用户名: 密码: 验证码:
基于四苯基硅烷的宽禁带半导体材料的设计合成与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽禁带半导体材料通常是指带隙大于3.0eV的材料,这种材料通常具有高能量的吸收与发射(深蓝-紫外光)。由于这类材料具有较高的能量,通常应用于发光、防伪、消毒杀菌、检测、传感等领域。其中最重要一项应用是电致发光领域。由于具有较高的能量,这类材料即可以作为主动发光的材料,发射高能量的光,进而激发蓝、绿、红等低能量的光色;也可以作为母体材料掺杂荧光与磷光染料,作为能量传递的媒介与分散介质,使掺杂的客体材料可以高效率的发光。
     目前宽带隙半导体材料面临的关键是如何提高该类材料的载流子注入与传输能力。宽禁带材料本身具有较高的LUMO与较深的HOMO能级,使其载流子注入传输能力较差,限制了其在电致发光中的应用。而改善了注入与传输能力的宽禁带材料又受制于分子内给受体间电荷转移影响而降低带隙,无法应用到高能量的领域。因此本论文立足于寻求解决带宽与载流子注入与迁移矛盾的方法,构筑高性能的宽带系材料,对材料体系热、光、电等性质进行优化,希望在宽禁带材料体系的结构新能关系方面有更深入认识,同时在高性能的材料与器件方面有所突破。
     我们通过对文献的调研,筛选出三种优良的构筑宽带材料的中心基团:芴、二苯基醚、四苯基硅烷。通过对中心基团进行给受体的修饰,对其各方面性质进行对比分析。其中二苯基醚分子合成最为简便,芴分子具有最好的热学稳定性,四苯基硅烷具有良好的电子亲和性与形貌稳定性。四苯基硅烷分子具有最优的综合性能,其在磷光掺杂器件中表现优异。这主要是因为:四面体结构打断共轭使其具有超高的带隙宽度(单线态能级在4.0eV左右);柔性的碳-硅键使分子与客体之间具有良好的相容性;独特的电子结构可以形成dπ-pπ共轭,有效降低LUMO能级,提高电子的亲和性;易于取代使其性质更富多样化。因此在之后的章节中将针对四苯基硅烷基团进行进一步的性质优化。
     接下来的一章,我们将承接之前的工作,针对四苯基硅烷电学性质进行优化。我们利用带隙较宽且分别具有给受体能力的咔唑与二苯基磷酰基对四苯基硅烷的载流子迁移能力进行优化,同时我们通过改变咔唑的取代数量与取代方式,调节电子与空穴平衡性,最终发现分子DCzSiPO具有较为优异的性质,其磷光掺杂器件的电流效率与外量子效率分别达到了24.6cd/A与11.2%。为了测试宽带隙材料在电致发光中的应用,我们在空穴与电子传输层中应用了宽禁带材料,制备了传输层与母体材料全为宽禁带材料的掺杂器件。与传统材料体系相比,应用了宽带隙材料的掺杂器件表现优异,最高电流效率与外量子效率分别达到了49.4cd/A与27.5%。在本章工作中我们比较了咔唑取代数量与取代性质的性质差别,最终发现咔唑二聚体为优于咔唑的空穴传输基团。
     之后的工作我们进一步通过取代基团改变构筑了蓝色发光四苯基硅烷衍生物。我们将高效发光基团菲并咪唑引入四苯基硅烷,设计了具有高发光效率的材料。同时,利用宽带隙基团咔唑与咔唑二聚体优化菲并咪唑材料的空穴亲和性。最终我们发展了一种电子空穴平衡的材料DCzSiPPIM,其非掺杂器件的外量子效率达到了3.5%,激子利用率达到了26.1%,达到了荧光材料的极限。通过对基本性质表征,我们发现,空穴基团的引入在不改变材料的光学性质的前提下优化了电学性能,这与我们小组之前的工作显示出一致的结果,再一次证明了由于四苯基硅烷的打断作用阻隔了分子内给受体之间的电荷转移作用,可以实现分子光电性能的选择性调节。
     在之前的工作中,我们发现对于四苯基硅烷进行指定给受体单元的取代可以实现较宽的带隙与平衡的载流子注入与传输的统一,为了适应商业化的要求我们发展了一种简单有效的方法,使宽禁带材料更适合应用于可大面积加工的溶液制备方法。在载流子平衡方面我们选择了已有的基团,利用咔唑与二苯基磷酰基取代分子;基于对热学性能的优化,我们简单的引入了双重四苯基硅烷中心,加倍四苯基硅烷基团对于分子热学性能的影响,发展了系列可用于溶液加工的材料。通过对基本性质表征,我们发现双重四苯基硅烷中心的分子具有更好的热学与形貌学的稳定性,同时其光物理,电学性质没有变化,我们成功实现了对热学与形貌学性质的选择性调控。相比于单中心的分子,双中心分子在旋涂加工的掺杂器件具有更高的效率。本章的研究工作也进一步说明四苯基硅烷本身不显示电性的中性特质。
Wide-band-gap materials generally possess band gap larger than3.0eV which canabsorb and emit deep blue or ultraviolet (UV) light. With such high energy, thesematerials are usually applied to UV light emitting diodes (LEDs), UV detection, andespecially to organic light emitting diodes (OLEDs). They can either be used asexcitation sources to active light with low energy such as blue, green and red or ashost matrixes for fluorescent and phosphorescent dyes.
     Compared with their inorganic counterparts, organic semiconductors have moreadvantages. For example finely adjusted photoelectric properties resulting from easysynthesis and modulation, diversified film forming technics such as vacuumdeposition, solution possessing and flexible display. So the organic materials areconsiderable materials for the future.
