用户名: 密码: 验证码:
现代海底热液活动的热液循环及烟囱体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文全面、系统地研究了全球各大洋内至今所发现的现代海底热液活动区的地质信息(如地理位置、水深、构造背景、活动性等),突出总结了各热液活动区的矿产资源特征及生物类型。
     当前,海底热液活动研究已取得了丰硕的成果,但是许多深层次的问题仍未解决,突出表现在热液活动的成因机制、热液循环、物质演化和热液生物学等问题,而核心问题是热液循环。热液循环过程可以有机地分解为三个子过程:海底以下部分、海底与大洋交界处(热液喷口)及热液流体在大洋中的流动。根据三个子过程各自的流动特征及可获取的信息,运用质量守恒、动量守恒、能量守恒方程及流体力学知识,本文首次系统地建立了三个子过程处热液循环的数学模型,并分别确定了各个模型的初始条件、边界条件,讨论了方程求解方法。
     本文重新编译了Hydrotherm软件,并应用此软件着重模拟了地质条件下热液流体的流场特征,在计算过程中首次考虑了岩石物性(渗透率、比热等)随温度的变化,而对参数并没有取常值。首次系统地分析了不同地层渗透率结构及不同边界条件下热液循环的特征。首先讨论了热液循环系统不同部位的压力、焓、温度、水流的密度、粘度及流动速度等参数的特征,其次分析了地层非均质性、裂缝带的存在对热液循环流场的影响,最后分别模拟了近临界状态及侵入体存在情况下的热液循环。
     本文运用有限元软件ANSYS首次分析了烟囱体(黑烟囱和白烟囱)的结构特征、热场特征,并讨论了烟囱体内、外流场的对流系数(反映热液及海水的扰动程度)对烟囱体热分布的影响,探讨了带有细小分支的烟囱体的热场特征。水平裂缝在地质介质中较为常见,且在热液循环中起到非常重要的作用。本文应用ANSYS软件分析了不同形状、流速、粘度、雷诺数下裂缝的流场特征。
     本文对现有的热液热通量估算方法进行了对比与讨论,提出了指数衰减模型来估算海底热液热通量。应用此方法计算的洋壳平均热通量为69mW/m~2,计算的全球海洋热液活动总热通量为4.11×10~(12)W。用烟囱体及羽状体估算的热通量分别为9.7359×10~(10)W及8.4895×10~(10)W。
Geological information of all vent sites of modern seafloor hydrothermal activity found till now are researched systematically, such as geographical location, water depth, structural setting, activity, and so on. Deposit resource and biological features are summarized specially.
    Currently, plentiful and substantial achievements of seafloor hydrothermal activity research are gained. But, many deep-level questions still remain unsolved, mainly including: hydrothermal circulation, forming mechanism, mass evolution and hydrothermal biology, of them the first one is the key point. Process of hydrothermal circulation can be divided into 3 parts scientifically and reasonably, that is, (1) hydrothermal circulation under the seafloor, (2) hydrothermal circulation in the interface of seafloor and ocean (near vents), and (3) hydrothermal fluid entering the ocean (hydrothermal plume). According to flowing features and available data, applying conservation of mass, conservation of momentum, conservation of energy and hydrodynamics, mathematical model in every part is set up for the first time, and then initial conditions and boundary conditions of each model are determined, and numerical solution of equations are discussed respectively.
    Software Hydrotherm is recompiled and applied to model flow field of hydrothermal fluid in geological conditions. Some physical properties (for example, permeability, specific heat, etc.) do not keep constant in geological process, and changes of these parameters with temperature are considered for the first time. Systematically, hydrothermal circulations with different strata permeability structures and under different boundary conditions are analyzed for the first time. Firstly, pressure, enthalpy, temperature and velocity of pure water at different location of hydrothermal circulation system are described. Density and viscosity of fluid are calculated from temperature and pressure using properties of pure water. Secondly, influences of formational anisotropy and crack zone on hydrothermal circulation are
    
    
    analyzed. Finally, hydrothermal circulation near critical state and with cooling pluton are modeled respectively.
    Finite Element software ANSYS are applied to analyze structure features and heat field of black smoker and white smoker for the first time. Effects of convective coefficients of inside and outside of smokers (reflecting disturbance of hydrothermal fluid and seafloor) on heat distribution of smoker are researched. Heat field of smoker with little lateral branch is analyzed. At the same time, flow fields with different shape, size, velocity and viscosity of fluid and Reynolds number in horizontal crack are discussed.
    On the base of contrasting and comparing current estimating method and estimated value of hydrothermal heat flux, exponential attenuation model are put forward to compute heat flux of hydrothermal activity. Using this method, calculated average heat flux of ocean crust is 69 mW/m2, and total heat flux of hydrothermal activity in global oceans is 4.11 X 1012 W. Whereas, values calculated from smokers and plumes are 9.7359 X 1010 W and 8.4895 X1010 W respectively.
