] NASCIMENTO J M P,DIAS J M. Vertex component analysis:A fast algorithm to unmix hyperspeetral data[J].IEEE Transaction Geoscience and Remote Sensing.2005,43(4):898—910.
    [65] WANG J,CHANG C I.Applications of independent component Analysis (ICA)in endmember extraction and abundance quantification for hyperspeetral imagery[J].IEEE Transaction Geoscience and Remote Sensing.2006,44(9):2601-2616.
    [66]霍东民,刘高焕,骆剑承.基于PCM改进算法的遥感混合像元模拟分析[J].遥感学报. 2005, 9(2):131~136.
    [67] SMITH M O,USTIN S L,AD AMS J B,et a1.Vegetation in deserts[J].Remote Sensing of Environment.1990,31:1—26.
    [68] GREEN A A,BERMAN M,SWITZER P,et a1.A transformation for ordering multispectral data in term s of image quality with implications for noise removal[J].IEEE Transactions on Geoscience and Remote Sensing.1988,26:65—74.
    [69] BOARDMAN J W,KRUSE F A. Automated spectral analysis:A geological example using AⅥRIS data,north Grapevine Mountains Nevada[A].Proceedings,[RIM Tenth Thematic Conference on Geologic Remote Sensing [c].San Antonio:Ann Arbor MI,1994.407—418.
    [70] GREEN A A,BERMAN M,SWITZER P,et a1.A transformation for ordering multispectral data in term s of image quality with implications for noise removal[J].IEEE Transactions on Geoscience and Remote Sensing .1988,26:65—74.
    [71] Wu C S,MURRAY A T. Estimating impervious surface distribution by spectral mixture analysis[J].Remote Sensing of Environment.2003, 84:493- 505.
    [72] RASHED T,WEEKS J R,GADALLA M S, et al. Revealing the anatomy of cities through spectral mixture analysis of multispectral satellite imagery: A case study of the Greater Cairo Region,Egypt[J].Geocarto International. 2001,16(4):5-16.
    [73] RASHED T,WEEKS J R, ROBERTS D, et al .Measuring the physical composition of urban morphology usingmultiple endmember spectral mixture models[J].Photogrammetric Engineering& Remote Sensing .2003,69(9):1011-1020.
    [74] INSELLBERG A .The plane with parallel coordinates[J].The Visual Computer.1985,1(4):69—91.
    [75] BATESON A,CURTISS B. A method for manual endmember selection and spectral unmixng[J].Remote Sensing of Environment.1996,55:229—243.
    [76]李素.TM/ETM+影像混合像元分解及其应用研究——在城市土地覆盖变化监测、城市分区和人口数据空间化中的应用[D].中国科学院,2006.59—78.
    [77]王遵亲.中国盐渍土[M].科学出版社.1993,1-6 .
    [78]李凤全,吴樟荣.半干旱地区土地盐碱化预警研究以吉林省西部土地盐碱化预警为例[J].水土保持通报. 2002, 22(1): 57-59.
    [79]塔西甫拉提·特依拜,张飞,丁建丽等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理. 2007, 30(4): 544-551
    [80]满苏尔·沙比提,热合漫·玉苏甫,阿布拉江·苏莱曼.渭干河——库车河三角洲绿洲土地资源合理利用对策分析[J].干旱区资源与环境.2004,18(1):111-116.
    [81]库车县志编纂委员会编.库车县志[Z].乌鲁木齐:新疆大学出版社,1991:1-7.
    [82]沙雅县史志编纂委员会.沙雅县志[Z].乌鲁木齐:新疆人民出版社,1995:1-7.
    [83]新和县地方志编纂委员会,新和县志[Z].乌鲁木齐:新疆人民出版社,1997:1-5.
    [84]苟新华.新疆维吾尔自治区塔里木盆地水资源评价及其开发利用[D].吉林大学. 2001.5.
    [85]刘立诚.塔里木盆地北部土壤盐渍化特征的初步研究[J].土壤通报.1994,6(12): 196~200.
    [86]满苏尔·沙比提,阿布拉江·苏莱曼.新疆库车县耕地资源利用结构优化对策[J].资源科学.2002,24(5):26~31.