     Suffered from characteristic wide band gap, organic wide-band-gap materialsusually have high lying LUMO energy and low lying HOMO energy level leading topoor electron and hole injecting and transporting properties. The introduction of donorand acceptor unit to optimize the charge injection and transporting properties creates anew problem reduced bandgap caused by uncontrollable intramolecular chargetransfer. In this thesis, we are searching for excellent wide-band-gap materials systemand mudulating the thermal, morphological, photophysical, electrochemical andelectroluminescent properties. For one hand we develop new materials and fabricatedevices with high efficiency, on the other hand we reveal the natural properties ofthese materials.
     In Chapter2three wide-band-gap cores were chosen to verify which one was the best for constructing wide-band-gap materials. Donor and acceptor units wereintroduced in these three cores. Different cores led to different advantages. Thediphenylether cored materials were the most easily to synthesis caused by simplestructures. The fluorene cored compounds possessed the highest thermal stabilityresulting from rigid framework. The tetraphenylsilane cored molecules had the mostexcellent device performances because of favorable electron affinity and stablemorphology. The result revealed the best choice for constructing wide-band-gapmaterials were tetraphenysilane core.
     In the next chapter, we optimized the electrical properties according to theprevious work. Wide-band-gap donor carbazole unit and acceptor groupdiphenylphosphrine oxide (PO) were substituted on tetraphenylsilane core. And wealso adjust the numbers and link fashion of carbazole to tune the balance of electronand hole fluxes. Finally we found the combination of carbazole dimer and PO unitwas the best for electroluminescent properties. DCzSiPO based FIrpic doped deviceachieved the highest current efficiency and EQE of24.6cd/A and11.2%respectively.To further test the application of wide-band-gap materials in OLEDs, twosilicon-cored wide bandgap materials were used as electron and hole transportinglayer. Compared to the classic materials wide bandgap materials reached highefficiency of49.4cd/A and27.5%, respectively. The high efficiency indicated theimportance of wide-band-gap materials in OLEDs. Moreover, we found that carbazoledimer unit was better than sole carbazole group as donor unit.