引文
1.(美)埃克特(Eckert,E.R.G.),德雷克(Drake,R.M.)著;航青 译.传热与传质分析.北京:科学出版社,1983,231-257,644-732
    2.(美)休斯(William F.Hughes),(美)布赖顿(John A.Brighton)著;徐燕侯,过明道 徐立功 等译.流体动力学.北京:科学出版社,2002,174-238
    3.C.H.Lai著;王亨君,黄振群译.地质介质中热和溶质传输过程的数学模型.青岛:青岛海洋大学出版社,1990,53-87
    4.陈建林,马克俭.冲绳海槽火山喷发矿物及其地质意义.东海海洋,1983,1(2):19-28
    5.陈丽蓉,徐文强,申顺喜.东海沉积物的矿物学组合及其分布特征.科学通报,1979,15:709-712
    6.陈丽蓉,翟世奎,申顺喜.冲绳海槽浮岩的同位素特征及年代测定.中国科学,1993,23(3):324-329
    7.陈丽蓉.冲绳海槽的矿物组合、物质来源及原始岩浆性质的初步探讨.海洋与湖沼,1986,17(1):3-12
    8.陈丽蓉.东海沉积物的矿物组合及其分布特征的研究.黄东海地质.科学出版社:1982,82-104
    9.杜同军,翟世奎,任建国.海底热液活动与海洋科学研究.青岛海洋大学学报,2002,32(4):597-602
    10.季敏.现代海底热液活动环境特征分析.中国海洋大学硕士研究生学位论文,2004
    11.金翔龙,喻普之.冲绳海槽的构造特征与演化.中国科学(B辑),1987,2:196-203
    12.金性春,戴南浔.冲绳海槽异常地幔与地壳性质初步分析.海洋地质与第四纪地质,1984,4(3):17-25
    13.李全兴.冲绳海槽的成因.海洋学报,1982,4(3):324-334
    14.李英堂,田淑艳,汪美凤.应用矿物学.北京:科学出版社,1995,189-215
    15.刘本培,全秋琦 主编.地史学教程.北京:地质出版社,1996,30-37
    16.刘春原 主编.工程地质学.北京:中国建材工业出版社,2000,69-134
    17.卢焕章 著.成矿流体.北京:科学技术出版社,1997,120~139
    18.路应贤.冲绳海槽的形成与发展.海洋学报,1981,3(4):589-600
    19.栾锡武,赵一阳,秦蕴珊等.热液系统输向大洋的热通量估算.海洋学报,2002,24(6):59-66
    20.马庆芳,方荣生,项立成等.实用热物理性质手册.北京:中国农业机械出版社,1986,17-41,157-170,227-240
    21.秦蕴珊,翟世奎.冲绳海槽浮岩的岩石化学特征及含氟性的讨论.地球化学,1988,2:183-189
    
    
    22.秦蕴珊,翟世奎.冲绳海槽浮岩中微量元素的特征及其地质意义.海洋与湖沼,1987,4:13-319
    23.任天培 主编.水文地质学.北京:地质出版社,1986,54-87
    24.吴世迎 主编.世界海底热液硫化物资源.北京:海洋出版社,2000,1-3,25-41
    25.吴世迎,陈穗田,张德玉等.马里亚纳海槽海底热液活动和热液硫化物研究.中国科学(B),1991,2:198~204
    26.于增慧,翟世奎,赵广涛.冲绳海槽浮岩中岩浆包裹体岩石化学成分特征研究.海洋与湖沼,2001,32(5):474-482
    27.曾志刚,蒋富清,翟世奎,秦蕴珊,侯增谦.冲绳海槽中部Jade热液活动区中海底热液沉积物的硫同位素组成及其地质意义.海洋学报,2000,22(4):74-82
    28.曾志刚,翟世奎,秦蕴珊,赵一阳.现代海底热液沉积物中硫化物集合体和单矿物之间的硫同位素关系及其意义.海洋科学,2000,24(5):31-33
    29.曾志刚,翟世奎,赵一阳,秦蕴珊.冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义.地球化学,2000,29(3):239-245
    30.曾志刚.海底热液活动探索.青岛:第一届海底热液活动学术讨论会,2002,1-18
    31.翟世奎,陈丽蓉,申顺喜等.冲绳海槽早期扩张作用中岩浆活动的演化.海洋学报,1994,16(3):63-73
    32.翟世奎,陈丽蓉,张海启.冲绳海槽岩浆作用与海底热液活动.北京:海洋出版社,2001,1-12,171-185
    33.翟世奎,干晓群.冲绳海槽热液活动区玄武岩的矿物学和岩石化学特征及其地质意义.海洋与湖沼,1995,26(2):115-123
    34.翟世奎,许淑梅,于增慧,秦蕴珊,赵一阳.冲绳海槽北部两个可能的现代海底热液喷溢点,科学通报,2001,46(6):490-492
    35.翟世奎.冲绳海槽浮岩的分布及其斑晶矿物学特征.海洋与湖沼,1986,6:505-512
    36.翟世奎.冲绳海槽浮岩的蚀变作用原因.矿物学报,1995,15(3):360-364
    37.翟世奎.冲绳海槽浮岩中斑晶矿物结晶的P-T条件.海洋科学,1987,1:26-30
    38.赵一阳,翟世奎,李永植等.冲绳海槽中部热水活动的新记录.科学通报,1996,41(14):1307-1310
    39.赵一阳.冲绳海槽沉积物地球化学的基本特征.海洋与湖沼,1984,15(4):371-378
    40.郑开云,俞旭.冲绳海槽浮岩性质及地壳活动规律的初步研究.海洋地质研究,1982,2(3):81-85
    41. Alt J.C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific. Mar. Geol., 1988, 81:227-239
    42. Alt J.C. Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris S., L. Mullineaux, R. Zierenberg and R. Thomson (eds): Physical, Chemical, Biological and Geological Interactions within Hydrothermal Systems, AGU Monograph, in press, 1994
    
    
    43. Auzende J.M. et al. Submersible study of an active hydrothermal site in North Fiji Basin (SW Pacific). Eos, 1989, 70:1382
    44. Ballard R.D., T.H. Van Andel. The Galapagos rift at 86°W: Variations in volcanism, structure and hydrothermal activity along a 30kin segment of the rift valley, JGR, 1982, 87: 1149-1161
    45. Barringa F.J., I.M.A. Costa, J.M.R. Relvas, et al. Discovery of the Saldanha Hydrothermal field on the FAMOUS Segment of the MAR. Proceedings Amer. Geophys. Union Transactions, EOS, 1998, 79:67
    46. Becker K., et al. Deep drilling into young oceanic crust, Hole 504B, Costa Rica Rift. Reviews of Geophysic, 1989, 27:79-102
    47. Becker K., R.H. Morin, E.E. Davis. Permeabilities in the Middle Valley hydrothermal system measured with packer and flowmeter experiments, In: E.E. Davis, M.J. Mottl, A.T. Fisher, et al. (Eds.), Proc. ODP139, Sci. Results., College Station, TX, Ocean Drilling Program, 1994, 613-626
    48. Bessler J.U., L. Smith, E.E. Davis. Hydrologic and thermal conditions at a sediment/basalt interface: implications for interpretation of field measurements at Middle Valley. Proceedings of ODP139, 1994, 667-679
    49. Binns R.A. et al. Hydrothermal oxide and gold rich sulfate deposits of Franklin seamount, West Woodlark Basin, Papua New Guinea. 1993, 88:2122-2153
    50. Binns R.A., S.D. Scott. Activity forming polymetallic sulfide deposits associated with felsic volcanic rocks in the Eastern Manus Back-arc Basin, Papua New Guinea. Econ. Geol., 1993, 88:2226-2236
    51. Bodvarrson G., R.P. Lowell. Ocean-floor heat flow and the circulation of interstitial waters, J.Geophys. Res., 1972, 77:4472-4475
    52. Bonatti E., B.M. Guerstein, J. Hornnorez. Copper-iron sulphide mineralization from the equatiorial Mid-Atlantic Ridge. Econ. Geol. 1976, 71:1515-1525
    53. Bornhold B.D., et al. Trace metal geochemistry of sediments, northeast Pacific, EOS, 1981, 62:59
