用户名: 密码: 验证码:
地震岩石层—大气层—电离层耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,国内外很多卫星观测结果表明地震产生的溢出气体、地表颤动、电磁辐射等能够在电离层产生扰动。地震电离层前兆研究受到各国科学家的重视,很可能发展成为地震短临预报的重要手段。地震引起电离层扰动的机理问题也受到普遍关注,被称为“地震岩石层-大气层-电离层耦合机理(Lithosphere-Atmosphere-Ionosphere Coupling Mechanism Related to Earthquakes)”。LAI耦合机理的研究可以为从卫星观测数据中提取地震异常提供一定的理论依据。对该耦合系统的认识依赖于实验观测、理论分析和数值模拟等综合研究工作,其中,数值模拟起着重要作用。目前国内外进行的地震LAI耦合数值模拟主要包括直流电场耦合模拟、声重波耦合模拟以及电磁波耦合模拟。电磁波耦合是诸多LAI耦合模型中唯一不需通过不同物理量相互作用而实现地震LAI耦合的方式。本文将重点研究地震LAI电磁耦合模拟。
     很多卫星在电离层中记录到明显的甚低频(Very Low Frequency)、极低频(Ultra Low Frequency)、超低频(Super Low Frequency)频段地震电磁信号。法国、美国、俄罗斯等国相继发射了地震电磁卫星DEMETER,QuakeFinder,Compass-2等来观测地震引起的地球空间电磁环境的变化。中国的地震电磁卫星计划正在紧锣密鼓的推进。以往国内的地震电离层电磁前兆研究主要是对卫星数据的处理分析,缺乏数值模拟方面的理论研究。本论文是我国首次开展地震电离层耦合机理研究,填补了空白,可以为将来的中国地震电磁卫星的数据资料分析处理以及地震电离层试验网的立项论证提供理论及技术支撑。
     本文的研究内容、具体研究方法、研究结果及结论如下:
     (1)从各向异性介质中的麦克斯韦方程组出发,把电离层模型简化为均匀不分层,推导计算均匀不分层电离层的反透射系数及折射率表达式。分析了VLF频段入射电波频率、入射角,地磁倾角、电子碰撞频率、电子浓度等介质参数对均匀不分层电离层的反透射系数及折射率的影响。计算发现:电离层电导率矩阵必须满足一定的色散关系时,其中才有可传播的电磁横波;另外,计算结果还表明:电波入射角越小,越容易进入电离层;频率越高,在电离层界面的穿透能力越强,进入电离层后的色散和损耗越小。电离层电子浓度大,电波越不容易透射,在其中传播的电波的色散和衰减越大;电子碰撞频率越大,VLF电波越容易进入电离层,其中的寻常波色散越大衰越小,而非寻常波刚好相反。纵传播的衰减和色散最小,横传播相反,所以电波倾向于沿着磁力线传播。地磁倾角越大,透射越强,所以磁赤道处,电波很难进入电离层。
     (2)在此基础上把电离层看做更接近物理实际的水平分层电离层,利用传播矩阵法与革兰-施密特(Gram-Schmidt)正交化相结合的全波法数值求解斜向地磁场影响下水平分层电离层中的麦克斯韦方程组,构建了电波在电离层中的传播模型。分析了VLF频段电波反射系数、极化、电离层中的场结构和能量随高度及电波频率的变化特性。计算结果表明:电离层中有两种特征波,其中右旋极化波传播速度小衰减也很小,左旋极化波刚好相反。任意极化的VLF电波进入电离层后都会发生极化倒转,变为稳定的左旋和右旋的圆极化。电波在电离层各层中,由于D层带电粒子与中性粒子之间的强烈碰撞而被严重吸收且其中的电波特性不稳定;左旋极化波被电离层D层强烈吸收,为不可传播模,而右旋极化波在电离层中为可传播模,可见碰撞对电波能量的衰减起决定作用。另外,电波频率越低垂直方向的坡印廷能流密度越大,这说明地震辐射的低频电磁波更易被卫星观测到。
     通过与均匀不分层电离层计算结果的比较发现,为保证今后进一步定量计算的精度,必须采用分层电离层模型。
     (3)电波在电离层以下的传播,采用三维球面地-电离层波导模型。将其与基于全波法的电离层电波传播模型相结合,构建了LAI电磁耦合模型。借助澳大利亚长波导航台发射的导航信号,计算了卫星高度的场强,验证了论文建立的地震LAI电磁耦合模型的正确性。结果表明:地面VLF人工源在电离层中激发的场地面VLF人工源在电离层中激发的场由于地-电离层波导作用呈现一组同心圆环;圆环具有明显的南北不对称性,北大南小,这说明人工源激发的哨声模容易沿磁力线传播;同心圆环中心在地面的投影相对于发射源,沿磁力线偏向磁赤道方向,偏移量与发射源所在纬度有关。计算结果与观测结果趋势一致性良好,但计算值稍大。可能是因为模型计算时没有考虑电离层不均匀体对电波的散射造成的能量损耗,也有可能是电离层分层层数不足造成的,另外我们把发射源理想化为垂直电偶极子也可能造成误差。
     通过以上研究得到以下初步认识:地震辐射的电波频率越低越易被卫星接收,与国外专家的相关研究结果及卫星观测结果一致,可为中国地震电磁卫星观测提供了理论依据。并且只有垂直、右旋极化的低频电波才能进入电离层深部被卫星观测到。在高纬观测到地震电离层电磁异常的几率比在低纬大。地面VLF人工源在电离层中激发的场中心在地面的投影相对于发射源的偏移量与发射源所在纬度有关,这种偏移规律可能为解决地震定位这一难题提供依据。
In recent year, results form satellite observation in the world show that outgassings, surface shaking, electromagnetic emission from earthquakes and so on can create disturbance in the ionosphere. Scientists around the world have been focusing on research of ionospheric precursors of earthquake, which could be the most important way of short-term and impending earthquake prediction. (Lithosphere-Atmosphere-Ionosphere Coupling Mechanism Related to Earthquakes)。