     In Chapter3, we endowed tetrphenylsilane blue emitting properties bycombination of phenanthro[9,10-d]imidazole unit which was considered to be highefficient blue emitting group and excellent electron transporting unit. According to thecharacteristics of separation of electrical and optical band-gap, we selectivelymodulating the hole affinity without changing the optical properties ofphenanthro[9,10-d]imidazole substituted silanes by combination of carbazole group.We developed one high efficient molecule named DCzSiPPIM. The undoped devicebase on DCzSiPPIM achieved high EQE of3.5%and high utilization of exitons of26.1%which reached the limit of local fluorescent materials.
     In the next chapter, in order to apply in solution-possessing device, we furtheroptimize the thermal and morphological properties. Two tetraphenylsilane cores wereintroduced to construct compounds. According to the previous work we still usedcarbazole and PO unit to modulate the electrical properties. One extra hole unit wereadded to overcome the problem of lacking of hole flux in solution-possessing device.The introduction of double tetraphenylsilane centers greatly improved the thermal andmorphological properties without changing the optical and electrical properties. Thedoping device based on DCS2PO host materials achieved high current efficiency of26.5cd/A which was two times higher than that of device based on its singlecounterpart. All the result revealed the neutral property of silane.
引文
[1]张素梅,石家纬,郭树旭,等.有机薄膜FET的研究进展[J].半导体光电,2003,24(2):84-86.
    [2] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied PhysicsLetters,1987,51(12):913-915.
    [3] BURKHART R D, AVILES R G. The Kinetics of Triplet Processes in Poly(N-vinylcarbazole) from77to298K[J]. Macromolecules,1979,12(6):1073-1078.
    [4] JANKUS V, MONKMAN A P. Is Poly (vinylcarbazole) a Good Host for BluePhosphorescent Dopants in PLEDs? Dimer Formation and Their Effects on the TripletEnergy Level of Poly (N‐vinylcarbazole) and Poly (N‐Ethyl‐2‐Vinylcarbazole)[J]. Advanced Functional Materials,2011,21(17):3350-3356.
    [5] WANG P, CHAI C, YANG Q, et al. Synthesis and characterization of bipolarcopolymers containing oxadiazole and carbazole pendant groups and their applicationto electroluminescent devices[J]. Journal of Polymer Science Part A: PolymerChemistry,2008,46(16):5452-5460.
    [6] ZHANG Y, ZUNIGA C, KIM S J, et al. Polymers with carbazole-Oxadiazole SideChains as ambipolar hosts for phosphorescent light-emitting diodes[J]. Chemistry ofMaterials,2011,23(17):4002-4015.
    [7]路萍.若干聚芴衍生物的合成,电子结构与光电性质的研究[D].吉林:吉林大学化学学院,2005.
    [8] LU P, ZHANG H, SHEN F, et al. A Wide‐Bandgap Semiconducting Polymer forUltraviolet and Blue Light Emitting Diodes[J]. Macromolecular Chemistry andPhysics,2003,204(18):2274-2280.
    [9] LU P, ZHANG H, LI M, et al. Photophysical properties of fluorene‐basedcopolymers synthesized by connecting twisted biphenyl units with fluorene viapara‐and meta‐linkages[J]. Polymer International,2008,57(8):987-994.
    [10] ADAMOVICH V, BROOKS J, TAMAYO A, et al. High efficiency single dopantwhite electrophosphorescent light emitting diodes[J]. New journal of chemistry,2002,26(9):1171-1178.
    [11] TOKITO S, IIJIMA T, SUZURI Y, et al. Confinement of triplet energy onphosphorescent molecules for highly-efficient organic blue-light-emitting devices[J].Applied physics letters,2003,83(3):569-571.