    54. Both R.A., K. Crook, et al. Hydrothermal chimneys and associated fauna in the Mannus back-arc basin, Papua New guinea. Eos, Geophysical Union Transactions, 1986, 67:489-490
    55. Botz R., G. Winckler, B. Bayer, et al. Origin of trace gases in submarine hydrothermal vents of the Kkollbeinsey Ridge. North Iceland. Earth Planet. Sci. Lett., 1999, 171:83-89
    56. Buntebarth G. Geothermics, An introduction. Springier-Verlag, Berlin, 1984, 66:125
    57. Cann J.R., M.R. Strens. Modeling periodic megaplume emissions by black smoker systems, J. geophys. Res., 1989, 94:12227-12237
    58. Carslaw H.S., I.C. Jaeger. Conduction of heat in solids, 2nd ed Oxford Univ. Press., London. 1959, 58-79
    59. Cathles L. A capless 350C flow zone model to explain megaplumes, salinity variations and high temperature veins in ridge axis hydrothermal systems. Econ. Geol., 1993, 88:977-1988
    60. Charlou J. L., Y. Fouquet, J.P. Donval, et al. Mineral and gas chemistry of hydrothermal
    
    fluids on an ultrafast spreading ridge: East Pacific Rise, 17°N to 19°N (Nautile cruise, 1993) phase separation processes controlled by volcanic and tectonic activity, J. Geophys. Res., 1996, 101(B7): 15899-15919
    61. Charnock H. Anomalous bottom water in the Red Sea. Nature, 1964, 203:590-591
    62. Chester Roy. Marine Chemistry. London: Academic Division of Unwin Hyman Ltd, 1989,173-191
    63. Chiba H., H. Masuda, S-Y.lee, et al. Chemistry of hydrothermal fluids at the TAG active mound (26°N, MAR) in 1998. Geophysical Research Letters, 2001, 28(15): 2919-2922
    64. Christensen N.I., R. Ramananantoandro. Permeability of the oceanic crust based on experimental studies of basalt permeability at elevated pressures, Tectonophysics, 1988, 149: 181-186
    65. Clauser C., H. Villinger. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben, Geophys. J. Int. , 1990, 100(3): 93-414
    66. Corey A.T. Measurement of water and air permeability in unsaturated soil. Proc, Sci. Soc. 1999, 21:7-10
    67. Corliss J.B., J. Dymond, et al. Submarine thermal springs on the Galapagos rift. Science, 1979, 203:1073-1083
    68. Craig H., Y. Horibe, et al. Hydrothermal vents in the Mariana trough: results of the first Alvin dives. Eos, 1987, 68:1531
    69. Crane K., et al. The distribution of geothermal fields on the JDF Ridge. JGR, 1995, 90: 727-744
    70. Davis E.E., D.A. Seemann. Anisotropic thermal conductivity of Pleistocene turbidite sediments of the northern Juan de Fuca ridge, Proc. ODP139 Sci. Results, 1994, 559-564
    71. Davis E.E., D.S. Chapman, C.B. Forster. Observations concerning the vigor of hydrothermal circulation in young oceanic crust. J. Geophys. Res., 1996, 101:2927-1942
    72. Davis E.E., D.S. Chapman, M.J. Mottl, et al. Flank flux: An experiment to study the nature of hydrothermal circulation in young oceanic crust. Can. J. Earth Sci., 1992, 29(5): 925-952
    73. Davis E.E., Wang K., He J., et al. An unequivocal case for high Nusselt number hydrothermal convection in sediment-buried igneous oceanic crust. Earth Planet. Sci. Lett., 1997, 146:137-150
    74. Delaney J.R., et al. Geology of a vigorous hydrothermal system on the endeavor segment Juan de Fuca Ridge, JGR, 1992, 97:19663-19683
    75. Douville E., J.L. Chalou, E.H. Oelkers, et al. The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase seperation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology, 2002, 184:37-48
    76. Ebadi A., W. Johannes. Beginning of Melting and Composition of First Melts in the System Qz-Ab-Or-H_2O-CO_2. Contributions to Mineralogy and Petrology, 1991, 106:286-295
    77. Eberhart G.L, P.A. Rona, J. Honnorez. Geologic controls of hydrothermal activity in the Mid-Atlantic Ridge rift valley: tectonics and volcanics. Marine Geophysical Researches,
    
    1988, 10:233-239
    78. Edmond J.M. Crest hydrothermal activity and the balance of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sci Lett, 1979, 461:18
    79. Embley R.W., K.M. Murphy, C.G.Fox. High- resolution studies of the summit of axial volcano, J. Geophys. Res., 1990, 95(B8): 12785-12812
    80. Embley R.W., W.W. Chadwick. Volcanic and hydrothermal processes associated with a recent phase of sea floor spreading at the northern Cleft segment: Juan de Fuca Ridge, J. Geophys. Res., 1994, 99:4741-4760
    81. Fehn U. The evolution of low-temperature convection cells near spreading centers: a mechanism for the formation of the Galapagos seamounts and similar manganese deposits, Econ. Geol., 1986, 81:1396-1407
    82. Fisher A.T. Permeability within the basaltic oceanic crust. Reviews of Geophysics, 1998, 36(2): 143-182
    83. Fisher A.T., K. Becker, T.N. Narasimhan, et al. Passive, off-axis convection in the southern flank of the Costa Rica Rift, J. Geophys. Res., 1990, 95:9343-9370