The mechanism of how earthquake can create disturbance in the ionosphere is getting universal attention, which is called Lithosphere-Atmosphere-Ionosphere Coupling Mechanism Related to Earthquakes. Research about LAI Coupling Mechanism can provide evidence background for extracting earthquake abnormality from satellite observation. The way to study the coupling mechanism is based on experimental observation, theoretical analysis, numerical simulation and so on, among which numerical simulation is the most important one. Recently, study of the numerical simulation of LAI Coupling Mechanism related to Earthquakes in the world mainly includes simulation of DC electric field coupling, AGW coupling and electromagnetic coupling. Electromagnetic coupling is the only mechanism which does not need the interaction of different physical.
     Many satellites have recorded obvious VLF/ULF/SLF electromagnetic signal in the ionosphere related to earthquakes. France, America, and Russia all have launched seisimo electromagnetic satellites in succession, such as DEMETER/QuakeFinder/Compass-2, to monitor the change of the electromagnetic environment of the earth. The China Seismo Electromagnetic Satellite Program has been engaged. The research about ionospheric electromagnetic precursory related to earthquake before is mostly the analysis of satellites data, lacking of the theoretical study of numerical simulation. This thesis is the first in China to study of Lithosphere-Atmosphere-Ionosphere coupling mechanism related to earthquakes, which fill up the blank, and can support the China Seismo Electromagnetic Satellite Program theoretically also approve and initiate the seismo ionospheric test network.
     This main research methods, contents and conclusions are as follow:
     (1) From Maxwell equations in the anisotropical medium, we deduced the formula of reflection coefficients, transmission coefficients and refractive index of homogeneous unstratified ionosphere. The influence of the medium parameters such as wave frequency, incident angle, DIP, electron collision frequency and electron density has been analyzed. We found that just when the matrix of the ionosphere conductivity satisfies some definite relation, there can be electromagnetic waves propagating in the ionosphere. Also, it is easier for the wave to penetrate into the ionosphere for high frequency wave with small incident angle; the dispersion and loss is also small. It is hard for the wave to penetrate into the ionosphere when the electron density is big and collision frequency is small, and the dispersion and loss is also high. The propagation loss is smaller when the angle between the direction of the wave vector and geomagnetic field is smaller, that is to say, it experience smallest loss for vertical propagation. At magnetism equator where the magnetic inclination is 0°, the wave almost can not penetrate into the ionosphere.
