用户名: 密码: 验证码:
1,5-自由基转移反应合成螺环核苷—合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核苷类化合物是人们对抗病毒尤其是HIV病毒的首先药物,近年来研究发现一些构象限制的螺环修饰核苷具有较高的抗病毒活性。本论文首次将1, 5-自由基转移反应巧妙的引入到2′, 3′, 4′-螺环修饰核苷的合成中。对1, 5-自由基转移反应合成螺环修饰核苷的合成方法进行了研究,成功的合成了结构新颖的3′, 4′-螺环修饰核苷;研究了多种合成2′, 3′, 4′-螺环修饰核苷自由基转移前体的方法,发现了烯丙基溴或炔丙基溴选择性的单烷基化核苷糖环2′, 3′, 4′-酰胺的方法,丰富了修饰核苷的合成;并对所合成的螺环修饰核苷进行了结构表征,确认了螺环结构,且由表征结果可知,反应有一定的立体选择性。
     论文的第一章介绍了课题的研究背景。论文的第二章叙述了螺环修饰核苷的研究进展,以及合成2′, 3′, 4′-螺环修饰核苷的常用方法,并综述了1, 5-自由基转移反应及其在合成螺环化合物中的应用。在此基础上设计了利用1, 5-自由基转移反应合成2′, 3′, 4′-螺环修饰核苷。第三章探讨了1, 5-自由基转移反应在合成2′, 3′, 4′-螺环修饰核苷类化合物中的应用。合成出3′, 4′-螺环修饰核苷,并对其结构进行了表征。同时在合成螺环修饰核苷的过程中发现了烯丙基溴或炔丙基溴选择性的单烷基化核苷糖环2′, 3′, 4′-酰胺的方法。
     利用1, 5-自由基转移反应合成2′, 3′, 4′-螺环修饰核苷的合成设计以及合成方法的研究,对修饰核苷的合成具有很好的参考和使用价值;得到的3′, 4′-螺环修饰核苷为后续开展核苷构象研究,进一步筛选具有抗病毒活性的核苷药物打下了基础。
Chapter one provides the background and significance of the thesis. Diseases of cancer and virus infection are life threatening with unmet needs in therapeutical treatment until now. With the recent advances in understanding molecular biology of the diseases, researches for new drugs with more potency and lower toxicity have been made impressive progresses. In particular, nucleoside derived drugs have played an essential role in therapy against epidemical diseases caused by virus infection. The development of methodologies for nucleoside synthesis and pharmacological study of the modified nucleosides have continueously been an important and promising area in drug discovery arena.
     Chapter two reviews the research progresses and the synthetic methods of spironucleosides in the literature. Introduction of cascade of radical translocation/cyclization reactions and methods for the preparation of spiro-compounds including a few examples of spironucleosides are summarized. Finally, we outline the ideas behind our interests of spironucleoside in synthesis and biological study.
     Most of nucleoside drugs on the market or drug candidates in clinical phases structurally belong to a category of modified nucleosides on sugar moiety. However, the modifications combined with spiro ring are rare, presumably due to the difficulty in synthesis. The spiro ring in spironucleosides shall have notable effects on the conformation of furanose and will produce profound impact toward their pharmacological profile. Some stimulate results from biological tests of spironucleoside have been revealed. Several synthetic methods have been developed for the preparation of these nucleoside analogues, including: 1) radical reaction; 2) nucleophilic addition or nucleophilic substitution reaction; 3) glycosididation between ribose and nucleobase; 4) condensation/polymerization reaction. Among those methods, 1, 5-radical translocation reaction which has extensive application in the synthesis of natural products with unusual structural features has not been explored in the synthesis of 2′, 3′, 4′-spironucleosides. Therefore, the research work in this thesis is to synthesize those spironucleosides and to study their molecular structure and biological activity.
     Chapter three deals with our research on the development of a new method for the preparation of 2′, 3′, 4′-spironucleosides via cascade of 1, 5-radical translocation/cyclization reaction. Through intensive examination under different conditions (such as changing solvent, temperature, concentration, bases, ratio of radical precursor and radical initiator in radical reactions), we find a novel synthetic method for the construction of spironucleosides by cascade radical translocation cyclization of N-allyl-N-(2′-bromophenyl) amide of 5′-carboxylic nucleoside derivatives and of the N-propynyl analogues.
     Thus, proper 5′-carboxylic acids of hydroxyl protected nucleosides were coupled with 2-bromo- or 4-methoxy-2-bromoaniline followed by N-alkylation with allyl bromide or propynyl bromide to afford radical precursors. This general synthetic method was introduced by us the first time. The precursors were then treated with tri-n-butyltin hydride in the presence of 2, 2′-azo-bis-iso-butyronitrile as radical initiator to lead 5-exo-trig or 5-exo-dig cascade cyclization via of 1, 5-radical translocation reaction, forming the desired 4′-spironucleosides alone with amount of byproduct from direct cyclization of primary aryl radical and unsaturated bond.
     For expansion of the methodology described above for the synthesis 2′, 3′- spironucleosides, many attempts have been made with different radical precursors in our research. Unfortunately, we could not achieve any successful outcome so far. Appropriate radical precursors and proper reaction conditions for the synthesis of 2′and 3′spironucleosides need to be investigated in the future.
     The synthesized 4′-spironucleosides 3-42a and 3-42b were fully characterized by ~1H NMR, ~(13)C NMR, NOE, COSY and LC-MS. Compounds of 4′-spironucleosides 3-43, 3-44, 3′-spironucleosides 3-74 and byproducts 3-41 and 3-45 were characterized by ~1H NMR, ~(13)C NMR and LC-MS. The structures of spironucleosides, by-products and the intermediates have been elucidated based on analytical data.
     The biological tests of the spironucleosides are to be investigated in the near future.
引文
1. Shaw, T.; Locarnini, S., Combination Chemotherapy for Hepatitis B Virus: The Path Forward? Drugs, 2000, 60, 517-531.
    2. Labranche, C. C.; Galasso, G.; Moore, J. P., HIV fusion and its inhibition, Antivitral Res., 2001, 50, 95-115.
    3. 姚其正,核苷化学合成,化学工业出版社,2005年,第一版,34-35.
    4. Khan, A. R.; Mulligan, K. X.; Ollapally, A. P., Synthesis of 5-chloro-1-(2,
    3-dideoxy-3-fluoro-β-D-glycero-hex-2-enopyranose-4-ulosyl)uracil as potential anticancer/antiviral agent, Nucleosides, Nucleotides & Nucleic acids, 2001, 20, 759-762.
    5. Gao, K.; Orgel, L. E., A convenient synthesis of a novel nucleoside analogue: 4-(α-diformyl-methyl)-1-(β-D-ribofuranosyl)-2-pyrimidine, Nucleosides, Nucleotides & Nucleic acids, 2000, 19, 935-940.