    84. Fisher A.T., K. Becket, T.N. Narasimhan. Off-axis hydrothermal circulation: Parametric tests of a refined model of processes at DSDP/ODP site 504, J. Grophys. Res. , 1994, 99: 3097-3121
    85. Fisher A.T., K. Becker. Correlation between seafloor heat flow and basement relief: Observational and numerical examples implications for upper crustal permeability. J. Geophys. Res., 1995, 100:12-641-12657
    86. Fisher A.T., K. Becker. Correlation between seafloor heat flow and basement relief: Observational and numerical examples and implications for upper crustal permeability, J. Geophy. Res., 1995, 12641-12657
    87. Fornari D.J., R.W. Embley. Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies, in Humphris. Geophysical Monograph 91, AGU, Washington, D.C., 1995, 1-46
    88. Forster C., J. P. Evans. Hydrogeology of thrust faults and crystalline thrust sheets: results of combined field and modeling studies, Geophys. Res. Lett., 1991, 18(5): 979-982
    89. Fouquet Y., A. Wafik, P. Cambon, et al. Tectonic setting, mineralogical and geochemical zonation in the Snake Pit sulfide deposit(Mid-Atlantic Ridge at 23°N). Economic Geology, 1993, 88:2018-2036
    90. Fouquet Y., et al. Hydrothermal activity and meta-allogenesis in the Lau back-arc basin. Nature, 1991, 349:778-781
    91. Fouquet Y., F. Batriga. Flores diving cruise with the Nautile near the Azores first dives on the Rainbow Field: hydrothermal sea water/mantle interaction. InterRidge News, 1998, 2: 1154-1162
    92. Fouquet Y., G. Auchair, P. Cambon, et al. Geological setting and mineralogical and geochemical investigations on sulphide deposit near 13°N on the East Pacific Rise. Marine Geology, 1988, 84:45-178
    
    
    93. Fouquet Y., U. Von Stackelberg, J.L. charlou, et al. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry. Geology, 1991, 19:303-306
    94. Fouquet Y., U. Von Stackelberg, J.L. charlou, et al. Metallogenesis in back-arc environments: The Lau basin example. Economic Geology, 1993, 88:2154-2181
    95. Fryer P. Recent marine geological research in the Mariana and Isu-Bonin Island arcs. Pacific Sci., 1990, 44:95-114
    96. Galbraith G.H., J.S. Guo, R.C. McLean. The effect of temperature on the moisture permeability of building materials. Building Research and Information, 2000, 28(4): 245-259
    97. Gamo T., H. Chiba, T. Yamanaka. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Todriguez Triple Junction, Central Indian Ridge. Earth and Planetary Science Letters, 2001, 193:371-379
    98. Gamo T., H. Sakai, J. Ishibashi, et al. Hydrothermal plumes in the Eastern Manus Basin, Bismarck Sea CH_4, Mn, Al and pH anomalies, Deep-Sea Res., 1993, 40:2335-2349
    99. Garg S.K., D.R. Kassoy. Convective heat and mass transfer in hydrothermal systems, In: L. Rybach, L. J. P. Muffler (eds.), Geothermal Systems, Wiley, 1981, 37-76
    100. Garven G. The role of regional fluid flow in the genesis of the pine point deposit. Econ. Geol., 1985, 80:1015-1020
    101. German C.R., E.T. Baker, C. Mevel, et al. Hydrothermal activity along the southwest Indian Ridge. Nature, 1998, 395:490-493
    102. German C.R., G.P. Klinkhammer, M.D. Rudnicki. The Rainbow hydrothermal plume, 36° 15′N, MAR, Geophys. Res. Lett., 1996, 23(21): 2979-2982
    103. Gosnold W.D., B. Panda. 2002. Interim compilation of the International Heat Flow Commission (http://www. heatflow.org), accessed September 22, 2002
    104. Grill E.V., et al. A hydrothermal deposit from Explore Ridge in the northwest Pacific Ocean. EPSL, 1981, 52:142-150
    105. Gu Ruochuan, H.G. Stefan. Buoyant jet flows and mixing in stratified lakes, reservoirs or ponds. St Anthony Falls Hydraulic Laboratory Project Report No.318, University of Minnesota, 1991, 214
    106. Gu Ruochuan. Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water. Advances in Water Resources, 1998, 21:363-373
    107. Haenel R., L. Rybach, L. Stegena(eds). Handbook of terrestrial heat-flow density determination. Dordrecht: Kluwer Academic Publishers, 1988
    108. Halbach et al., InterRidge News, 1995, 4(1): 37-43, 1999, 8(1): 39-44
    109. Halbach P. et al. Probable modern analogue of Kuroko-type massive sulfide ores in the Okinawa back-are basin. Nature, 1989, 338:496-499
    110. Halbach P., Pracejus, et al. Geology and mineralogy of massive sulfide ores from the central Okinawa trough, Japan Economic Geology, 1993, 88:2210-2225
    111. Hamano Y. Physical properties from basalts from Hole 417D and 418A. Initial Report of DSDP., 1980, 51-53:1457-1466
    
    
    112. Hammond S.R. Relationships between lava types, Seafloor morphology and the occurrence of hydrothermal venting in the ASHES Vent Field of Axial Volcano, J. Geophys. Res., 1990, 95:12875-12893
