用户名: 密码: 验证码:
渤海海峡沉积物输运的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分隔并连接两个海域水体的海峡是各种物质进行输运和交换的通道(诸如沉积物、营养化学物质、污染物质及微体古生物长距离的搬运),因而广受关注,其中的沉积物交换是海洋地质学的一个重要理论和应用课题。海峡地区由于地形和水动力条件多变,沉积物分布的空间梯度大,有利于揭示不同搬运机制的作用和影响以及评价区域性和局部性的影响。作为渤海和北黄海物质交换和输运通道的渤海海峡也不例外,其独特的地质和水文条件为沉积物搬运的研究提供了极好的研究区域。
     本文根据渤海海峡空间尺度的大小、潮流特征和沉积物的性质特征,构造了一个垂向二维沉积物输运数值模型,结合已经取得的有关潮流和沉积物的各种相关资料,进行了沉积物长期输运的数值摸拟,所得结果符合实测的结果,揭示了本区沉积物长期输运和沉积的分布格局。
     根据Van Karman-prandtl方程导出了将U转化成U100的公式。经4个ADCP站位的流速实测值的验证,该转化公式适用于渤海海峡区。从基本的物理概念和物质守恒定律导出了海底沉积物通量的计算表达式,应用该式取得了与实际海域相符的海底冲淤分布图。用海底泥沙通量代替散度来表征海底的冲淤,物理概念明确。
     潮汐潮流的模拟计算结果与沿岸42个潮汐测站的实测值结果对比达到了精度的要求,同时,计算得到的各分潮同潮图与实测结果相符。这些结果表明模型对潮汐潮流的模拟是正确的。
     各分潮欧拉余流总的分布趋势表明北黄海中部泥区细颗粒沉积物输运的量值很小,K1和S2分潮欧拉余流各自在山东半岛北侧近岸泥质区形成的顺时针涡漩可能促进了该处的泥质沉积。然而余流的趋势虽有可能反映细颗粒沉积物输运的最大概率方向,却难以与粗颗粒沉积物的输运对应起来。
     沉积物长期净输运证实了程鹏(2000)关于沉积物在成山头以北近岸有向东和向东北的净输运趋势的猜测。对应于北黄海中部泥区沉积物净输运图出现为一个反时针的涡漩,表明沉积物的输运取汇聚态势,这也证实了程鹏(2000)有关沉积物向北黄海中部汇聚的结论。在辽东半岛南岸,沉积物净输运图与粒径趋势分析的结果不相符合。粒径趋势分析在冲刷区是不成立的,这由其方法的前提条件所决定。
     海底剪切应力的分布与海底沉积物类型的分布的对应关系。中部泥区为应力低值区所在,水动力弱的中部泥区只能接受弱水动力带来的细颗粒物质,而且这些细颗粒物质一旦沉积下来,便难以再悬浮搬运走,说明中部泥区是连续沉积细颗粒物质沉积区。
    
     活动层厚度的分布与海底沉积物类型的分布存在良好的对应关系。北黄海
    中部泥区活动层为全区最小,在0.13~以下。烟台北部近岸泥区亦对应活动
    层低值区(其值在0.2~以下)。活动层厚度的大小代表了海底沉积物活动性
    的强弱,这一分布表明:在泥区沉积下来的细颗粒沉积物,活动性非常弱,又
    由于该区水动力微弱,沉积物的临界起动值很高,因而难于被再悬浮搬运到他
    处。
     海底冲淤趋势图显示,中部泥区和山东半岛北部近岸泥区正好对应于海底
    淤积区,辽东半岛南岸的狭长泥带也对应于淤积条带。这些结果表明海底冲淤
    的计算结果符合泥区是现代连续沉积区的观点。
     沉积速率计算值与实测值相符,沉积速率的分布与海底沉积物的分布对应
    良好。中部泥区对应着与其规模和形状相似的沉积速率为0.1庄山刀a以下沉积区;
    烟台和蓬莱近海泥区也对应着两小块沉积速率为0.5nln亡a以下的细颗粒沉积
    区。其它海区为冲刷速率大小不等的海底冲刷区。这一结果与实际相符。
     上面的结果(沉积物净,海底冲淤,沉积速率,底应力,活动层厚度)都
    表明:北黄海中部必定是一个泥质沉积区。由于模型中没有包含上升流的影响,
    因此,上升流的存在不是形成泥质沉积的必要条件;但是在一定程度上,上升
    流的存在可能影响泥区的沉积速率。
Straits linking two bodies of sea water provides a channel for the transport and exchange of a variarity of materials (e.g. sediment, nutritients, contaminants, and microorganisms). In the field of marine geology, it is of particular interest to consider sediment sxchange through the starit. Because of the highly variable topological and hydrodynamic condifitions at a strait, the distribution of sediment is complex, with a large gradient in grain size parameters. This is a favorable condition for the understanding of the processeses and mechanisms of sediment transport and the associated local and regional effects. As a channel for the exchange of sediment between the Bohai and the Yellow Seas, the Bohai Strait is a good example.
    On the basis of considerationbs of the physical domain, the characteristics of the tides and sediment distribution patterns of the Bohai Strait, a 2-D horizontal model has been designed to study the long-term transport of sediment and accumulation over the Bohai Strait region. The model output is consistant with field observations, and can be used to explain patterns of long-tern transport and deposition of sediment in the study area.