     (2) On these bases, full wave method which combined propagation matrix method and Gram-Schmidt orthogonalize method together is used to solve the Maxwell equations in the horizontal stratified ionosphere with oblique geomagnetic field which is more close to physical fact. The radio wave propagation model in the ionosphere is constructed. The calculation results show that there are two characteristic waves in the ionosphere, and one is right-hand circular polarization wave which has small phase velocity and loss, the other is left-hand circular polarization wave which has the opposite properties. Arbitrary polarization waves at VLF band which penetrate into the ionosphere will meet polarization reversal and turn to be stable left-hand and right-hand circular polarization. The radio waves experience the strongest attenuation in the D layer and are very unstable for the serious collision between charged particles and neutral particles. The left-hand circular polarization wave which is absorbed severely in the D region is called non-penetrating mode, and the right-hand circular polarization wave is penetrating mode. It can be concluded that the attenuation is mainly due to the collision between particles. Lastly, the vertical Poynting flux increases as the wave frequency decreases, which certificate that the lower frequency wave radiated from the earthquake is possible to penetrate into the ionosphere and be observed by the satellite.
     Comparing with the homogeneous unstratified ionosphere model, it can be concluded that the stratified ionosphere model is needed to demand the quantitative calculation accuracy.
     (3) The radio wave propagation model below the ionosphere uses 3D spherical earth-ionosphere wave guide model, which is combined with the full wave method of ionospheric wave propagation models to construct the LAI electromagnetic coupling model. With the help of the VLF signal transmitted by Australian long wave navigation station, the field in the ionosphere is calculated to verify the LAI electromagnetic coupling mechanism related with earthquakes constructed in this thesis. The results show that the concentric circles are caused by interference of VLF waveguide modes in the Earth-ionosphere waveguide. The main asymmetry exists about the east-west line, because the wave propagates toward the north along Earth·s magnetic field line, as expected. The center of these circles maps to the location of the VLF transmitter on the ground, the latitudinal displacement being due to the direction of the group velocity of the VLF waves. The offset is decided by the latitude of the transmitter. Comparing the calculated result and observed data, we found that: the calculated result is bigger than observed data generally. This maybe caused by the random irregularities in ionosphere, which scatter the radio wave and cause the loss of energy. The finite layer may also be the reason. The systematic error for idealizing the source to be vertical dipole may be another possible reason.
     Through the above studies, we found that it is easier for the lower frequency radio wave radiated by earthquake to be received by satellite in the ionosphere which is agree with the results of the foreign expect and the satellite observation. This result can provide the theoretical evidence for China Seismo Electromagnetic Satellite observation. And only vertical and right-handed polarization low frequency wave can penetrate into the ionosphere and received by the satellite. The probability to observe the abnormal at high latitude is bigger than the low latitude. The responding zone of the epicenter in the ionosphere has a latitudinal displacement along the magnetic line, the offset of which is due to the latitude of the transmitter. This regularity may help to find out the locations of the earthquakes.
引文
曹晋滨,杨俊英,袁仕耿等. (2009). "卫星低频电磁辐射在轨探测研究."中国科学:E辑39(9): 1544-1550.
    丁鉴海,申旭辉,潘威炎等(2006). "地震电磁前兆研究进展."电波科学学报21(5): 791-801.
    郭自强(1994). "地震低频电磁辐射研究."地球物理学报37(A01): 261-268.
    靳致文(2008). "Vlf/Slf波传播及其在对潜通信与导航中的应用."装备环境工程5(2): 57-61,86.
    李定,陈银华,马锦秀. (2006). "等离子体物理学."北京:高等教育出版社. 99-108.
    刘静,张学民,申旭辉等. (2009). "九江地震前Demeter卫星观测到的电离层异常."地震29(B10): 60-66.
    欧阳新艳,张学民,申旭辉等(2008). "普洱地震前电离层电子密度扰动变化研究."地震学报30(004): 424-436.
    潘威炎(2004). "长波超长波极长波传播."成都:电子科技大学出版社254-255.
    祁贵仲(1978). "“膨胀”磁效应."地球物理学报. 21: 18-33.
    申旭辉,吴云,单新建. (2007). "地震遥感应用趋势与中国地震卫星发展框架."国际地震动态8: 38-45.
    申旭辉,吴云,单新建等. (2008). "中国卫星地震应用系统框架与地震电磁卫星计划进展."国际地震动态11: 153-153.
    夏明耀,陈志雨(1999). "各向异性分层媒质中波辐射与传播新解法."中国科学: E辑29(002): 163-167.
    徐世浙(1979). "关于压磁效应和膨胀磁效应."地震学报1(1): 76-81.
    张红旗,陈宇,潘威炎. (2009). "地震Elf/Slf辐射源在地面及电离层中产生的场."电波科学学报24(3): 432-439.