    113. Hannington M.D., P. Herzig, P. Stoffers, et al. First observations of high-temperature submarine hydrothermal vents and massive anhydrite deposites off the north coast of Iceland. Marine Geology, 2001, 177:199-220
    114. Hannington M.D., P.M. Herzig, S.D. Scott, et al. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridge. Mar Geol, 1991, 101:217-248
    115. Hartline B.K., C.R.B. Lister. Topographic forcing of supereritical convection in a porous medium such as the oceanic crust, Earth Planet. Sci. Lett., 1981, 55:75-86
    116. Hashimoto J., et al. InterRidge news, 2001, 10(1): 21-22
    117. Hashimoto J., S. Ohta, T. Gamo, et al. First hydrothermal vent communities from the Indian Ocean discovered. Science., 2001, 18:717-721
    118. Heier K.S., J.A.S. Adams. Concentration of radioactive elements in deep crustal material. Geochim Cosmochim Acta, 1965, 29:53-61
    119. Hein J.R., M.S. Schulz, J.K. Kang. Insular and submarine ferromanganese mineralization of the Tonga-Lau region. Marine Mining, 1990, 9:305-354
    120. Hekinian R., M. Horrert, et al. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions, Econ. Geology, 1993, 88:2099-2121
    121. Herzig P., M. Hannington, B. McInnes, et al. Submarine volcanism and hydrothermal venting studied in Papua, New Guinea. Eos, Wash, 1994, 75:513-516
    122. Herzig P.M., W.L. Pluger. Exploration for hydrothermal activity near Rodriguez Triple Junction, Indian Ocean, Canadian Mineralogist, 1988, 26:721-736,
    123. Hoffert M.A., A. Perscil. Hydrothermal deposits sampled by diving saucer in transform fault "A" near 37°N on the Mid-Atlentic Ridge, Famous Area, Oceanol. Acta, 1978, 1: 73-86
    124. Hofmeister A.M., R.E. Criss. Earth's Heat Flux Revised and Linked to Chemistry. Tectonophysics. 2003, 15-26
    125. Holtz F., H. Behrens, D.B. Dingwell, W. Johannes. Water Solubility in Haplogranitic Melts. Compositional, Pressure and Temperature Dependence, American Mineralogist, 1995, 80: 94-108
    126. Horowitz A, D.S. Cronan. The geochemistry of basal sediments from the North Atlantic Ocean. Marine Geology, 1976, 20:205-228
    127. Hossain M.S., W. Rodi. A turbulent model for buoyant flows and is application to vertical buoyant jets. In Turbulent buoyant jets and plumes, ed. W. Rodi. Pergamon Press, Oxford, 1986
    128. Huang W.L., P.J. Wyllie. Melting reactions in the system NaAlSi_3O_8-KAlSi_3O_2-SiO_2 to 35 kilobars, dry with excess water. Journal of Geology, 1975, 83:737-748
    129. Humphris S.E. Hydrothermal process at mid-ocean ridge. Rev. Geophys. Suppl., 1995, 71-80
    130. Humphris S.E., et al. The internal structure of an active seafloor massive sulfide. Nature,
    
    2001, 377:713-716
    131. Iizasa K., M. Yuasa, S. Yokota. Minearlogy and geochemistry of volcanogenic sulfides from the Myojinsho Submarine caldera, the Shichito-Iwojima Ridge, Izu-Ogasawara Are, North-western Pacific. Mar. Geol., 1992, 108:39-58
    132. Ingebritsen S.E., D.R. Sherrod, R.H. Mariner, Rates and patterns of groundwater flow in the Cascade Range volcanic arc, and the effect on subsurface temperatures, J. Geophys. Res., 1992, 97(B4): 4599-4627
    133. Initial Reports of the Deep Sea Drilling Project, 1974, 22: 85-194; 25: 395-415
    134. Javoy M. The integral enstatite chondrite model of the earth. Geophys. Res. Lett., 1995, 22: 2219-2222
    135. Johannes W., F. Holtz. Petrogenesis and Experimental Petrology of Granitic Rocks, Springer-Verlag, Berlin.,1996, 13
    136. Johnson D.M. Crack distribution in the upper oceanic crust and its effects upon seismic velocity, seismic structure, formation permeability and fluid circulation. Initial Rep. DSDP, 1980, 51-53:1479-1490
    137. Jupp T., et al. A thermodynamic explanation for black smoker temperatures. Nature, 2000, 403:880-895
    138. Karato S. Physical properties of basalts from the Galapagos. Leg 70, Initial Rep. DSDP, 1983, 69:687-695
    139. Keenan J.H., F.G. Keyes, P.G. Hill, J.G. Moore. Steam table: thermodynamic properties of water, including vapor, liquid and solid phases, Wiley, New York, NY, 1978
    140. Kelly D.S., J.A. Karson, D.K. Blackman, et al. An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30°N. Nature, 2001, 412:145-149
    141. Kevin G.S., R.H. Karl. Hydrothermal plumes: a review of flow and fluxes. In: Parson L M, Walker C L, Dixon D R (eds). Hydrothermal Vents and Processes. Geological Society Special Publication, 1995, 87:373-385
    142. Kosakowski G., V. Kunert, C. Clauser, et al. Hydrothermal transients in Variscan crust: paleo-temperature mapping and hydrothermal models, in Thermal regimes in the continental and oceanic Lithosphere, edited by C. Clauser, L. Rybach, T. Lewis, Tectonophysics, 1999, 306(3-4): 325-344