    The vertically averaged current velocity is transferred into the current velosity at 1 m above the seabed using the Von Karman-Prandtl equation. Such a transformation is proved to be suitable in the study area by the verification using the ADCP data from 4 stations within the Strait. An expression is derived using basical concepts of physics (i.e. mass conservation), to define the relationship between sediment transport rate and vertical flux of sediment to the seabed. Using this method, satisfactory results about the evolution of the seabed are obtained, which is consistent with in situ observations. This method is better than the traditional method that relates the divergence of sediment transport rate to the deposition rate.
    The output of the tidal modelling reaches the required precision according to a comparison between the calculated tidal amplitudes/phases and the observed ones at 42 coastal tide gauge stations. Thus, the co-tidal patterns from calculations match observations, indicating .the validity of the tide model.
    The distributing patterns of the Eulerian residual currents of the four major tide constituents (i.e. M2, S2, Ol and Kl) imply that fine-grained sediment transport over the central mud of the northern Yellow Sea is weak. The Eulerian residual currents of Kl and S2 respectively form an anti-clockwise eddy near the coastal mud-deposit area of northern Shandong Peninsula, which may increase the deposition rate of mud. Although the patterns of residual currents are likely to reflect
    
    
    
    the patterns of fine-grained sediment transport, it is difficult to relate such patterns to the transport of coarse-grained sediment.
    The result of long-term net sediment transport calculations confirms the hypothesis proposed by Cheng (2000) that in this area transport of sediment directed to northeastward occurs in addition to the main trend of transport towards the east. In the central mud of the northern Yellow Sea there lies an anti-clockwise eddy, indicating that sediments converge here, and once again confirming the conclusion reached by Cheng (2000) that sediment convergence occur in the central northern Yellow Sea. Off the south coast of Liaodong Peninsula, the net transport patterns from the model and from grain size trend analysis (Cheng, 2000) differ. The results of grain size trend analysis for this particular location is in doubt, because erosion is taking place here and the premise of the use of trend analysis is violated.
    Excellent correlation exists between the distribution of bottom shear stress and that of sediment types. Low shear stress occurs in the central mud area; where only fine-grained sediment can be imported by weak tidal currents. Once settled into the bed, it is difficult for set the sediment into motion. Therefore, the central mud represents an area of continuous depositon of fine-grained sediment.
    Good corre
引文
曹振轶,1998,黄河悬沙扩散的二维数值模.拟,青岛海洋大学硕士学位论文。
    曹志先 魏良琰 1991对流扩散反应型方程的一种稳定的算子分裂格式.水动力学研究与进展 A Vol.6.(1)60-68
    曹祖德,王桂芬,1993,波浪掀沙、潮流输沙的数值模拟,海洋学报,15,107~118.
    曹祖德,王运洪,1994,水动力泥沙数值模拟,天津大学出版社。
    程鹏,2000.北黄海细颗粒物质的沉积特征与输运过程.中国科学院海洋研究所博士学位论文。
    陈士荫,顾家龙,吴宋仁,1988,海岸动力学,人民交通出版社。
    董礼先,苏纪兰,王康墡,黄渤海潮流场及其与沉积物搬运的关系,海洋学报,11(1)102-114。
    窦国仁 董风舞 Xibing Dou 1995潮流和波浪的挟沙能力.科学通报,40.(5)443~336
    高抒,贾建军,2001,东海泥质沉积区上升流对悬沙浓度和沉降通量的影响。《长江、珠江口及邻近海域陆海相互作用》,胡敦欣,韩物鹰,章中等编著,pp:137-153。
    耿秀山,1981,黄渤海地貌特征及其形成因素,地理学报,36卷,4期,423-434。
    关许为 陈英祖 杜心慧 1996长江口絮凝机理的试验研究 水利学报 1996.(6).70~74
    蒋东辉,1998,黄河口切变锋的三维数值模拟,青岛海洋大学硕士学位论文。
    金子安雄,崛江毅,村上和男,港湾研究所技术报告,14(1975),1,3-61。
    金翔龙等,1965,渤海海峡基本地质问题,中国科学院海洋研究所。
    李国刚,1988,中国近海细颗粒沉积的矿物和化学组成及其来源和运移的研究。博士学位论文。中国科学院海洋研究所。
    林祥,1999,河口海岸边滩围垦冲淤演变预报模式研究,河海大学硕士学位论文。
    刘振夏,1982,黄海表层沉积物的分布规律,海洋通报,1(1):43-51。
    彭润泽 蒋如琴 黄永健等 1987长江口泥沙絮凝沉降试验研究 北京 水利水电科学研究院。
    钱宁,万兆惠,1983,泥沙运动力学,科学出版社。
    秦蕴珊,1986,黄河入海泥沙对渤海和黄海沉积作用的影响,海洋科学集刊,27:125-135。
    秦蕴珊,赵一阳等主编,1985,渤海地质,科学出版社。
    秦蕴珊,赵一阳等主编,1989,黄海地质,海洋出版社。
    秦蕴珊,赵一阳等,1965,全国海洋普查报告(地质部分),中国科学院海洋研究所。
    万振文等,1998,渤、黄、东海三维潮波运动数值模拟,海洋与湖沼,29(6):611-616。
    王康增,苏纪兰,1987,长江口南港环流及悬移质物质输运的计算分析,海洋学报,9(5):627-637。
    辛文杰,1 997,潮流、浪综合作用下河口二维悬沙数学模型,海洋工程,30~47。
    尹延鸿,周青伟,1994,渤海东部地区沉积物类型特征及分布规律,海洋地质与第四纪地质,14(2):47-54。
    张二骏,张东升,王绍全,高飞,1985,二维非稳定流数值研究的某些进展,海洋通报,4(5):57-60。
    张瑞瑾 1997河流泥沙动力学 北京 中国水利水力出版社
    
    
    赵松龄,李国刚,1991,黄海南部海槽沉积的成因及其浅地层结构。海洋学报,13 (5) : 672-678. Patankav., S.V.(张政 译) 1984传热与流体流动的数值计算.科学出版社 北京. 99-106
    Ackers, P. and White W.R., 1973. Sediment transport: New Approach and Analysis. Journal of Hydraulics Division, 99, 2041-2059.