    张学民,申旭辉,欧阳新艳等. (2009). "汶川8级地震前空间电离层Vlf电场异常现象."电波科学学报24(6): 1024-1032.
    张瑜(2007). "电磁波空间传播."西安:西安电子科技大学出版社14-15, 178-179.
    Barton, C. E. (1997). "International Geomagnetic Reference Field: the seventh generation." Journal of Geomagnetism and Geoelectricity 49: 123-148.
    Bilitza, D. (2001). "International reference ionosphere 2000." Radio Sci 36(2): 261–275.
    Booker, H. G. (1938). "Propagation of wave-packets incident obliquely upon a stratified doubly refracting ionosphere." Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 237(781): 411-451.
    Borisov, N., V. Chmyrev, S. Rybachek. (2001). "A new ionospheric mechanism of electromagnetic ELF precursors to earthquakes." Journal of Atmospheric and Solar-Terrestrial Physics 63(1): 3-10.
    Bortnik, J. and T. Bleier (2004). "Full wave calculation of the source characteristics of seismogenic electromagnetic signals as observed at LEO satellite altitudes." Eos Trans. AGU 85: 47.
    Boyarchuk, K. A., A. M. Lomonosov, S. A Pulinets. (1998). "Variability of the Earth's Atmospheric Electric Field and Ion-Aerosols Kinetics in the Troposphere." Studia geophysica et geodaetica 42(2): 197-210.
    Budden, K. G. (1961). "Radio waves in the ionosphere." London and New York: Cambridge Univ Press. 389-390.
    Chew, W. C. (1990). "Waves and fields in inhomogenous media." New York: Van Nostrand Reinhold. 109-114.
    Chmyrev, V. M., N. V. Isaev, S. V. Bilichenko, et al. (1989). "Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake centre." Physics of the Earth and Planetary Interiors 57(1-2): 110-114.
    Cummer, S. A. (2000). "Modeling electromagnetic propagation in the Earth-ionosphere waveguide." IEEE Transactions on Antennas and Propagation 48(9): 1420-1429.
    Davies, K. and D. M. Baker (1965). "Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964." Journal of Geophysical Research 70: 2251-2253.
    Davis, P. M., D. D. Jackson, M. J. S. Johnston. (1980). "Further evidence of localized geomagnetic field changes before the 1974 Thanksgiving Day earthquake, Hollister, California." Geophysical Research Letters 7(7): 513-516. doi:10.1029/GL007i007p00513
    Fitterman, D. V. (1978). "Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth." Journal of Geophysical Research 83: 5923-5928.
    Freund, F. T., A. Takeuchi, B. W. S. Lau, et al. (2004) "Stress-induced changes in the electrical conductivity of igneous rocks and the generation of ground currents." Terr Atm Oc 15(3): 437-468.
    Garmash, S. V., Y. M. Lin'kov, M. J. S. Johnston, et al. (1989). "Generation of atmospheric oscillations byseismic-gravity oscillations of the Earth." Izvest. Atmos. Ocean. Phys 25: 952-959.
    Gokhberg, M. B., I. L. Gufel'd, N. I. Gershenzon, et al. (1985). "Electromagnetic Effects during Rupture of the Earth's Crust." Izvestiya, Academy of Sciences, USSR.: Physics of the solid earth: 21(1): 52-63.
    Gokhberg, M. B., V. A. Morgounov, T. Yoshino, et al. (1982). "Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan." J. Geophys. Res 87(B9): 7824-7828.
    Gokhberg, M. B., V. A. Morgunov, O. A. Pokhotelov (1988). "Seismoelectromagnetic phenomena." Moscow: Nauka.
    Grimalsky, V. V., M. Hayakawa, T. Yoshino, et al. (2003). "Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes." Journal of Atmospheric and Solar-Terrestrial Physics 65(4): 391-407.
    Helliwell, R. A. (1965). "Whistlers and related ionospheric phenomena.", California: Stanford University Press. 63-76.
    Henderson, T. R., V. S. Sonwalkar, R. Helliwell et al. (1993) "A search for ELF/VLF emissions induced by earthquakes as observed in the ionosphere by the DE 2 satellite." J Geophys Res 98(A6) doi:10.1029/92JA01533.
    Isaev, N. V. and O. N. Serebryakova (2001). "Electromagnetic and plasma effects of seismic activity in the earth ionosphere." CHEMICAL PHYSICS REPORTS C/C OF KHIMICHESKAIA FIZIKA 19(6): 1177-1188.