    143. Kukkonen I.T., J. Jokinen, U. Seipold. Temperature and pressure dependencies of thermal transport properties of rocks: Implications for uncertainties in thermal lithosphere models and new laboratory measurements of high-grade rocks in the Central Fennoscandian Shield. Surveys in Geophysics, 1999, 20:33-59
    144. Langmuir C., S. Humphris, D. Fomari, et al. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge, Earth Planet. Sci. Lett., 1997, 148:69-91
    145. Larson R.L., A.T. Fisher, R. Jarrard. Highly layered and permeable Jurassic oceanic crust in the western Pacific, Earth Planet. Sci. Lett., 1993, 119:71-83
    146. Lee W.H.K. On the global variations of terrestrial heat-flow. Phys. Earth Planet Int., 1970, 2:
    
    332-341
    147. Leonid N. Germanovich, Robert P. Lowell, Yufeng Yao. Focused vs. diffuse flow in seafloor hydrothermal systems. EPSL. 1995, 132:125-137
    148. Leybourne M.I., W.D. Goodfellow. Mineralogy and mineral chemistry of hydrothermally altered sediment, Middle Valley, Juan de Fuca Ridge, Proceedings of the ODP139, Scientific Results, 1994, 155-207
    149. Lister C.R.B. On the penetration of water into hot rock, Geophys. J.R. Astron. Soc, 1974, 39: 465-509
    150. Lister C.R.B. On the thermal balance of a mid-ocean ridge, Geophys. J.R. Astron. Soc., 1972, 26, 515-535
    151. Livermore et al. InterRidge News, 1999, 8(1), 34-37
    152. Lowell R.P. Topographically driven subcritical hydrothermal convection in the oceanic crust, Earth Planet. Sci. Lett., 1980, 49:21-28
    153. Lowell R.P., D.K. Burnell. Mathematical modeling of conductive heat transfer from a freezing, convecting magma chamber to a single-pass hydrothermal system; implications for seafloor black smokers. Earth Planet. Sci. Lett., 1991, 104(1): 59-69
    154. Lowell R.P., L.N. Germanovich. Dike injection and the formation of megaplumes at ocean ridge. Science, 1995, 267: 1804-1807
    155. Lowell R.P., P.A. Rona, R.P. von Herzen. Seafloor hydrothermal system. J. Geophys. Res., 1993, 100: 327-352
    156. Lowell R.P., P.A. Rona. Hydrothermal models for the generation of massive sulfide deposits, J. Geophys. Res., 1985, 90:8769-8783
    157. MacDonald G.J.F. Chondrite and the chemical composition of the Earth. In: Abelson P.H. (Ed.), Researches in Geochemistry. John Wiley & Sons, New York, 1959, 476-494
    158. Maginn E.J., T.S. Little, R.J. Herrington, et al. Sulfide mineralization in the deep-sea hydrothermal vent polychaete, Alvinella pompejana: implications for fossi preservation. Marine Geology, 2002, 181:337-356
    159. Massoth G.J., E.T. Baker, J.E. Lupton, et al. Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge, J. Geophys. Res., 1994, 99:4905-4923
    160. McConachy T.F., R.D. Ballard, et al. Geologic form and setting of a hydrothermal vent field at lat 10°56′, East Pacific Rise: a detailed study using Angus and Alvin. Geology, 1986, 14(4): 295-298
    161. McDuff R.E, G. R. Heath. http://bromide.ocean.washington.edu/oc540/lectures.html. 2002
    162. Miller A.R, C.D. Densmore. Hot brines and recent iron deposits in deeps of the Red Sea. Geochim Cosmochim Acta, 1966, 30:341-359
    163. Mutton B.J, G. Klinkhammer, K. Becker, et al. Direct evidence for the distribution and occurrence of hydrothermal activity between 27°N-30°N on the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 1994, 125:119-128
    164. Nojiri Y., J. Ishibashi, T. Kawai, et al. Hydrothermal plumes along the north Fiji Basin
    
    spreading axis. Nature, 1989, 342:667-670
    165. Norton D., J.B. Hulen. Preliminary numerical analysis of the magma-hydrothermal history of The Geysers geothermal system, California, USA, Geothermics, 2001, 30(2/3): 211-234
    166. Olafsson J., K. Thors, U. Stefansson, et al. Geochemical observations from a boiling hydrothermal site on the Kolbeinsey Ridge. EOS, American Geophysical Union Transactions, 1990, 71:1650
    167. Ondreas H., Y. Fouquet, M. Voisset. Detailed study of three contiguous segments of the Mid-Atlantic Ridge, south of the Azores, using acoustic imaging coupled with submersible observations, Mar. Geophys. Res., 1997, 19(3): 231-255
    168. Oosting S.E., K.L. VonDamm. Bromide/chloride fractionation in sea floor hydrothermal fluids from 9°N~10°N, EPR. EPSL, 1996, 144:133-145
    169. Parsons R.L., J.G. Sclater. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 1977, 82:803-829
    170. Patankar S.V. Numerical heat transfer and fluid flow. Hemisphere publishing corporation. Mcgraw-Hill, New York, 1980, 336-243
    171. Penny Dickson, Adam Schultz, Andrew Woods. Preliminary modeling of hydrothermal circulation within mid-ocean ridge sulphide structures. In: Parson L M, Walker C L, Dixon D R (eds). Hydrothermal Vents and Processes. Geological Society Special Publication, 1995, 87:145-157