    Agrawal, Y., McCave, I. N. and Riley, J. B., 1991. Laser diffraction size analysis. In: Syvitski, J. P. M. (editor), Principles, Methods and Applications of Particle Size Analysis. Cambridge University Press, New York, 119-128.
    Agrawal, Y. C. and Pottsmith, H. C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168, 89-114.
    Alldredge, A. L. and Gotschalk, C. C., 1989. Direct observation of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates. Deep-Sea Research, 3 6(2) , 159-171.
    Ariathurai, R. and Krone, R. B., 1976. Finite element model for cohesive sediment transport. Journal of Hydrolics Division ASCE 102, 323-338.
    Ariathurai, R. and K. Arulanandan, 1978. Erosion rates of cohesive soils, Journal of Hydraulics Division ASCE, 104(HY2) , 279-283.
    Bagnold, P.A., 1963. Mechanics of marine sedimentation. In: M.N. Hill(Editor), The Sea, 3. Wiley-Interscience, New York, N.Y., pp:507-582.
    Bagnold, R.A., 1966. "An approach to the sediment transport problem from general physics." U.S. Geological Survey Profl. Paper 442-1, U.S. Geological Survey, Washington, D.C.
    Bakushinski, A. B., 1985. Remarks on choosing a regularization parameter using the quasi-optimality and ration criterion. Vychislitel'naya Matematika I Matematicheskaya Fizika(Computational Mathematics and Mathematical Physics) 24, 181-182.
    Bale, A. J. and Morris, A. W., 1987. In situ measurement of particle size in estuarine water. Estuarine, Coastal and Shelf Science, 24, 253-263.
    Botto F. and O. Iribarne , 2000. Contrasting effects of two burrowing crabs (Chasmagnathus granulata and Uca uruguayensis) on sediment composition and transport in estuarine environments. Esturine, Coastal and Shelf Science, 51, 141-151.
    Bridge, J.S., 1981. Hydraulic interpretation of grain-size distributions using a physical model for bedload transport. Journal of Sedimentary Petrology, vol. 51, No. 4, pp: 1109-1124.
    Bursik, M. I., 1995. Theory of the sedimentation of suspended particles from fluvial plumes. Sedimentology, 42, 831-838.
    Cacchione, D.A. and D.E. Drake. A new instrument system to investigate sediment dynamics on continental shelf, Marine Geology, 30, 299-312, 1979.
    Cheng, R.T., J.W., Gartner, and R.E.Smith, Bottom boundary in South San Francisco Bay, California, Journal of Coastal Research, SI 25, 49-62, 1997.
    Cheng R.T., Ling C., Gartner J.W. and P.P. Wang, 1999. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. Journal of
    
    Geophysical Research, Vol.104, No. C4, pp: 7715-7728.
    Church M., 1999. Sediment sorting in gravel-bed rivers. Journal of Sedimentary Reseach, vol.69, 1, p 20.
    Crean, P.B., T.S. Murty, and J.A. Stronach, 1988. Mathematical Modelling of tides and Estuarine Circulation: the Coastal Seas of Southern British Columbia and Washington State, Coastal Estuarine Stud., vol 30, edited by M.J. Bowman et al., 471pp., AGU, Washington D.C.
    Dauer D.M., C.A. Maybury and R.M. Ewing, 1981. Feeding behaviour and genaral ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology, 54, 21-38.
    Drake, D.E., and D.A. Cacchione, Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California, Continental Shelf Research., 6, 415-429, 1986.
    Drake D.E. and Cacchione D.A., 1989. Estimates of the suspended sediment reference concentration (Cb) and resuspension coefficient (γ0) from near-bottom observations on the California shelf. Continental Shelf Research, 9(1) , 51-64.
    Dyer, K.R., 1980. Velocity profiles over a rippled bed and the threshhold of movement of sand. Estuarine Coastal Marine Sciences, 10, pp:181-l99.
    Dyer, K.R., 1986. Coastal and estuarine sediment dynamics. New York: John Wiley & Sons, 77pp.