    Ishido, T. and H. Mizutani (1981). "Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics." J. geophys. Res 86(B3): 1763-1775.
    Kunz K S, Numerical Analysis, New York: McGrawHill, 1957. 236-238.
    Larkina, V. I., A. V. Nalivayko, N. I. Gershenzon, et al. (1983). "Observations of VLF emission related with seismic activity on the Interkosmos-19 satellite." Geomagn. Aeron 23(5): 684-687.
    Lehtinen, N. G. and U. S. Inan (2008). "Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet." J. Geophys. Res 113(A06301) doi:10.1029/2007JA012911.
    Lehtinen, N. G. and U. S. Inan (2009). "Full-wave modeling of transionospheric propagation of VLF waves." Geophys. Res. Lett. 36(L03104) doi:10.1029/2008GL036535.
    Leiphart, J. P., R. W. Zeek, L. S. Bearce, et al. (1962). "Penetration of the Ionosphere byVery-Low-Frequency Radio Signals Interim Results of the LOFTI I Experiment." Proceedings of the IRE 50(1): 6-17.
    Liperovsky, V. A., O. A. Pohotelov, R. K. Liperovskaya, et al. (1994). "Effects on the F2 region of the ionosphere during military operations in the Persian Gulf Zone." Izvestiya Physics of the Solid Earth 30(5): 456-461.
    Liperovsky, V. A., O. A. Pokhotelov, C. V. Meister, et al. (2008). "Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes." Geomagnetism and Aeronomy 48(6): 795-806.
    Liperovsky, V. A., O. A. Pokhotelov, S. L. Shalimov (1992) "Ionospheric earthquake precursors. " Moscow: Nauka.
    Lockner, D. A., M. J. S. Johnston, J. D. Byerlee. (1983). "A mechanism to explain the generation of earthquake lights." Nature 302: 28-33.
    Mizutani, H., T. Ishido, S. Ohnishi. (1976). "Electrokinetic phenomena associated with earthquakes." Geophysical Research Letters 3(7) doi:10.1029/GL003i007p00365.
    Molchanov, O., E. Fedorov, A. Schekotov, et al. (2004). "Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere." Natural Hazards and Earth System Sciences 4: 757-767.
    Molchanov, O., A. Rozhnoi, M. Solovieva, et al. (2006). "Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite." Nat. Hazards Earth Syst. Sci 6: 745–753.
    Molchanov, O. A. (1991). "Propagation of electromagnetic fields from seismic sources into the upper ionosphere(Prokhozhdenie elektromagnitnykh polei ot seismicheskikh istochnikov v verkhniuiu ionosferu zemli)." Geomagnetizm i Aeronomiia 31: 111-119.
    Molchanov, O. A., M. Hayakawa, T.Oudoh, et al. (1998). "Precursory effects in the subionospheric VLF signals for the Kobe earthquake." Physics of the Earth and Planetary Interiors 105(3): 239-248.
    Molchanov, O. A., M. Hayakawa, V. A. Rafalsky. (1995). "Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere." Journal of geophysical research-space physics 100(A2): 1691-1712.
    Moore, G. W. (1964). "Magnetic disturbances preceding the Alaska earthquake." Nature 203(4944): 508-509.
    Nagano, I., M. Mambo, G. Hutatsuishi. (1975). "Numerical calculation of electromagnetic waves in an isotropic multilayered medium." Radio Science 10: 611-617.
    Nagano, I., P. A. Rosen, S. Yagitani, et al. (1993). "Full Wave Analysis of the Australian Omega Signal Observed by the Akebono Satellite." IEICE TRANSACTIONS on Communications 76(12): 1571-1578.
    Otsuka, Y., K. Shiokawa, T. Ogawa. (2006). "Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely-spaced GPS receivers in Indonesia."気象集誌 84(0): 343-351.
    Ozaki, M., S. Yagitani, I. Nagano, et al. (2009). "Ionospheric penetration characteristics of ELF waves radiated from a current source in the lithosphere related to seismic activity." Radio Science 44(1): 54-65.
    Parrot, M. M. (1989). "VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere." Physics of the Earth and Planetary Interiors 57(1-2): 86-99.
    Parrot M. M. (1994). "Statistical study of ELF/VLF emissions recorded by a low altitude satellite during seismic events. " J Geophys Res 99(A12) doi:10.1029/94JA0207223.