    6. Davies, W. L.; Grunert, R. R.; Haff, R. F.; et al., Antiviral Activity of 1-Adamantanamine (Amantadine), Science 1964, 144, 862-863.
    7. 陈本川,国外医药(合成药,生物药,制剂分册), 1989, 10(3): 154-159.
    8. Perigaud, C.; Gosselin, G.; Imbach, J. L., Nucleoside Analogues as Chemotherapeutic Agents: A Review, Nucleosides & Nucleotides, 1992, 11, 903-945.
    9. Song, G. Y.; Paul, V.; Choo, H.; Chu, C. K., Enantiomeric synthesis of D- and L-cyclopentenyl nucleosides and their antiviral activity against HIV and West Nile Virus, J. Med. Chem., 2001, 44, 3985-3993.
    10. Pierra, C.; Olgen, S.; Chu, C. K., Synthesis and antiviral activities of enantiomeric 1-[2-(hydroxymethyl)cyclopropyl] methyl nucleosides, Nucleosides, Nucleotides & Nucleic acids, 2000, 19, 253-268.
    11. Marchand, A.; Mathe, C.; Imbach, J. L.; Gosselin, G., Synthesis and antiviral evaluation of unnatural β-L-enantiomers of 3′-fluoro and 3′-azido-2′, 3′-dideoxyguanosine derivatives, Nucleosides, Nucleotides & Nucleic acids, 2000, 19, 205-217.
    12. Capua, A. D.; Napoli, L. D.; Fabio, G. D.,Glycosylations of inosine and uridine nucleoside bases and synthesis of the new 1-(β-L-glucopyranosyl) inosine-5′, 6′-diphosphate, Nucleosides, Nucleotides & Nucleic acids, 2000, 19, 1298-1299.
    13. Liu, M.-C.; Luo, M.-Z.; Mozdziesz, D. E.; Lin, T.-S.; Dutschman, E. G.; Cheng, Y.-C.; Sartorelli, A. C., Synthesis of 2'-Methylene-Substituted 5-Azapyrimidine, 6-Azapyrimidine, and 3-Deazaguanine Nucleoside Analogues as Potential Antitumor/Antiviral Agents, Nucleosides & Nucleotides, 1999, 18, 55-72.
    14. Du, J. F.; Chu, C. K., Asymmetric synthesis of oxazalidine nucleosides and related chemistry, Nucleosides & Nucleotides, 1998, 17, 1-13.
    15. Garcier-Alles, L. F.; Magdalena, J.; Gotor, V., Synthesis of Purine and Pyrimidine 3'-Amino-3'-deoxy- and 3'-Amino-2', 3'-dideoxyxylonucleosides, J. Org. Chem., 1996, 61, 6980.
    16. Kalinichenko, E. N.; Rubinova E. B.; Borisov E. V.; et al., Stereospecific Synthesis and Anti-HIV Activity of (Z)2'- and (E)3'-Deoxy-2'(3')-C- (chloromethylene) Pyrimidine Nucleosides, Nucleosides & Nucleotides, 1995, 14, 533.
    17. Kumamoto, H.; Murasaki, M.; Haraguchi, K.; Anamura, A.; Tanaka, H., Nucleophilic Addition of Benzenethiol to 1', 2'-Unsaturated Nucleosides: 1'-C-Phenylthio-2'-deoxynucleosides as Anomeric Radical Precursors, J. Org. Chem., 2002, 67, 6124.
    18. Kodama, T.; Shuto, S.; Ichikawa, S.; Matsuda, A., A Highly Stereoselective Samarium Diiodide-Promoted Aldol Reaction with 1'-Phenylseleno-2'-keto Nucleosides. Synthesis of 1'α-Branched UridineDerivatives, J. Org. Chem, 2002, 67, 7706.
    19. Cappellacci, L.; Barboni, G.; Palmieri, M.,et al., Ribose-Modified Nucleosides as Ligands for Adenosine Receptors: Synthesis, Conformational Analysis, and Biological Evaluation of 1'-C- Methyl Adenosine Analogues, J. Med. Chem, 2002, 45, 1196.
    20. Molas, P.; Díaz, Y.; Matheu, M. I.; Castillón, S., Synthesis of 1′-C-Fluoromethyl-ddC by Selectfluor-Induced Glycosylation of exo-Glycals, Synlett, 2003, 207.
    21. Miller, J. A.; Pugh, A. W.; Ullah, G. M., Synthesis of 4-thiofuranoid 1, 2-glycals and their application to stereoselective synthesis of 4′-thionucleosides, Tetrahedron Lett., 2000, 41, 3265.
    22. Deng, L.; Scharer, O. D.; Verdine, G. L., Unusually Strong Binding of a Designed Transition-State Analog to a Base-Excision DNA Repair Protein, J. Am. Chem. Soc., 1997, 119, 7865.
    23. Yamashita, M.; Reddy, P. M.; Kato, Y.; Reddy, V. K.; et al., Synthesis of novel deoxy λ5 phospha sugar nucleosides: 1, 3-dipolar cycloaddition of an azidophospholane with alkynes, Carbohydr. Res., 2001, 336, 257.
    24. Jung, M. E.; Nichols, C. J., Synthesis of Methylene-Expanded Oxetanocin Isonucleosides in Both Enantiomeric Forms1, J. Org. Chem., 1998, 63, 347.
    25. Qu, G.-R.; Ren, B.; Niu, H.-Y.; Mao, Z.-J.; Guo, H.-M., A Novel One-Step Method for the Synthesis of C-5-Substituted O6, 5'-Cyclopyrimidine Nucleoside Analogues in Ammonia Water, J. Org. Chem., 2008, 73, 2450.
    26. No, Z.; Shin, D.-S.; Song, B. J.; Ahn, M.; Ha, D.-C., A Facile One-Pot Synthesis of 2, 3'-Anhydro-2'-Deoxyuridines via 3'-O- Imidazolylsulfonates, Syn. Commun., 2000, 30, 3873-3882.
    27. Singh, S. K.; Kumar, R.; Wengel, J., Synthesis of Novel Bicyclo[2.2.1] Ribonucleosides: 2'-Amino- and 2'-Thio-LNA Monomeric Nucleosides, J.Org. Chem., 1998, 63, 6078.
    28. Sorensen, M. H.; Nielsen, C.; Nielsen, P., Synthesis of a Bicyclic Analogue of AZT Restricted in an Unusual O4'-Endo Conformation, J. Org. Chem., 2001, 66, 4878.
    29. Callam, C. S.; Gadikota, R. R.; Lowary, T. L., An Efficient Route to Pyrimidine with the 2, 3-Anhydro-β-d-lyxofuranosyl Stereochemistry Nucleosides, synlett, 2003, 1271.