    Dyer, K.R., and Soulsby, R.L., 1988. Sand transport on the continental shelf. Annu. Rev. Fluid Mech. 20, 295-324.
    Dyer, K. R., Cornelisse, J., Deanaley, M. P., Fennessy, M. J., Jones, S. E., Kappenberg, J., McCave, I. N., Pejrup, M., Puls, W, Van Leussen, W. and Wolfstein, K., 1996. A comparison of in situ techniques for estuarine floe settling velocity measurement. Journal of Sea Research. 36(1-2) , 15-29.
    Eckman J.E., No well A.R.M. and P. A. Jumars, 1981. Sediment destabilization by animal tubes. Journal of Marine Research, 2, 361-374.
    Einstein, H.A., 1950. The bed-load function for sediment transportation in open channel flows, Tech. Bull. 1026, Soil Conserv. Serv., U.S. Dep. Of Agric., Washington D.C.
    Eisma D., 1992. Suspended Matter in the Aquatic Environment. Springer-Verlag, Berlin Heidelberg New York, London Paris Tokyo, Hong Kong Barcelona, Budapest.
    Eric Greiner and Sabine Arnault, 2000. Comparing the result of a 4D-variational assimilation of satellite and in situ data with WOCE CITHER hydrographic measurements in the tropical Atlantic. Progress in Oceanography, vol 47, pp:1-68.
    Fazio S.A., D.J. Uhlinger, J.H. Parker and D.C. White, 1982. Estimations of uronic acids as quantitative measures of extracellular polysaccharide and cell wall polymers from environmental samples. Applied and Environmental Microbiology, 43, 1151-1159.
    Fennessy, M. J., Dyer, K. R. and Huntley, D. A., 1994. INSSEV: An instrument to measure the size and settling velocity of floes in situ. Marine Geology, 117, 107-117.
    Gadd P. E., Lavelle J.W., Swift D.J.P., 1978. Estimate of sand transport on the New York shelf using near-bottom current meter observations. Journal of Sedimentary Petrology, 48:239-252.
    
    
    Gao, S and Collins, M., 1992. Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectors". Sedimentary Geology, 80:47-60.
    Gao, S and Collins, M., 1991. Critique of the "McLaren Method" for defining sediment transport paths. Journal of Sedimentary Petrology, 61: 143-146.
    Garcia, M. and Parker G., 1991. Entrainment of bed sediment into suspension. Journal of Hydraulic Engineering, vol. 117 No. 4, pp:414-435.
    Garcia C. Laronne J.B. and M. Sala, 1999. Variable source areas of bedload in a gravel-bed stream. Journal of Sedimentary Research, vol. 69, 1, p 27-31.
    Gaweesh, M.T.K., and van Rijn L.C., 1994. Bed-load sampling in sand-bed rivers. samplers. Journal of Hydraulic Engineering, vol.120, No. 12, pp: 1364-1384.
    Georges Chapalain, Hassan Smaoui, Alain Lepretre, Kim Dan Nguyen, Abdellatif Ouahsine et Bernadette Tessier , 1993. Modelling of tidally-induced hydro-sedimentary processes in the coastal zone of the southern part of the Dover Strait. Oceanologica Acta, 1993. 16, 5-6, 517-529.
    Gibbs, R. J., 1985. Estuarine floes: their size, settling velocity and density. Journal of Geophysical Research 90, 3249-3251.
    Grant W.D. and O.S. Madsen, 1982. Movable bed roughness in unsteady oscillatory flow. Journal of Geophysical Research, 87, C1, pp: 469-481.
    Grant, W.D., A.J. Williams III, and S. M. Glenn, 1984. Bottom stress estimates and their prediction on the northern California continental shelf during CODE-1: The importance of wave-current interaction, Journal of Geophysical Oceanography, 14, 506-527.
    Grant, W.D., and O.S. Madsen, 1986 The continental-shelf bottom boundary layer, Ann. Rev. Fluid Mech., 18, 265-305.
    Green M.O. and I.N. McCave, 1995. Seabed drag coefficient under tidal currents in the eastern Irish Sea. Journal of Geophysical Research, Vol. 100, No. C8, pp: 16057-16069.
    Grochowski N.T.L., M.B. Collins, S.B. Boxall and J.C. Salomon, 1993. Sediment transport predictions for the English Channel, using numerical models. Journal of the Geological Society, London. Vol. 150, pp: 683-695.
    Gross, T.F., and A.R.M. Nowell, 1983. Mean flow and turbulence scaling in a tidal boundary layer, Continental Shelf Research, 2, 109-126.
    Gross, E.S. Koseff, J.R. 1999 Evaluatiion of advective schemes for estuarine salinity simulations. Journal of Hydraulic Engineering., ASCE, 125(1) , 32-46
    Guo Xinyu and Tetsuo Yanagi, 1998. Three-Dimension Structure of Tide Current in the East China Sea and the Yellow Sea, Journal of Oceanography, 54:651-668.
    Hammond F.D.C., Heathershaw A.D. and D.N. Langhome, 1984. A comparison between Shields' threshold criterion and the movement of loosely packed gravel in a tide channel. Sedimentology, 31, 51-62.