    Perzev, N. N. and S. L. Shalimov (1996). "Generation of atmospheric gravity waves in a seismo-active region and its influence on the ionosphere." Geomag. Aeron 36(2): 111-118.
    Pierce, E. T. (1976). "Atmospheric electricity and earthquake prediction." Geophys. Res. Lett 3(3): 185–188.
    Pogoreltsev, A. I. and N. N. Pertsev (1995). "The influence of background wind on the formation of the acoustic-gravity wave structure in the thermosphere." IZVESTIIA-RUSSIAN ACADEMY OF SCIENCES ATMOSPHERIC AND OCEANIC PHYSICS C/C OF IZVESTIIA-ROSSIISKAIA AKADEMIIA NAUK FIZIKA ATMOSFERY I OKEANA 31: 723-728.
    Pulinets, S. (2004). "Ionospheric precursors of earthquakes; recent advances in theory and practical applications." Terrestrial Atmospheric and Oceanic Sciences 15(3): 413-436.
    Pulinets, S. and K. Boyarchuk (2004). "Ionospheric precursors of earthquakes. " Berlin:Springer-Verlag. Pulinets, S. A. (2006). "Space technologies for short-term earthquake warning." Advances in Space Research 37(4): 643-652.
    Pulinets, S. A., A. D. Legen'ka, V. A. Alekseev. (1994). "Pre-earthquake ionospheric effects and their possible mechanisms. " in Dusty and Dirty Plasmas, Noise and Chaos in Spac and in Laboratory, New York: Plenum Publishing 545–557
    Scholz, C. H., L. R. Sykes, Y. P. Aggarwal. (1973). "earthquake prediction: A physical basis." Science (New York, NY) 181(4102): 803.
    Serebryakova, O. N., S. V. Bilichenko, V. M. Chmyrev. (1992). "Electromagnetic ELF radiation from earthquake regions as observed by low‐altitude satellites." Geophysical Research Letters 19(2).
    Shalimov, S. L. and M. B. Gokhberg (1998). "Litosphere–ionosphere coupling mechanism and its application in the case of June 20, 1990 earthquake in Iran. Interpretation of its ionospheric effects." J. Earthquake Predict. Res 7: 98–111.
    Soloviev, O. V., M. Hayakawa, V. I. Ivanov, et al. (2004). "Seismo-electromagnetic phenomenon in the atmosphere in terms of 3D subionospheric radio wave propagation problem." Physics and Chemistry of the Earth 29(4-9): 639-647.
    Sorokin, V. M. and V. M. Chmyrev (2002). "Electrodynamic model of ionospheric precursors of earthquakes and certain types of disasters." GEOMAGNETISM AND AERONOMY C/C OF GEOMAGNETIZM I AERONOMIIA 42(6): 784-792.
    Sorokin, V. M., V. M. Chmyrev, A. K. Yaschenko. (2001). "Electrodynamic model of the lower atmosphere and the ionosphere coupling." Journal of Atmospheric and Solar-Terrestrial Physics 63(16): 1681-1691.
    Sorokin, V. M. and A. K. Yaschenko (2000). "Electric field disturbance in the Earth-ionosphere layer." Advances in Space Research 26(8): 1219-1223.
    Sorokin, V. M., A. K. Yaschenko, V. M. Chmyrev, et al. (2006). "DC electric field amplification in the mid-latitude ionosphere over seismically active faults." Physics and Chemistry of the Earth 31(4-9): 447-453.
    Takeuchi, A., B. W. S. Lau, F. T. Freund. (2006). "Current and surface potential induced by stress-activated positive holes in igneous rocks." Physics and Chemistry of the Earth, Parts A/B/C 31(4-9): 240-247.
    Varotsos, P., K. Alexopoulos, K. Nomicos, et al. (1986). "Earthquake prediction and electric signals." Nature 322: 120.
    Vershinin, N., B. Straumal, K. Filonov, et al. (1999). "Hall current accelerator for pre-treatment of large area glass sheets." Thin Solid Films 351(1-2): 190-193.
    Warwick, J. W., C. Stoker, T. R. Meyer. (1982). "Radio emission associated with rock fracture- Possible application to the great Chilean earthquake of May 22, 1960." Journal of Geophysical Research 87(2): 851–2,859.
    Yeh, K. C. and C. Liu (1972). "Theory of ionospheric waves." New York: Academic Press.
    Yoshida, S., M. Uyeshima, M. Nakatani. (1997) "Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals." J Geophys Res 102(B7) doi:10.1029/97JB00729

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700