    30. Paquete, L. A.; Bibart, R. T.; Seekamp, C. K.; Kahane, A. L., Spirocyclic Restriction of Nucleosides. Synthesis of the First Exemplary syn-1-Oxaspiro[4.4]nonanyl Member, Org. Lett., 2001, 3, 4039.
    31. Paquete, L. A.; Owen, D. R.; Bibart, R. T.; Seekamp, C. K., Spirocyclic Restriction of Nucleosides. An Analysis of Protecting Group Feasibility while Accessing Prototype anti-1-Oxaspiro [4.4]nonanyl Mimics, Org. Lett., 2001, 3, 4043.
    32. Verheggen, I.; Van Aerschot, A.; Toppet, S.; Snoeck, R.; Janssen, G.; Balzarini, J.; De Clercq., E.; Herdewijn, P., Synthesis and antiherpes virus activity of 1, 5-anhydrohexitol nucleosides, J. Med. Chem. 1993, 36, 2033.
    33. Verheggen, I.; Van, Aerschot, A.; Van Meervelt, L.; Rozenski, J.; Wiebe, L.; Snoeck, R.; Graciela, A.; Balzarini, J.; Claes, P.; De Clercq., E.; Herdewijn, P., Synthesis, Biological Evaluation, and Structure Analysis of a Series of New 1, 5-Anhydrohexitol Nucleosides, J. Med. Chem. 1995, 38, 826.
    34. Wilson, F. X.; Fleet, G. W. J.; Vogt K., et al., Synthesis of oxetanocin, Tetrhedron Lett., 1990, 31, 6931.
    35. Chen, X. C.; Kern, E. R.; Zemlicka, J.; et al., Structure-Activity Relationships of (S, Z)-2-Aminopurine Methylenecyclopropane Analogues of Nucleosides. Variation of Purine-6 Substituents and Activity against Herpesviruses and Hepatitis B Virus, J. Med. Chem.,2003, 46, 1531.
    36. Honzawa, S.; Ohwada, S.; Motishita, Y.; et al., Synthesis and Hybridization Property of Oligonucleotides Containing Carbocyclic Oxetanocins, Tetrahedron, 2000, 56, 2615.
    37. Figueira, M. J.; Blanco, J. M.; Caama?o, O.; et al., Synthesis of (1R, 3R)-3-[2-(Aminoethyl)-2, 2-dimethylcyclobutyl]methanol and (1S, 3R)-(3- Amino- 2, 2-dimethylcyclobutyl)methanol from (+)-Nopinone, Synthesis, 2000, 1459.
    38. Wang, J.; Herdewijn, P., Enantioselective Synthesis and Conformational Study of Cyclohexene Carbocyclic Nucleosides, J. Org. Chem., 1999, 64, 7820.
    39. Wang, J.; Mortal, J.; Hendrix, C.; Herdewijn, P., A Straightforward Stereoselective Synthesis of D- and L-5-Hydroxy-4-hydroxymethyl -2-cyclohexenylguanine, J. Org. Chem., 2001, 66, 8478.
    40. Lobucavir, Drugs of the Future, 1997, 22, 359.
    41. Vanderhaegh, H., Synthesis and antiviral activity of the carbocyclic analogues of (E)-5-(2-halovinyl 2'-deoxyuridines and (E)-5-(2-halovinyl) -2'-deoxycytidines, J. Med. Chem., 1985, 28, 550.
    42. De Clercq, E.; Bergstrom, D. E.; John, A. H.; Montgomery, A., Broad-spectrum antiviral activity of adenosine analogues, Antiviral Res., 1984, 4, 119.
    43. Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; et al., Synthesis and antiviral activity of certain thiazole C-nucleosides, J. Med. Chem., 1977, 20, 256.
    44. Srivastava, P. C.; Robins .R. K., Synthesis and antitumor activity of 2-.beta.-D-ribofuranosylselenazole-4-carboxamide and related derivatives, J. Med. Chem., 1983, 26, 445.
    45. Tanaka, K.; Shionoya, M., Synthesis of a Novel Nucleoside for Alternative DNA Base Pairing through Metal Complexation, J. Org.Chem., 1999, 64, 5002.
    46. Kim, T. W.; Kool, E. T, A Set of Nonpolar Thymidine Nucleoside Analogues with Gradually Increasing Size, Org. Lett., 2004, 6, 3949.
    47. Schaeffer, H. J.; et al., Nature, 1978, 272, 583.
    48. Clair, S. M. H.; Lambe, C. U.; Furman, P. A., Inhibition by ganciclovir of cell growth and DNA synthesis of cells biochemically transformed with herpesvirus genetic information, Antimicrob. Agents Chemother., 1987, 31, 844-849.
    49. Tippie, M. A.; Martin, J. C.; Smee, D. F.; Matthews, T. R.; Verheyden, J. P. M., Antiherpes Simplex Virus Activity of 9-[4-Hydroxy-3- (hydroxymethyl)-1-butyl]guanine, Nucleosides & Nucleotides, 1984, 3, 525-535.
    50. McGee, D. P. C.; Martin, J. C.; Smee, D. F.; Mathews, T. R.; Verheyden, J. P. H., Synthesis and antiherpes simplex virus activity of 9-[(1, 3-dihydroxy-2- propylthio)methyl]guanine, J. Med. Chem., 1985, 28, 1242.
    51. Eklind, K.; Datema, R.; Ericson, A.-C.; Hagberg, C.-E.; Johansson, N.-G.; Kovacs, S.; Larsson, A.; Lindborg, B.; Stening, G.; Oberg, B., The Synthesis and Antiherpetic Activity of DHBG and Some Analogs, Nucleosides & Nucleotides, 1985, 4, 303.
    52. Goslinski, T.; Golankiewicz, B.; De Clercq, E.; Balzarini, J., Synthesis and Biological Activity of Strongly Fluorescent Tricyclic Analogues of Acyclovir and Ganciclovir, J. Med. Chem., 2002, 45, 5052.
    53. De Clercq, E.; Holy, A., Antiviral activity of aliphatic nucleoside analogs: structure-function relationship, J. Med. Chem., 1979, 22, 510.
    54. Okumura, K.; Oine, T; Yamada, Y.; Tomie, M.; Adachi, T.; Nagura, T.; Kawazu, M.; Mizoguchi, T.; Inoue, I., Synthetic studies on eritadenine. I. Reactions of some purines with the 2, 3-O-protected dihydroxybutyrolactone, J. Org. Chem., 1971, 36, 1573.
    55. Plunket, W.; Cohen, S. S., Two Approaches that Increase the Activity of Analogs of Adenine Nucleosides in Animal Cells, Cancer Res., 1975, 35, 1547.