    Hanke, M. and Hansen, P. C., 1993. Regularization methods for large-scale problems. Surveys in Industrial Mathematics 3, 253-315.
    Hardisty, J. 1983. An assessment and calibration of formulation for Bagnold's bedload equation. Journal of Sediment. Petrology, 53, 1007-1010.
    Hardisty, J. and Hamilton, D. 1984. Measurements of sediment transport on the seabed
    
    southwest of England. Geo. Marine Letters ,4,19-23.
    Harris P.T. and Collins M., 1988. Estimation of annual bedload flux in a macrotidal estuary: Bristol Channel, U.K.. Marine Geology, 83, 237-252.
    Harris C.K. and P.L. Wiberg, 1997. Approaches to quantifying long-term continental shelf sediment transport with an example from the Nothern California STRESS mid-shelf site. Continental Shelf Research, Vol.17, No. 11, pp:1389-1418.
    Heathershaw, A.D., 1981. Comparison of measured and predicted sediment transport rates in tidal currents. Marine Geology, 42, 75-104.
    Howarth M.J., 1998. The effect of stratification on tidal current profiles. Continental Shelf Research, 18, pp:1235-1254.
    Hsu, S. M., and Holly, F. M., 1992. Conceptual bed-load transport model and verification for sediment mixture. Journal of Hydraulic Engineering, vol. 118 No. 8, pp: 1135-1152.
    Hu, D., 1984. Upwelling and sedimentation dynamics. Chinese Journal of Oceanology and Limnology, 2(1) :12-19.
    Hubbell, D.W., Stevens, H.H., Skinner, J.V. and Beverage, J.P., 1985. New approach to calibrating bed load samplers. Journal of Hydraulic Engineering, vol.111, No. 4, pp: 677-694.
    Ippen, A. T., 1966. Estuary and Coastal Hydrodynamics. McGraw-Hill, New York, 744pp.
    Jean-Claude Salmon and Marguerite Breton, 1993. An atlas of long-term currents in the channel. Oceanologica Acta, 1993. 16, 5-6, 439-448.
    Jean-Paul Dupont, Mickael B. Collins, Robert Lafite, Linda Nash, Marie-Francoise Huault, Susan J. Shimwell, Sarah Chaddock, Christophe Brunei, Michel Wartel and Michel Lamboy, 1993. Annual variations in suspended particulate matter within the Dover Strait. Oceanologica, 1993. 16, 5-6, 507-516.
    Jewell, P. W., Stallard, R. F. and Mellor, G. L., 1993. Numerical studies of Bottom shear stress And sediment distribution on the Amazon Continental Shelf, Journal of Sedimentary Petrology, 63(6) , 734-745.
    Jones S.E. and C.F. Jago, 1993. In situ assessment of modification of sediment properties by burrowing invertebrates. Marine Biology, 115, 133-142.
    Kivman, G. A., 1997. Weak constraint data assimilation for tides in the Arctic Ocean. Progress in Oceanography, vo140, pp:179-196.
    Komar, P.D., 1987. Selective entraiment by a current from a bed of mixed sizes-A analysis. Journal of Sedimentary Petrology, 57(2) , 203-211.
    Kramer, H., Sand mixture and sand movement in fluvial models, Trans. American Society Civil Engineering, 100, 798-838, 1935.
    Krone, R.B., 1962. Flume studies on the transport of sediment in estuarial shoaling processes. Univ Calif Hyd Eng Lab and Sanit Eng Res Lab Berkley, 110 pp.
    Krone, R.B., 1962. Flume Studies of the Transport in Estuarine Shoaling Processes. Hydraulics Engineering Laboratory, University of Berkeley, california, USA pp:110.
    Lau, Y. L. and Krishnappan, B. G., 1994. Does reentrainment occur during cohesive sediment settling. Journal of Hydraulic Engineering, 120, 236-244.
    
    
    Leedertse J.J, 1970. A water-quality simulation modal for wall-mixed estuaries and coastal seas, Vol.I, Principles of Computation, the Rand Corpration, 1-86.
    Leonard, B.P. 1979 A stable and accurate convective modeling procedure based on quadratic upstream interpolation Comp. Methods Appl. Mech. Engrg, 19 , 59-98
    Leonard, B.P. 1991 The Ultimate conservative difference scheme applied to unsteady one-dimensional advection Comp. Methods Appl. Mech. Engrg, 88 , 17-74
    Lin, B. and Falconer, R.A. 1995 Modelling sediment fluxes in estuarine waters using a curvilinear co-ordinate grid system. Estuarine, Coastal and Shelf Science., 41, 413-428
    Lin, B. and Falconer, R.A. 1997 Tidal flow and transport modeling using ULTIMATE QUIKEST scheme. Journal of Hydraulic Engineering, ASCE, 123(4) , 303-314
    Lou J. And P.V. Ridd, 1997. Modelling of suspended sediment transport in coastal areas under waves and currents. Esturine, Coastal and Shelf Science, 45, pp: 1-16.
    Lou J. and Schwab D.J., 2000. A model of sediment resuspension and transport dynamics in southern Lake Michigan. Journal of Geophysical Research, Vol. 105, No. C3, pp: 6591-6610.