    172. Person M., G. Garven. A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution, Geol. Soc. Am. Bull., 1994, 106:461-475
    173. Person M., J. P. Raffensperger, S. Ge, G. Garven. Basin-scale hydrogeologic modeling, Rev. Geophys., 1996, 34(1): 61-87
    174. Peter J.M., S.D. Scott, Mineralogy, composition and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas basin, Gulf of California. Can Mineral., 1988, 26:567-587
    175. Petersen S., P.M. Herzig, M.D. Hannington. Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, mid-Atlantic Ridge, 26°N. Mineral Deposits, 2000, 35: 233-259
    176. Pollack H.N., S.J. Hurter, J.R. Johnson. Heat flow from the Earth's interior: analysis of the global data set. Rev. Geophys., 1993, 31:267-280
    177. Rabinowicz M., J. Boulegue, P. Genthon. 2-3 dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge. J. Geophys. Res., 1998, 103:24045-24065
    178. Rachel A. Pascoe, Johnson R Cann. Modelling diffuse hydrothermal flow in black smoker vent fields. In: Parson L M, Walker C L, Dixon D R (eds). Hydrothermal Vents and Processes. Geological Society Special Publication, 1995, 87:159-173
    179. Raffensperger J., G. Garven. The formation of unconformity-type uranium ore deposits. Coupled groundwater flow and heat transport modeling. Am. J. Sci., 1995, 295:581-636
    180. Ribando R., K. Torrence, D. Turcotte. Numerical models for hydrothermal circulation in the
    
    oceanic crust. J. Geophys. Res., 1976, 81:3007-3012
    181. Rona P.A. Hydrothermal circulation, serpentinization, and degassing at a rift valley fracture zone intersection, MAR near 15°N, 45°W. Geology, 1992, 20:783-786
    182. Rona P.A. New evidence for seabed resources from global tectonics. Management, 1973, 1:145-159
    183. Rona P.A., K. Bostrom, S. Epstein. Hydrothermal quartz vug from the Mid-Atlantic Ridge. Geology, 1980, 8:569-572
    184. Rona P.A., M.D. Hannington, C.V. Raman, et al. Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field, Mid-Alantic Ridge. Economic Geology, 1993, 88:1989-2017
    185. Rona P.A., McGregor, B.A. Betzerect. Anomalous water temperatures over Mid-Atlantic Ridge Crest at 26°N. Deep-sea Research, 1975, 22:611-618
    186. Rona P.A., S.D. Scott. A special issue on seafloor hydrothermal mineralization: new perspectives, Economic geology, 1993, 1935-1976
    187. Rona P.A., S.P. Scott. A special issue on sea-floor hydrothermal mineralization: new perspectives, Econ. Geol., 1993, 88a: 1935-1974
    188. Rona P.A., Trivett. Discrete and diffusive heat transfer at ASHES vent field, Axial volcano, JDF Ridge, Earth Planet. Sci. Lett., 1992, 109:57-71
    189. Rosenberg N.D., A.T. Fisher, J.s. Stein. Large-scale lateral heat and fluid transport in the seafloor: revisiting the well-mixed aquifer model. Earth. Planet. Sci. Lett., 2000, 182: 93-101
    190. Rosenberg N.D., F.J. Spera, R.M. Haymon. The relationship between flow and permeability field in seafloor hydrothermal systems. Earth. Planet. Sci. Lett., 1993, 116:135-153
    191. Saccocia P. J., K. Ding, M. E. Berndt, et al. Experimental and theoretical perspectives on crustal alteration at mid-ocean ridges, In: D. Lentz (Ed.) Alteration and Alteration Processes Associated with Ore-Forming Systems., 11, Geological Association of Canada, Short Course Notes, 1994, 403-431
    192. Scheier D.S., E.T. Baker, K.T. Johnson. Detection of hydrothermal plumes along the SE Indian Ridge near the Amsterdam-St. Plateau. Geoph Res Lett, 1998, 25:97-100
    193. Scholten et al. InterRidge News, 1999, 8(2): 38-40
    194. Schultz A., H. Elderfield. Controls on the physics and chemistry of seafloor hydrothermal circulation. Phil. Trans. Royal Soc. London, 1997, 355:387-425
    195. Scott M.R., et al. Rapidly accumulating manganese deposit from the median valley of the Mid Atlantic Ridge, Geophysical Research Letters, 1974, 21: 355-358
    196. Sillen L.G. American association for the advancement of science. Sears M (ed) Oceanography. Washington D C [s.n.], 1961, 549
    197. Sinton J.M., R.S. Derrick. Mid-ocean ridge magma chambers, J. Geophys. Res., 1992, 97: 197-216
    198. Skoryaroa I.S. Dispersed iron and manganese in Pacific Ocean sediments. International Geology Review, 1965, 7:2161-2174
    199. Smith L., C. Forster, J. P. Evans. Interaction of fault zones, fluid flow, and heat transfer at the
    
    basin scale, in Hydrogeology of Low Permeability Environments, Hydrogeology Selected Papers, 1992, 2:41-67
    200. Snelgrove S.H., C.B. Forster. Impact of seafloor sediment permeability and thickness on off-axis hydrothermal circulation: Juan de Fuca Ridge eastern flank, J.Geophys. Res., 1996 101:2915-2925