    56. Pragnacharyyulu, P. V. P.; Varkhedkar, V.; Curtis, M. A.; Chang, I. F.; Abushanab, E., Adenosine Deaminase Inhibitors: Synthesis and Biological Evaluation of Unsaturated, Aromatic, and Oxo Derivatives of (+)-erythro-9-(2'S-Hydroxy-3'R-nonyl)adenine [(+)-EHNA], J. Med. Chem., 2000, 43, 4694.
    57. Pedersen, D. S.; Boesen, T.; Eldrup, A. B.; et al., The first example of a new type of acyclic, achiral nucleoside analogue: 1-[3-hydroxy-2- (hydroxymethyl)prop-1-enyl]thymine, J. Chem. Soc., Perkin Trans. 1, 2001, 14, 1656.
    58. Cushman, M.; Yang, D. L.; Mihanlic, J. T.; et al., Incorporation of an Amide into 5-Phosphonoalkyl-6-D-ribitylaminopyrimidinedione Lumazine Synthase Inhibitors Results in an Unexpected Reversal of Selectivity for Riboflavin Synthase vs Lumazine Synthase, J. Org. Chem., 2002, 67, 6871.
    59. Hiromichi, T.; Masanori, B.; Shigeru, S., Specific anti-HIV-1 acyclonucleosides which cannot be phosphorylated: synthesis of some deoxy analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine, J. Med. Chem., 1991, 34, 1508.
    60. Negrón, G.; Molina, A. J.; Islas, G.; Cruz-Almanza, R., Synthesis of 1-[(2-Methoxyethoxy)Methyl]-N3-(Alkyl)-6-(Phenylthio)Thymine. Potential Anti-Hiv Agents, Syn. Commun., 1999, 29, 435-445.
    61. Humphries, M. J.; Ramsden, C. A., A Fresh AIR Synthesis, Synthesis, 1999, 985.
    62. Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; et al., Broad-Spectrum Antiviral Activity of Virazole: 1-f8-D-Ribofuranosyl-1, 2, 4-triazole-3- carboxamide, Science, 1972, 177, 705-706.
    63. Graci, J. D.; Cameron, C. E., Quasispecies, Error Catastrophe, and the Antiviral Activity of Ribavirin, Virology, 2002, 298, 175-180.
    64. Gebeyehu, G.; Marquez, V. E.; Van, Cott, A.; et al., Ribavirin, tiazofurin, and selenazofurin: mononucleotides and nicotinamide adenine dinucleotide analogs. Synthesis, structure, and interactions with IMP dehydrogenase, J. Med. Chem., 1985, 28, 99.
    65. Yamada, Y.; Natsumeda, Y.; Weber, G., Action of the active metabolites of tiazofurin and ribavirin on purified IMP dehydrogenase, Biochemistry, 1988, 27, 2193.
    66. De Clercq, E.; Luczak, M.; Reepmeyer, J. C.; Kirk, K. L.; Cohen, L. A., Fluoroimidazoles as antiviral agents and inhibitors of polynucleotide biosynthesis, Life Sciences, 1975, 17, 187-194.
    67. Idoxuridine, Drugs of the Future, 1995, 20, 670-675.
    68. Eger, K.; Jalalian, M.; Schmidt, M., Synthesis of a potential antiviral compound: 5-bromoethynyl-2′-deoxyuridine, Tetrahedron, 1994, 50, 8371.
    69. Stevens, J. D.; Ness, R. K.; Fletcher, H. G., Synthesis with partially benzylated sugars. XI. Synthesis of the anomeric 5, 6-dimethyl-1-D-ribofuranosylbenz-imidazoles (ribazoles). Comparison of the condensation of 2, 3, 5-tri-O-benzoyl -D-ribofuranosyl bromide and 2, 3, 5-O benzyl-D-ribofuranosyl chloride with 5, 6-dimethylbenzimidazole, J. Org. Chem., 1968, 33, 1806.
    70. Gillet, L. C. J.; Scharer, O. D., Preparation of C8-Amine and Acetylamine Adducts of 2'-Deoxyguanosine Suitably Protected for DNA Synthesis, Org. Lett., 2002, 4, 4205.
    71. Minakawa, N.; Kojima, N.; Matsuda, A., Nucleosides and Nucleotides. 184. Synthesis and Conformational Investigation of Anti-Fixed 3-Deaza-3-halopurine Ribonucleosides, J. Org. Chem., 1999, 64, 7158.
    72. Chen, J. J.; Wei, Y.; Drach, J. C.; Towsend, L. B., Synthesis and AntiviralEvaluation of Trisubstituted Indole N-Nucleosides as Analogues of 2, 5, 6- Trichloro-1-(β-D-ribofuranosyl) benzimidazole (TCRB), J. Med. Chem., 2000, 43, 2449.
    73. Wang, G. Y.; Tam, R. C.; Gunic, E.; Du, J. F.; Bard, J.; Pal, B., Synthesis and Cytokine Modulation Properties of Pyrrolo[2, 3-d]-4-pyrimidone Nucleosides, J. Med. Chem., 2000, 43, 2566.
    74. Ramzaeva, N.; Becher, G.; Seela, F., Facile Synthesis of 2'-Deoxynucleoside Analogs of preQ, Synthesis, 1998, 1327.
    75. Plevnik, M.; Crnugelj, M.; Stimac, A.; et al., 8-Aza-3-deazaguanine modification strengthens the anomeric effect and affects other conformational preferences of modified guanine nucleosides, J Chem. Soc., Perkin Trans. 2, 2001, 8, 1433.
    76. Rose, J. D.; Parker, W. B.; Someya, H.; et al., Enhancement of Nucleoside Cytotoxicity through Nucleotide Prodrugs, J. Med. Chem., 2002, 45, 4505.
    77. Freeman, G. A.; Shaver, S. R.; Rideout, J. L.; Short, S. A., 2-Amino-9-(3-Azido-2,3-Dideoxy-D-Erythro-Pentofuranosyl)-6-Substituted-9H-Purines: Synthesis and Anti-HIV Activity, Bioorg & Med. Chem., 1995, 3, 447.
    78. Yip, K. F.; Tsou, K. C., Syntheses of 2-substituted 1, N6-ethenoadenosines, J. Org. Chem., 1975, 40, 1066.
    79. Schram, K. H.; Townsend, L. B., The synthesis of 6-amino-4-methyl-8-(β-D-ribofuranosyl) (4-H, 8-H)pyrrolo-[4, 3, 2-de] pyrimido[4, 5-c]pyridazine, a new tricyclic nucleoside, Tetrahedron Lett., 1971, 12, 4757.