    Luckenbach M.W., Huggett D.V. and E.G. Zobrist, 1988. Sediment transport, biotic modification and selection of grain size in a surface deposition-feeders. Estuaries, Vol. 11, No. 2, pp:134-139.
    Madsen, O.S. and Grant, W.D., 1976. Sediment transport in the coastal environment. Rep. No. 209, Ralph M. Parsons Lab., Dep. Civ. Eng., Mass. Inst. Technol.
    Martin, J.M., Zhang, J., Shi, M.C., Zhou, Q., 1993. Actual flux of the Huanghe (Yellow River) Sediment to the western Pacific Ocean. Netherlands Journal of Sea Research, 31(3) : 243-254.
    Matthews, J. B. and Mungall, J. C. H., 1972, A numerical tidal model and its application to Cook Inlet, Alaska, Journal of Marine Research, pp: 27-38.
    McEman I, K, Jefcoate B.J. and B.B. Willetts, 1999. The grain-fluid interaction as a self-stabilizing mechanism in fluial bed load transport. Sedimentology, 46, pp:407-416.
    McLean S.R., 1991. Depth-integrated suspended-load calculations. Journal of Hydraulic Engineering, 117(11) , 1440-1458.
    Meadows P.S. and J. Tait, 1989. Modification of sediment permeability and shear strength by two burrowing invertebrates. Marine Biology, 101, 75-82.
    Mellor, G.L. and T. Yamada, A hierarchy of turbulence closure models for planetary boundary layers, Journal of Atmospheric Science, 31, 1791-1806, 1974.
    Metha, A. J., Hayter, E. J., Parker, W. R., Krone, R. B. and Teeter, A.M., 1989. Cohesive sediment transport. I : Process description. Jouenal of Hydraulic Engineering 115, 1076-1093.
    Mignot C., 1968. Etude des proprietes physiques de differents sediments tres fins et de leur comprtment sous des actions hydrodynamiques. Houille Blanche(in French with English Abstr) 7: 591-620.
    Miller M.C., McCave I.N. and P.D. Komar, 1977. Threshold of sediment motion under unidirectional currents. Sedimentology, 24, 507-527.
    Milligan, T. G., 1996. In situ particle (floe) size measurements with the Benthos 373
    
    plankton silhouette camera. Journal of Sea Research 36, 93-100.
    Misri, R.L., R.J. Garde, and K.G. Ranga Raju, 1984. Bed load transport of coarse nonuniform sediment, Journal of Hydraulic Engineering American Society Civil Engineering, 110, 312-328.
    Mofjeld, H.O., Depth dependence of bottom stress and qudratic coefficient for baratropic pressure-driven currents. Journal of Physical Oceanography, 18, 1658-1669, 1988.
    Mosley , M.P. and Tindale, D.S., 1985. Sediment veriability and bed material sampling in gravel-bed rivers. Earth Surface Process and Landforms, v. 10, p: 465-482.
    Niekerk, A.V., Voegel, K.R., Slingerland, R.L., and J.S. Brige, 1992. Routing of heterogeneous sediment over movement bed: Model Development. Journal of Hydraulic Engineering, vol. 118 No. 2, pp: 246-262.
    Nicholson, J. and O'Connor, B. A., 1986. Cohesive sediment transport model. Journal of Hydraulic Engineering, ASCE 112, 621-640.
    Nicolas T.L. Growchowski, Michael B. Collins, Simon R. Boxall, Jean-Claude Salmon, Marguerite Breton and Robert Lafite, 1993. Sediment transport pathyways in the Estern English Channel. Oceanologica Acta, 1993. 16, 5-6, 531-537.
    Nowell A.R.M., P.A. Jumars and J.E. Ekman, 1981. Effects of biological activity on the entrainment of marine sediments. Marine Geology, 42, 133-153.
    O'Brien M.P.&B.D. Rindlaub, 1934. The transportation of bedload by streams. Transaction of the American Geophysical Union, 100, 393-419.
    Office, C.B., 1976. Physical Oceanography of Estuaries(and Associated Coastal Waters), 465pp., John Wiley and Sons, New York.
    Pacheco-ceballos, R., 1992. Bed-load coefficients. Journal of Hydraulic Engineering, vol. 118 No. 10, pp: 1436-1446.
    Parchure, T. M. and Metha, A. J., 1985. Erosion of cohesive sediment deposits. Journal of Hydraulic Engineering, 111, 1308-1326.
    Partheniades, E., 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division, ASCE, 91(HY1) , 105-139.
    Peter M.J. Kerssens, Ad Prins, and Leo C. van Rijn, 1979. Model for suspended sediment transport, Journal of the Hydraulics Division, pp: 461-476.
    Qin, R., 1980. "Incipient motion of non-uniform sand." Journal of Sediment Research, 83-91.
    Qu, T. And Hu, D., 1993. Upwelling and sedimentation dynamic II: a simple model. Chinese Journal of Oceanology and Limnology, 11(4) :289-384.
    Rahuel, J.L., Holly, Chollet, Belleudy J.P. and G. Yang, 1989. Modeling of Riverbed evolution for bedload sediment mixture. Journal Hydraulic Engineering, vol. 115 No. 11, pp: 1521-1542.