    201. Snelgrove S.H., C.B. Forster. Impact of seafloor sediment permeability and thickness on off-axis hydrothermal circulation: Juan de Fuca Ridge eastern flank, J. Geophys. Res., 1996, 101:2915-2925
    202. Steefel C., A. Lasaga. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal system. Am. J. Sci., 1994 294:529-592
    203. Stein C.A., S.A. Stein. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 1992, 359:123-128
    204. Stoffers et al. InterRidge News, 1999, 8(1): 45-50
    205. Strens M.R., J.R. Cann. A model of hydrothermal circulation in fault zones at mid-ocean ridge crests, Geophys. J. R. Astron. Soc., 1982, 71:225-240
    206. Sudarikov S., et al., InterRidge news,2001, 10(1): 37-40
    207. Teagle D.A.H, et al. Tracing the chemical evolution of fluids during hydrothermal recharge: Constraints from anhydrite recovered in ODP HOLE 504B. Earth Planet. Sci. Lett., 1998,155:167-182
    208. Thomson G. Basalt-seawater interaction in hydrothermal processes at seafloor spreading centers. New York: Plenum, 1983, 225-278
    209. Tivey M.K., et al. Growth of large sulfide structure on the Endeavour segment of the JDF Ridge. EPSL, 1986, 77:303-317
    210. Travis B.J., D.R. Janecky, N.D. Rosenberg. Three-dimensional simulation of hydrothermal circulation at mid-ocean ridges. Geophys. Res. Lett., 1991, 18:1441-1444
    211. Tufar W. Modern hydrothermal activity, formation of complex massive sulfide deposits and associated vent communities in the Manus back-arc basin(Bismarck Sea. Papua New Guinea). Mitt. Osterr. Geol. Ges., 1990, 82:183-210
    212. Tunnicliffe et al. Hydrothermal vent of Explore Ridge, Northeast Pacific. Deep sea research, 1986, 33:401-412
    213. Turcotte D.L., Schubert G. Geodynamics, Applications of continuum physics to geological problems. John Wiley & Sons, New York, 1982, 404-422
    214. Von Damm K.L., L.G. Buttermore, S.E. Oosting. Direct observation of the evolution of a seafloor black smoker from vapor to brine. EPSL, 1997, 149:101-111
    215. Von Damm. Controls in the chemistry and temporal variability of seafloor hydrothermal fluids. // Lupton J, Mullineaux L, Zierenberg R, eds. Physical, chemical, biological interactions within hydrothermal systems. Monoger: AGU, 1995, 91:222-247
    216. Von Stackelberg U, Marhing V, Mvller P, et al. Hydrothermal mineralization in the Lau and North Fiji Basin. Geologisches Jahrbuch, Reihe D, 1990, 92: 7-36, 547-613
    
    
    217. Voss C.I. A finite-element simulation model for saturated-unsaturated ,fluid-density dependent ground-water flow with energy transport or hemically-reactive single-species solute transport. U.S. Geol. Surv. Water-Resour. Invest. Rep., 1984, 84:4369-4409
    218. Vosteen H.D., R. Schellschmidt. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, 2003, 28:499-509
    219. Wang Kelin, He Jiangheng, Earl E. Davis. Influence of basement topography on hydrothermal circulation in sediment-buried igneous oceanic crust. Earth and Planetary Science Letters, 1997, 146:151-164
    220. Wilcock W.S.D. A model for the formation of the transient event plumes above mid-ocean ridge hydrothermal systems, J. Geophys. Res., 1997, 102:12109-12121
    221. Wilcock W.S.D. Cellular convection model of MOR hydrothermal circulation and the temperatures of black smoker fluids. Geophys. Res., 1998, 103(B2): 2585-2596
    222. Wilcock W.S.D., A. Mcnabb. Estimates of crustal permeability on the Endeavour segment of the Juan de Fuca mid-ocean ridge, Earth. Planet. Sci. Lett., 1996, 138:83-91
    223. Williams C.F., T.N. Narasimhan, R.N. Anderson, et al. Convection in the oceanic crust: Simulations of observations from Deep Sea Drilling Project hole 504B, Costa Rica rift, J. Geophys. Res., 1986, 91(B5): 4877-4889
    224. Wright I.C., de Ronde, C.E.J. et al. Discovery of hydrothermal sulfide mineralization from southern Kermadec arc volcanoes (SW Pacific). Earth and Planetary Science Letters, 1998, 164:335-343
    225. Yang J., R.N. Edwards, J.W. Molson et al. Three-dimensional numerical simulation of the hydrothermal system within TAG-like sulfide mounds. Geophys. Res. Lett., 1996, 23:3475-3478
    226. Zhai Shikui, Xu Shumei, Yu Zenghui, Qin Yunshan, Zhao Yiyang. Two possible hydrothermal vents in the northern Okinawa Trough. Chinese Science Bulletin, 2001, 46(6): 942-945
    227. Zierenberg R.A., et al. The deep structure of a seafloor hydrothermal deposit. Nature, 2001, 392:485-488
    228. Zierenberg R.A., R.A. Koski, et al. Genesis of massive sulfide deposits on a sediment covered spreading center, Escanaba Trough, Southern Gorda Ridge. Economic Geology, 1993, 88:2069-2098

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700