    80. Porcari, A. R.; Ptak, R. G.; Borysko, K. Z., Deoxy Sugar Analogues of Triciribine: Correlation of Antiviral and Antiproliferative Activity with Intracellular Phosphorylation, J. Med. Chem., 2000, 43, 2438.
    81. Porcari, A. R.; Ptak, R. G.; Borysko, K. Z., 6-N-Acyltriciribine Analogues:Structure-Activity Relationship between Acyl Carbon Chain Length and Activity against HIV-1, J. Med. Chem., 2000, 43, 2457.
    82. AIDU., Drugs of the Future, 1982, 7, 375-377.
    83. Dideoxyinosine., Drugs of the Future, 1990, 15, 569-577.
    84. Watanabe, K. A.; Reichman, U.; Hirota, K.; Lopez, C.; Fox, J. J., Nucleosides. 110. Synthesis and antiherpes virus activity of some 2'-fluoro-2'- deoxyarabinofuranosylpyrimidine nucleosides, J. Med. Chem., 1979, 22, 21.
    85. Prusof, W. H., Biochem. Biophys. Acta., 1959, 32, 296-297.
    86. a) De Clercq E., Recent highlights in the development of new antiviral drugs, Current Opinion in Microbiology, 2005, 8, 552; b) 沈灵佳, 核苷类抗病毒药物研究开发进展,全国医药学术交流会暨临床药理学研究进展培训班,2006.
    87. Pauwels, R., Aspects of successful drug discovery and development, Antivir. Res., 2006, 68, 77.
    88. De Clercq E., Antiviral drug discovery and development: Where chemistrymeets with biomedicine, Antivir. Res., 2005, 67, 56; b) 张淑玲,罗端德,艾滋病抗病毒药物的研究进展,国际流行病学传染病学杂志,2006, 33, 45.
    89. Lena, C.; Mackenzie, G., Synthesis of 2′, 3′-didehydro-2′, 3′-dideoxynucleosides having variations at either or both of the 2′- and 3′-positions, Tetrahedron, 2006, 62, 9085.
    90. 钟照华,感染性疾病的控制,哈尔滨医科大学,医学微生物学网络课程。
    91. 刘琨,谢蓝,新型核苷类抗病毒药物的研究进展,药学学报, 2006, 41, 689.
    92. 杨继章,陈大华,杨树民, 抗病毒药物的研究进展及临床应用,上海医药,2006, 26, 351.
    1. Sanger, W., Principles of Nucleic Acid Structure, edited by C. R. Cantor. 1984, New York: Springer Verlag, 9-50.
    2. Castro, S.; Lozano, A.; Jimeno, M-L. et al., Unprecedented Lability of the 5′-O-tert-Butyldimethylsilyl Group from 3′-Spiro-5′′-(4′′-acylamino -1′′, 2′′-oxathiole-2′′, 2′′-dioxide) Nucleoside Derivatives via Neighboring Group Participation of the 4′′-Acylamino Residue, J. Org. Chem., 2006, 71, 1407-1415.
    3. Paquette, L. A.; Seekamp, C. K.; Kahane, A. L., Conformational Restriction of Nucleosides by Spirocyclic Annulation at C4′ Including Synthesis of the Complementary Dideoxy and Didehydrodideoxy Analogues, J. Org. Chem., 2003, 68, 8614-8624.
    4. Paquette, L. A.; Brand, S.; Behrens, C., An Enantioselective Ring Expansion Route Leading to Furanose and Pyranose Nucleosides Featuring Spirodiketopiperazines at the Anomeric Position, J. Org. Chem., 1999, 64, 2010-2025.
    5. a) Gimisis, T.; Chatgilialoglu, C., 1, 5-Radical Translocation Protocol for the Generation of C-1′ Radicals in Nucleosides. Synthesis of Spiro Nucleosides through a Rare 5-endo-trig Cyclization, J. Org. Chem., 1996, 61, 1908-1909. b) Kittaka, A.; Tanaka, H.; Yamada, N.; Miyasaka, T., Nucleoside Anomeric Radicals via 1, 5-Translocation: Facile Access to Anomeric Spiro Nucleosides, Tetrahedron Lett., 1996, 37, 2801-2804.
    6. Ogamino, J.; Mizunuma, H.; Kumamoto, H.; Takeda, S.; Haraguchi, K. et al., 5-Exo versus 6-Endo Cyclization of Nucleoside 2-Sila-5-hexenyl Radicals: Reaction of 6-(Bromomethyl)dimethylsilyl 1′, 2′-Unsaturated Uridines, J. Org. Chem., 2005, 70, 1684-1690.
    7. a) Kittaka, A.; Tanaka, H.; Kato, H. et al., Synthesis of Anomeric Spiro Uracil Nucleosides with an Orthoester Structure: Stereoselective Cyclization Controlled by the C6-Substituent, Tetrahedron Lett., 1997, 38, 6421-6424; b) 王剑波,物理有机化学讲义,北京大学化学学院,2003年,8月。
    8. Renard, A.; Lhomme, J.; Kotera, M., Synthesis and Properties of Spiro Nucleosides Containing the Barbituric Acid Moiety, J. Org. Chem., 2002, 67, 1302-1307.
    9. Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Kikuchi, M.; Nishiyama, H., Synthesis of Spirocyclic C-Arylribosides via Cyclotrimerization, Org. Lett., 2006, 8, 3565-3568.
    10. a) Griffey, R. H., Monia, B. P., Cummins, L. L., et al., 2'-O-Aminopropyl Ribonucleotides: A Zwitterionic Modification That Enhances the Exonuclease Resistance and Biological Activity of Antisense Oligonucleotides, J. Med. Chem., 1996, 39, 5100. b) Babu, B. R.; Keinicke, L.; Petersen, M.; Nielsen, C.; Wengel, J., 2′-Spiro ribo- and arabinonucleosides: synthesis, molecular modelling and incorporation into oligodeoxynucleotides, Org. Biomol. Chem., 2003, 1, 3514-3526.
    11. Perez-Perez, M. J.; San-Felix, A.; Balzarini, J.; De Clercq, E.; Camarasa, M. J., TSAO Analogues. Stereospecific Synthesis and Anti-HIV-1 Activity of 1-[(2′, 5′-bis-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl] -3′-spiro-5′′-(4′′-amino- 1′′, 2′′-oxathiole 2′′, 2′′-dioxide) Pyrimidine and Pyrimidine-Modified Nucleosides, J. Med. Chem., 1992, 35, 2988-2995.
    12. Camarasa, M. J.; Perez-Perez, M. J.; San-Felix, A.; Balzarini, J.; De Clercq, E., 3′-Spiro Nucleosides, a New Class of Specific Human Immunodeficiency VirusType 1 Inhibitors: Synthesis and Antiviral Activity of [2′, 5′-Bis-O-(tert-butyldimethylsilyl)-β-D-xylo-and- ribofuranose]-3′-spiro-5′′-[4′′-amino-l′′, 2′′-oxathiole 2′′, 2′′-Dioxide] (TSAO) Pyrimidine Nucleosides, J. Med. Chem., 1992, 35, 2721-2727.