    Rankin K.L. and R.I. Hires, 2000. Laboratory measurement of bottom shear stress on a movable bed. Journal of Geophysical Research, Vol. 105, No. C7, pp: 17011-17019.
    Reed C.W., Niedoroda and D.J.P. Swift, 1999. Modeling sediment entraiment and transport processes limited by bed armoring. Marine Geology, 154, pp:143-154.
    Rhoads, D.C., 1974. Organism-sediment relations on the muddy sea floor. Oceanography and Marine Biology Annual Review 12, 263-300.
    Rhoads D.C., J.Y. Yingst and W. Ullman, 1978. Seafloor stability in central Long Island
    
    Sound. Part I. Temperal changes in credibility of fine-grained sediments. In: Estruarine interactions, M.L. Wiley, editor, Academic Press, New York, pp.221-244.
    Rijn, L. C. Van, 1982. "Computation of Bedload and Suspended Load," Report S487-II, Deft Hydraulics Laboratory, Delft, The Netherland.
    Rijn, L. C. Van, 1984. Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering, 110(11) , 1613-1641.
    Rijn, L. C. Van, 1986. Mathematical modeling of suspended sediment in nonuniform flows. Journal of Hydraulic Engineering, vol.112, 6, 433-455.
    Rowden A.A., Jago C.F. and S.E. Jones, 1998. Influence of benthic macrofauna on the geotechnical and geophysical properties of surficial sediment , North Sea. Continental Shelf Research, 18, 1347-1363.
    Rowden A.A. , Jones M.B. , A.W. Morris , 1998. The role of Callianassa subterranea(Montagu) (THALASSINIDEA) in sediment resuspension in the North Sea. Continental Shelf Research, 18, 1365-1380.
    Saito, Y. and Z. Yang, 1994. The Huanghe River: its water discharge, sediment discharge and sediment buget. Journal of sediment society, Japan, 40, 7-17 (in Japanese with English abstract and captions) .
    Samaga, B.R., Ranga Raju, K.G., and Garde, R.J., 1986. Bed load transport of sediment mixture. Journal of Hydraulic Engeering, ASCE, 112(11) , 1003-1018.
    Schlichting, H., 1962. Boundary Layer Theory, 6th ed., 744pp, McGraw-Hill, New York.
    Shen H.W. and Lu Jau-Yau, 1983. Development and prediction of bed amoring. Journal of Hydraulic Engeering, ASCE, Vol.109, No.4. pp:611-629.
    Sherwood, C. R., Butman, B., Cacchione, D. A., Drake, D. E., Gross, T. F., Sternberg, R. W., Wiberg, P. L., and Williams, A. J. III, 1994. Sediment transport events on the northern California continental shelf during the 1990-1991 STRESS experiment. Continental Shelf Research, 14, pp: 1063-1099.
    Shi Fengyan Zhen Lianyuan 1996 A BFG model for calculation of tidal current and diffusion of pollutants in nearshore areas. Acta Oceanologica Sinica Vol.15(3) :283-296.
    Smith J.D. and S.R. McLean, 1977. Spatially averaged flow over a wavy surface. Journal of Geophysical Research, 82, 1735-1746.
    Spitz, Y. H., 1998. Estimate of bottom and surface stress during a spring-neap tide cycle by dynamics assimilation of tide gauge observations in the Chesapeake Bay. Journal of Geophysical Research, 103, 12761-12782.
    Sternberg, R. W. and Ogston, R., 1996. A video system for in situ measurement of size and settling velocity of suspended particles. Journal of Sea Research 36, 127-130.
    Syvitski, J. P. M. and Murry, J. W, 1981. Particle interaction in fjord suspended sediment. Marine Geology, 39, 215-242.
    Syvitski, J. P. M., Asprey, K. W. and Le Blanc, K. W. G., 1995. In situ characteristics of particles settling within a deep-water estuary. Top. Stud. Oceanography 42(1) , 223-256.
    Task Committee of ASCE on Causes and Effects of Shoaling in Navigable Waters, "Shoaling Processes in Navigable Water, " Journal of the Waterway, Port,
    
    Coastal and Ocean Engineering, ASCE, vol. 109, No. 2, Proc. Paper 17977, May 1983, pp. 199-221.
    Ten Brinke, W. B. M., 1994. Settling velocities of mud aggregates in the Oosterschelde tidal basin(the Netherlands), determined by a submersible video system. Estuarine Coastal Shelf Science 39, 549-564.
    Thommas B. Sanford and Ren-Chieh Lien, 1999. Turbulent properties in a homogeneous tidal bottom. Journal of Physical Research, vol 104, 1245-1257.
    Van Leussen, W. and Cornelisse, J. M., 1993. The role of large aggregregates in estuarine fine-grained sediment dynamics. In: Mehta, A. J. (editor), Nearshore and Estuarine Cohesive Sediment Transport. Am. Geophys. Union, Washing, DC, 75-91.
    Vincent, C.E., Young, R.A. & Swift, D.J.P., 1981. Bedload transport under waves and currents. Marine Geology, 39(3/4) , M71-M80.
    Vincent C.E., Young R.A. and D.J.P. Swift, 1983. Sediment transport on the Long Island shoreface, North American Atlantic Shelf: Role of waves and currents in shoreface maintenance. Continental Shelf Research, Vol.2, Nos2/3, pp: 162-181.