    [87] McKenzie, Neil.; Coughlan, Kep,; et al . Soil Physical Measurement and Interpretation for Land Evaluation .[m] CSIRO Publishing,26~30,2002。
    [88] McKenzie, Neil.; Coughlan, Kep,; et al . Soil Physical Measurement and Interpretation for Land Evaluation .[m] CSIRO Publishing,30~32,2002。
    [89]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.59~65.
    [90]梅安新,彭望禄,秦其明,等.遥感导轮[M].高等教育出版社. 2001.153~156.
    [91] Landsat官网:http://www.landsat.org/
    [92]赵英时.遥感应用分析原理与方法[M].北京:科学出版社2003.172~173.
    [93]钱乐祥.遥感数字影像处理与地理特征提取[M].科学出版社,2003.96~97 .
    [94] Kaufman Y J, Sendra C. Algorithm forAutomatic Atmospheric Corrections to Visible and Near-infrared Satellite imagery[J]. Internation Journal of Remote Sensing. 1988,9: 1357-1381.
    [95]陈云浩,李晓兵,谢峰.我国西北地区地表反照率的遥感研究[J].地理科学. 2001,21(4): 327~333.
    [96]刘三超,张万昌,蒋建军,等.用TM影像和DEM获取黑河流域地表反射率和反照率[J].地理科学.2003,23(5): 585~591.
    [97]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.20~30.
    [98] Vermote E F,Tanre D,Deuze J L,et a1.The Second Simulation of the Satellite Signal in the Solar Spectrum(6S), User’s Guide.France:Laboratoire d’Optique Atmospherique. 1997
    [99]梅安心,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.46~47.
    [100]赵英时.遥感应用分析原理与方法[M ].北京:科学出版社,2003.328~330.
    [101]贾海峰,刘雪华等,环境遥感原理与应用[M].北京:清华大学出版社, 2006.15~28.
    [102] Metternicht G. Analysing the relationship between ground based reflectance and environmental indicators of salinity processes in the cochabamba valleys (Bolivia) [J]. International Journal of Ecology and Environmental Sciences. 1998, 24: 359~370.
    [103]李索,李文正,周建军等.遥感影像混合像元分解中的端元选择方法综述[J] .地理与理信息科学.2007,23(5):35—38.
    [104] ROB ERTS DA, Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture mod el [ J ].Remote Sensing of Environment.1998,65:267—279 .
    [105] RASHEDT,WEEIKS J R,STOW D, et al.Measuring temporal Compositions of urban morphology through spectral mixture analysis; Toward a soft approach to change analysis in crowded cities [ J ].International Journal of Remote Sensing.2005,26( 4 ):699—718.
    [106]浦瑞良,宫鹏.高光谱遥感及其应用[M ].北京:高等教育出版社,2000. 8-10 .
    [107] Rao B R M,SankarTR,Dwivedi R S,et al.Spectral Behavior of Salt-affected Soil.International of Remote Sensing,1995,16(12):2136-2152.
    [108]R.L.Dehaan,G.R.Taylor. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil-salinization[J].Remote Sensing of Environment,2002,80:406-417.
    [109]S.D Kirkby. Integrating a GIS with an expert system to identify and manage dryland salinization[J].Applied Geograph,1996,4(16):289-303.
    [110] Ghulam A, Qin Q, Zhan Z. Designing of the Perpendicular Drought Index (PDI) [J]. Environmental Geology, 2006, doi: 10.1007/s00254 006-0544-2.
    [111] RICHARDSON A J,WIEGAND C L. Distinguishing vegetation from soil background information [J]. Photogramm. Eng. Remote Sens.,1977, 43: 1 541- 1 552.
    [112] BARET F, JACQUEMOUD S, HANOCQ J F. The soil line concept in remote sensing. Remote Sensing Reviews, 1993, 7: 65- 82.
    [113] BOWERS S A, SMITH S J. Spectrophotometric determination of soil water content [J]. Soil Sci. Soc. Am. Proc., 1972, 36: 978- 980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700