    13. San-Felix, A.; Velazquez, S.; Perez-Perez, M. J.; Balzarini, J.; De Clercq, E.; Camarasa, M. J., Novel Series of TSAO-T Derivatives. Synthesis and Anti-HIV-1 Activity of 4-, 5-, and 6-Substituted Pyrimidine Analogues, J. Med. Chem., 1994, 37, 453-460.
    14. Paquette, L. A.; Owen, D. R.; Bibart, R. T.; Seekamp, C. K. et al., 1-Oxaspiro[4.4]nonan-6-ones. Synthetic Access via Oxonium Ion Technology, Optical Resolution, and Conversion into Enantiopure Spirocyclic α, β-Butenolides, J. Org. Chem., 2001, 66, 2828-2834.
    15. Paquette, L. A.; Kahane, A. L.; Seekamp, C. K., Conformationally Constrained Purine Mimics. Incorporation of Adenine and Guanine into Spirocyclic Nucleosides, J. Org. Chem., 2004, 69, 5555-5562.
    16. Paquette, L. A.; Seekamp, C. K.; Kahane, A. L.; Hilmey, D. G.; Gallucci, J., Stereochemical Features of Lewis Acid-Promoted Glycosidations Involving 4′-Spiroannulated DNA Building Blocks, J. Org. Chem. , 2004, 69, 7442-7447.
    17. Dong, S.; Paquette, L. A., Highly Stereoselective β-Anomeric Glycosidation of a 2′-Deoxy Syn-5′-Configured 4′-Spironucleoside, J. Org. Chem., 2006, 71, 1647-1652.
    18. Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.; Kahane, A. L., Spirocyclic Restriction of Nucleosides. Synthesis of the First Exemplary syn-1-Oxaspiro[4.4]nonanyl Member, Org. Lett., 2001, 3, 4039-4041.
    19. Paquette, L. A.; Owen, D. R.; Bibart, R. T.; Seekamp, C. K., Spirocyclic Restriction of Nucleosides. An Analysis of Protecting Group Feasibility while Accessing Prototype anti-1-Oxaspiro[4.4]nonanyl Mimics, Org. Lett., 2001, 3, 4043-4045.
    20. Paquette, L. A.; Fabris, F.; Gallou, F.; Dong, S., C4′-Spiroalkylated Nucleosides Having Sulfur Incorporated at the Apex Position, J. Org. Chem., 2003, 68, 8625-8634.
    21. Dong, S.; Paquette, L. A., Stereoselective Synthesis of Conformationally Constrained 2′-Deoxy-4′-thia β-Anomeric Spirocyclic Nucleosides Featuring Either Hydroxyl Configuration at C5′, J. Org. Chem., 2005, 70, 1580-1596.
    22. Paquette, L. A.; Dong, S., Stereoselective Synthesis of β-Anomeric 4′-Thiaspirocyclic Ribonucleosides Carrying the Full Complement of RNA-Level Hydroxyl Substitution, J. Org. Chem., 2005, 70, 5655-5664.
    23. a) Nieman, J. A.; Keay, B. A., An Efficent Synthesis and Resolution of (±)-cis, cis-Spiro[4.4]Nonane-1, 6-Diol, Synthetic Communications, 1999, 29, 3829-3840. b) Hartung, R.; Paquette, L. A., Practical Synthesis of Enantiopure Spiro[4.4]nonane C-(2′-Deoxy)ribonucleosides, J. Org. Chem., 2005, 70, 1597-1604.
    24. Curran, D. P., The design and application of free radical chain reactions in organic synthesis, part one, Synthesis, 1988, 417-439.
    25. Curran, D. P., The design and application of free radical chain reactions in organic synthesis, part tow, Synthesis, 1988, 489-513.
    26. Jasperse, C. P., Radical reactions in natural product synthesis, Chem. Rev., 1991, 91, 1237-1286.
    27. 18. Bowman, W. R., Fletcher, A. J., and Potts, G. B. S., Synthesis ofheterocycles by radical reactions, J. Chem. Soc. Perkin Trans. I, 2002, 2747-2762.
    28. Bowman, W. R., Cloonan, M. O.; Krintel, S. L.; Synthesis of heterocycles by radical reactions, J. Chem. Soc. Perkin Trans. I, 2001, 2885-2902.
    29. Renaud, P.; Giraud, L.; 1-Amino- and 1-amidoalkyl radicals: generation and stereoslective reactions, Synthesis, 1996, 913-926.
    30. Easton, C. J.; Free-radical reactions in the synthesis of a-amino acids and derivertives, Chem. Rev., 1997, 97, 53-82.
    31. Brinza, I. M.; Falls, A. G, Free radical cyclizations involving nitrogen, Tetrahedron, 1997, 53, 17543-17594.
    32. Gans?uer, A.; Bluhm, H, Reagent-controlled transition-metal-catalyzed radical reactions, Chem, Rev., 2000, 100, 2771-2788.
    33. Snider, B. B, Manganese(III)-based oxidative free-radical cyclizations, Chem, Rev., 1996, 96, 339-363.
    34. a) J.-C. Wu, Z. Xi, C.Gioeli and Jyoti Chattopadhyaya, Intramolecular cyclization-trapping of carbon radicals by olefins as means to functionalize 2′- and 3′-carbons in β-D-nucleosides, Tetrahedron, 1991,
    47, 2237; b) Zhen Xi, Corine Clemarec and Jyoti Chattopadhyaya, Synthesis of 2′, 3′-cis-fused pyrrolidino-β-D-nucleosides and their conformational analysis by 500 MHz 1H-NMR, Tetrahedron, 1993, 49, 7525.
    35. Radicals in Organic Synthesis, eds. P. Renaud and M. P. Sibi, Wiley-VCH, Weinheim, 2001.
    36. Jerry March , 1985, Wiley-Interscience, p608-656.
    37. McCarroll, A. J.; Walton, J. C., Programming Organic Molecules: Design and Management of Organic Syntheses through Free-Radical Cascade Processes, Angew. Chem. Int. Ed., 2001, 40, 2224-2248.
    38. Robertson, J., Pillai, J. and Lush, R, K., Radical translocation reactions in synthesis, Chem. Soc. Rev., 2001, 30, 94-103.
    39. ?ekovi?, ?.; Reactions of δ-carbon radicals generated by 1, 5-hydrogen transfer to alkoxyl radicals, Tetrahedron, 2003, 59, 8073-8090.