    Villaret, C., and M. Paulic, Experiments on the erosion of deposited and placed cohesive sediments in an annular flume and a rocking flume. Rep. UFL/COEL-86/007, Coastal and Oceanogr. Eng. Dep., Univ. Of Florida, Gainesville, 1986.
    Wallbridge S., Voulgaris G., Tomlinsons B.N. and M.B. Collins, 1999. Initial motion and pivoting characteristics of sand particles in uniform and heterogeneous beds: experiments and modelling. Sedimentology, 46, 17-32.
    Wells, J. T. and Shanks, A. L., 1987. Observation and geologic significance of marine snow in a shallow-water, partially enclosed marine embayment. Journal of Geophysical Research 92, 13185-13190.
    Wiberg P. And Smith J.D., 1983. A comparison of field data and theoretical models for wave-current interactions at the bed on the continental. Continental Shelf Research, Vol.2, Nos2/3, pp: 147-162.
    Wiberg, P.L., and Smith, J.D., 1985. A theoretical for saltating grain in water. Journal of Geophysical Research, 90, 7341-7354.
    Wiberg P.L. and J.D. Smith, 1987. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resources Research, Vol. 23, No. 8, pp: 1471-1480.
    Wiberg, P. L., and Smith, J. D., 1989. Model for calculating bed load transport of sediment. Journal of Hydraulic Engineering, vol. 115 No. 1, pp: 101-123.
    Wiberg, P.L., Drake, D.E. and D.A. Cacchion, 1994. Sediment resuspension and bed armoring during bottom stress events on the northern California inner continental shelf: measurements and prediction. Continental Shelf Research, 14, 1191-1219.
    Wiberg, P.L., Cacchione, D. A., Stemberg, R. W. and Wright, L. D., 1996. Linking sediment transport and stratigraphy on the continental shelf. Oceanography, 9, 153-157.
    Wilcock, P.R., 1992. Experimental investigation of the effect of mixture properties on transport dynamics. In: P. Billi, R.D. Hey, C.R. Thorne and P. Tacconi (eds) Dynamics of Gravel-bed Rivers, pp: 109-139. John Wiley&Sons.
    Wilcock, P.R., 1993. Critical shear stress of natural sediments. Journal of Hydraulic
    
    Engineering, vol. 119 No. 4, pp: 491-506.
    Wilbert Lick, Hening Huang and Richard Jepsen, 1993. Flocculation of fine-grained sediments due to differential settling. Journal of Geophysical Research, 82, 10279-10288.
    Wilcock, P.R., Barta, A.F., Shea, C.C., Kondlf, M., Matthews, W.V.G., and Pitlick, J., 1996. Observations of flow and sediment entraiment on a large gravel-bed river. Water Resources Research, v. 32, p:2897-2909.
    Williams, J.J., Thorne, P.D. and Heatershaw A.D., 1989. Measurement of turbulence in benthic boundary layer over a gravel bed. Sedimentology, 36, 959-971.
    Wright, L. D., 1989. Benthic boundary layers of estuary and coastal environments, Rev. Aquat. Sci., 1, 75-95.
    Wright, L. D., J.D. Boon, J. P. Xu, and S.C. Kim, 1992. The bottom boundary layer of the bay stem plains environment of lower Chesapeake Bay, Estuarine Coastal Shelf Science, 35, 17-36.
    Wright L.D., L.C. Schaffner and J.P. Maa, 1997. Biological mediation of bottom boudary layer processes and sediment suspension in the lower Chesapeake Bay. Marine Geology, 141, 27-50.
    Yalin, M.W., 1972. Mechanics of Sediment Transport. Pergamon, Oxford, 290pp.
    Wang Y.P. and Gao S., 2001. Modification to the Hardisty equation, regarding the relationship between sediment transport rate and particle size. Journal of Sedimentary Research, 71, 118-121.
    Yanagi Tetsuo and Inoue Koh-ichi, 1995. A numerical experiment on the sediment processes in the Yellow Sea and the East China Sea. Journal of Oceanography, 51, 537-552.
    Yen, C.L., Lee, H.Y., Chang, S.Y., and Hsu, S.H., 1988. "A study on aggradation/degradation of coarse sediment in alluvial stream." Res. Report No. 88, Hydr. Res. Lab., Nat. Univ., Taiwan, Oct.
    Yong Z., Swift D.J.P. Yu Z. and Jin L., 1998. Modeling of coastal profile evolution on the abandoned delta of the Huanghe River. Marine Geology, 145, pp:133-148.
    Yong Z., Swift D.J.P., Shejun E, Niedoroda A.W. and Reed C.W., 1999. Two-dimension numerical modeling of storm deposition on the northern California shelf. Marine Geology, 154, 155-167.
    Zhang, R.J., and Xie, J.H., 1990. Dynamics of river sedimentation. Water Resour. And Electric Power Press, Beijing, China.
    Zanke, U. , Berechnung der Sinkgeschwindigkeiten von Sediment, Mitt. Des Franzius-Instituts fur Wasserbau, Heft 46, Seite 243, Technical University, Hannover, West Deutschland, 1977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700