    40. Majetich, G.; Wheless, K.; Remote intramolecular free radical functionalizations: an update, Tetrahedron, 1995, 51, 7095-7129.
    41. Winkler, J. D.; Hong, B. C.; Transannular radical reactions in bicycloalkanes with “inside-outside” stereochemistry. An unusual bridgehead hydroxylation, Tetrahedron Lett., 1995, 683.
    42. Curran, D, P.; Shen, W., Radical translocation reactions of vinyl radicals: substituent effects on 1, 5-hydrogen-transfer reactions, J. Am. Chem. Soc., 1993, 115, 6051-6059.
    43. Robertson, J.; Peplow, M. A.; Pillai, J., The Synthesis of (±)-Heliotridane and (6S, 7S)-Dihydroxyheliotridane via Sequential Hydrogen Atom Abstraction and Cyclisation, Tetrahedron Lett., 1996, 37, 5825-5828.
    44. Beaufils, F.; Denes, F.; Renaud, P.; Thiophenol-mediated hydrogen atom abstraction: an efficient tin-free procedure for the preparation of cyclopentane derivatives, Org. Lett., 2004, 6, 2563-2566.
    45. Curran, D, P.; Kim, D.; Liu, H, T.; Shen, W., Translocation of radical sites by intramolecular 1, 5-hydrogen atom transfer, J. Am. Chem. Soc., 1988, 110, 5900-5902.
    46. Curran, D, P.; Xu, J., o-Bromo-p-methoxyphenyl Ethers. Protecting/Radical Translocating (PRT) Groups That Generate Radicals from C-H Bonds β to Oxygen Atoms. J. Am. Che. Soc., 1996, 118, 3142-3147.
    47. Curran, D, P., Abraham, A, C., and Liu, H, T., Radical translocation reactions of o-iodoanilides: the use of carbon-hydrogen bonds as precursors of radicals adjacent to carbonyl groups, J. Org. Chem., 1991, 56, 4335-4337.
    48. Sato, T., Yamazaki, T., Nakanishi, Y., Uenishi, J., and Ikeda, M., A new entry to 9-azabicyclo [3.3.1]nonanes using radical translocation/cyclisation reactions of 2-(but-3-ynyl)-1-(o-iodobenzoyl) piperidines, J. Chem. Soc. Perkin Trans I, 2002, 1438-1443.
    49. Barton, D. H. R.; Beaton, J. M., A synthesis of aldosterone acetate, J. Am. Chem. Soc., 1960, 82, 2641.
    50. Beaulieu, F.; Arora, J.; Veith, U.; Taylor, N. J.; Chapell, B. J.; Snieekus, V., 1, 3-Asymmetric Induction via 1, 5-Hydrogen Atom Translocation Reactions. Highly Enantioselective Synthesis of β-Substituted β-Amino Acids, J. Am. Chem. Soc., 1996, 118, 8727-8728.
    51. Sannigrahi, M., Stereocontrolled synthesis of spirocyclices, Tetrahedron, 1999, 9007-9071.
    52. Brown, C, D, S.; Simpkins, N, S.; Clinch, K., A route to spiroketals using radical translocation, Tetrahedon Lett., 1993, 34, 131-132.
    53. Storey, J. M, D., A novel synthesis of spirocyclic pyrrolidin-2-ones, Tetrahedron Lett., 2000, 41, 8173-8176.
    54. Takasu, K.; Ohsato, H.; Ihara, M., New stereoselective entry to azaspirocyclic nucleus of halichlorine and pinnaic acids by radical translocation/cyclization reaction, Org. Lett., 2003, 5, 3017-3020.
    55. Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Schulte, M.; Jones, K., A tandem radical approach to the ABCE-rings of the Aspidosperma and Strychnos alkaloids, Chem. Commun., 2001, 209-210.
    56. a) Gryaznov, S.; Chen, J.-K., Oligodeoxyribonucleotide N3-->P5′ Phosphoramidates: synthesis and Hybridization Properties, J. Am. Chem. Soc., 1994, 116, 3143; b) Schultz, R. G.; Gryaznov, S. M., Oligo-2′-fluoro -2′-deoxynucleotide N3′-->P5′ phosphoramidates: synthesis and properties, Nucleic Acids Res., 1996, 24, 2966; c) De. Clercq, E., Chemotherapy of varicella-zoster virus by a novel class of highly specific anti-VZV bicyclic pyrimidine nucleosides, Biochim. Biophys. Acta, 2002,1587, 258.
    57. a) Boon, E. M.; Barton, J. K.; Pradeepkumar, P. I.; Isaksson. J.; Petit, C.; Chattopadhyaya, J., An Electrochemical Probe of DNA Stacking in an Antisense Oligonucleotide Containing a C3′-endo-Locked Sugar, Angew. Chem. Int. Ed., 2002, 41, 3402; b) Leumann, C. J., DNA Analogues: From Supramolecular Principles to Biological Properties, Bioorg. Med. Chem., 2002, 10, 841-856. c) Koshkin, A. A.; Fensholdt, J.; Pfundheller, H. M.; Lomholt, C., A Simplified and Efficient Route to 2'-O, 4'-C-Methylene-Linked Bicyclic Ribonucleosides (Locked Nucleic Acid), J. Org. Chem., 2001, 66, 8504. d) Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J. I.; Morio, K. I.; Doi, T.; Imanishi, T., Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O, 4′-C-methyleneribonucleosides, Tetrahedron Lett., 1998, 39, 5401. e) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M; Olsen, D. E.; Wengel, J., LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition, Tetrahedron, 1998, 54, 3607.
    1. Almer, H.; Stawinski, J.; Stroemberg, R.; Thelin, M., Synthesis of Diribonucleoside Phosphorot hioates via Stereospecific Sulfurization of H-Phosphonate Diesters, J. Org. Chem., 1992, 57, 6163.
    2. Jeong, L. S.; Jin, D. Z.; Kim, H. O.; Shin, D. H.; Moon, H. R.; Gunaga, P.;Chun, M. W.; Kim, Y.-C.; Melman, N.; Gao, Z.-G.; Jacobson, K. A., N6-Substituted D-4-Thioadenosine-5  -methyluronamides: Potent and Selective Agonists at the Human A3 Adenosine Receptor, J. Med. Chem. 2003, 46, 3775-3777.
    3. Xu, X. X.; Che, X.; Gao, S.; Wu, J. C.; Bai, X., Synthesis of Aza/Oxaspiro-γ-lactams by Radical Translocation Cyclization Reactions, Synlett, 2005, 12, 1865-1868.
    4. Burke, S.; D, and Jung, K. W., 2, 3-Disubstituted tetrahydrofuran synthesis via radical and anionic cyclization, Tetrahedon Lett., 1994, 35, 5837-5840.
    5. Curran, D. P.; Shen, W., Radical Translocation Reactions of Vinyl Radicals: Substituent Effects on 1, SHydrogen-Transfer Reactions, J. Am. Chem. Soc., 1993, 115, 6051.
    6. Brown, C. D. S.; Simpkins, N. S.; Clinch, K., A route to spiroketals using radical translocation, Tetrahedon Lett., 1993, 34, 131-132.
    7. Gimisis, T.; Chatgilialoglu, C., 1, 5-Radical Translocation Protocol for the Generation of C-1 R?adicals in Nucleosides. Synthesis of Spiro Nucleosides through aRare 5-endo-trig Cyclization, J. Org. Chem., 1996, 61, 1908.
    8. Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W., Translocation of Radical Sites by Intramolecular 1, 5-Hydrogen Atom Transfer, J. Am. Chem. Soc., 1988, 110, 5900.
    9. 1, 2, 3-Tribromopropane, Organic Syntheses, 1925, 5, 99.
    10. 2, 3-Dibromopropene, Organic Syntheses, 1925, 5, 49.
    11. Wu, J. C.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J., Intramolecular cyclization-trapping of carbon radicals by olefins as means to functionalize 2′- and 3′-carbons in β-D-nucleosides, Tetrahedron, 1991, 47, 2237.
    12. 2-Bromoallylamine, Organic Syntheses, 1963, 43, 6.
    13. Matsugi, M.; Hagimoto, Y.; Nojima, M.; Kita, Y., Effective Nonenzymatic Kinetic Resolution of (±)-trans-2- Arylcyclohexanols Using 3β-Acetoxyetienic Acid, DCC, and DMAP, Org. Process Res. Dev., 2003, 7, 583-584.
    14. Xi, Z.; Glemarec, C.; Chattopadhyaya, J., Synthesis of 2′, 3′-cis-fused pyrrolidino-β-D-nucleosides and their conformational analysis by 500 MHz 1H-NMR, Tetrahedron, 1993, 49, 7525.
    15. Robertson, J.; Peplow, M. A.; Pillai, J., The Synthesis of (±)-Heliotridane and (6 S, 7 S)-Dihydroxyheliotridane via Sequential Hydrogen Atom Abstraction and Cyclisation, Tereahedron Letters, 1996, 37, 5825.
    16. a) Ranganathan, R., Modification of the 2′-position of purine nucleosides: syntheses of 2′-α-substituted-2′-deoxyadenosine analogs, Tetrahedron Lett. 1977, 18, 1291-1294. b) Robins, M. J.; Hawrelak, S. D.; Hernandez, A. E.; Wnuk, S. F., Nucleic Acid Related Compounds. LXXXI. Efficient General Synthesis of Purine (Amino, Azido, and Triflate)-Sugar Nucleosides, Nucleosides Nucleotides 1992, 11, 821-834. c) Wu, J. C.; Pathak, T.; Tong, W.; Vial, J. M.; Remaud, G.; Chattopadhyaya, J., New syntheses of 2', 3'-dideoxy-2', 3'-di-substituted & -2'-mono-substituted uridines & adenosines by michael addition reactions, Tetrahedron, 1988, 44, 6705-6722.
    17. Gosselin, G.; Boudou, V.; Griffon, J.-F.; Pavia, G.; Pierra, C.; Imbach, J.-L.; Faraj, A.; Sommadossi, J.-P., Unnatural β-L-Enantiomers of Nucleoside Analogues as Potent Anti-Hepatitis B Virus Agents, Nucleosides Nucleotides, 1998, 17, 1731-1738.
    18. Bobek, M.; Martin, V., The synthesis of anomeric 3-O-acetyl-5-O-benzoyl-2-azido-2-deoxy-D-arabinofuranosyl chlorides. Versatile sugar intermediates for the synthesis of 2′-azido-2′-deoxy- and 2′-amino-2′-deoxy-β-D-arabinofuranosyl nucleosides. Tetrahedron Lett.1978, 19, 1919-1922.
    19. Robins, M. J.; Hawrelak, S. D., Nucleic acid related compounds. 28. 2′-amino-araA [9-(2-amino-2-deoxy-β-D-arabinofuranosyl) adenine]. Synthesis via nucleoside-aziridine or azido intermediates and biological effects, Tetrahedron Lett. 1978, 19, 3653-3656.
    20. Costa, A. M.; Faja, M.; Farras, J.; Vilarrasa, J., Uracil- and thymine-substituted thymidine and uridine derivatives, Tetrahedron Lett. 1998, 39, 1835-1838.
    21. Robins, M. J.; Miles, R. W.; Samano, M. C.; Kaspar, R. L., Syntheses of Puromycin from Adenosine and 7-Deazapuromycin from Tubercidin, and Biological Comparisons of the 7-Aza/Deaza Pair, J. Org. Chem. 2001, 66, 8204-8210.
    22. Yamazaki, N.; Kibayashi, C., Asymmetric synthesis with .alpha., beta.-bis[(methoxymethyl)oxy] ketones. Enantioselective total synthesis of natural (+)-indolizidine 195B (bicyclic gephyrotoxin 195B) and (-)-pinidine and their enantiomers from a common chiral synthon, J. Am. Chem. Soc., 1989, 111, 1396-1408.
    23. a) Hollenberg, D. H.; Watanabe, K. A.; Fox, J. J., Nucleosides. 102. Synthesis of some 3′-deoxy-3′-substituted arabinofuranosylpyrimidine nucleosides, J. Med. Chem., 1977, 20, 113; b) Robins, M. K. J.; Fouron, Y.; Mengel, R., Nucleic acid related compounds. II. Adenosine 2′, 3′-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3′-substituted xylofuranosyl nucleosides and the lyxo-epoxide, J. Org. Chem., 1974, 39, 1564.
    24. a) Hampton, A.; Nichol, A. W., Nucleotides. V. Purine Ribonucleoside 2′, 3′-Cyclic Carbonates. Prepartion and Use for the Synthesis of 5′-Monosubstituted Nucleosides, Biochemistry, 1966, 5, 2076; b) Ogilvie, K. K.; Iwacha, D., Can. J. Chem., 1969, 47, 495; c) McGee, D. P. C.; Vaughn-Settle, A.; Vargeese, C.; Zhai, Y., 2′-Amino-2′-deoxyuridine viaan Intramolecular Cyclization of a Trichloroacetimidate, J. Org. Chem., 1996, 61, 781.
    25. 刘红霞,苏镜娱,曾陇梅,钟世舟,吡啶重铬酸盐的制备及其应用,化学试剂, 1996, 18, 173.
    26. Isomerization of β-Alkynyl Allylic Alcohols to Furans catalyzed by silver nitrate on silica gel, Organic Syntheses, 1999, 76, 263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700