    [12] GE Z, HAYAKAWA T, ANDO S, et al. Spin‐Coated Highly EfficientPhosphorescent Organic Light‐Emitting Diodes Based on BipolarTriphenylamine‐Benzimidazole Derivatives[J]. Advanced Functional Materials,2008,18(4):584-590.
    [13] TAO Y, WANG Q, AO L, et al. Highly efficient phosphorescent organiclight-emitting diodes hosted by1,2,4-triazole-cored triphenylamine derivatives:relationship between structure and optoelectronic properties[J]. The Journal ofPhysical Chemistry C,2009,114(1):601-609.
    [14] HUNG W Y, CHI L C, CHEN W J, et al. A new benzimidazole/carbazole hybridbipolar material for highly efficient deep-blue electrofluorescence, yellow–greenelectrophosphorescence, and two-color-based white OLEDs[J]. Journal of MaterialsChemistry,2010,20(45):10113-10119.
    [15] LIN S H, WU F I, TSAI H Y, et al. Highly efficient deep-blue organicelectroluminescent devices doped with hexaphenylanthracene fluorophores[J]. Journalof Materials Chemistry,2011,21(22):8122-8128.
    [16] WEI B, LIU J Z, ZHANG Y, et al. Stable, Glassy, and Versatile BinaphthaleneDerivatives Capable of Efficient Hole Transport, Hosting, and Deep‐Blue LightEmission[J]. Advanced Functional Materials,2010,20(15):2448-2458.
    [17] ZHANG P, DOU W, JU Z, et al. Modularity Analysis of Tunable Solid‐StateEmission Based on a Twisted Conjugated Molecule Containing9,9′‐BianthraceneGroup[J]. Advanced Materials,2013,25(42):6112-6116.
    [18] YU Y, WU Z, LI Z, et al. Highly efficient deep-blue organic electroluminescentdevices (CIE y≈0.08) doped with fluorinated9,9′-bianthracene derivatives(fluorophores)[J]. Journal of Materials Chemistry C,2013,1(48):8117-8127.
    [19] KIM R, LEE S, KIM K H, et al. Extremely deep blue and highly efficientnon-doped organic light emitting diodes using an asymmetric anthracene derivativewith a xylene unit[J]. Chem. Commun.,2013,49(41):4664-4666.
    [20] SU S J, SASABE H, TAKEDA T, et al. Pyridine-containing bipolar hostmaterials for highly efficient blue phosphorescent OLEDs[J]. Chemistry of Materials,2008,20(5):1691-1693.
    [21] GE Z, HAYAKAWA T, ANDO S, et al. Solution-processible bipolartriphenylamine-benzimidazole derivatives for highly efficient single-layer organiclight-emitting diodes[J]. Chemistry of Materials,2008,20(7):2532-2537.
    [22] GE Z, HAYAKAWA T, ANDO S, et al. Novel bipolar bathophenanthrolinecontaining hosts for highly efficient phosphorescent OLEDs[J]. Organic letters,2008,10(3):421-424.
    [23] LIU J, LI L, PEI Q. Conjugated Polymer as Host for High Efficiency Blue andWhite Electrophosphorescence[J]. Macromolecules,2011,44(8):2451-2456.
    [24] PATEL D G, OHNISHI Y, YANG Y, et al. Conjugated polymers for pure UVlight emission: Poly (meta‐phenylenes)[J]. Journal of Polymer Science Part B:Polymer Physics,2011,49(8):557-565.
    [25] LEE C W, LEE J Y. Above30%External Quantum Efficiency in BluePhosphorescent Organic Light‐Emitting Diodes Using Pyrido [2,3‐b] indoleDerivatives as Host Materials[J]. Advanced Materials,2013,25(38):5450-5454.
    [26] IM Y, LEE J Y. Effect of the position of nitrogen in pyridoindole onphotophysical properties and device performances of-, β-, γ-carboline based hightriplet energy host materials for deep blue devices[J]. Chemical Communications,2013,49(53):5948-5950.
    [27] CUI L S, DONG S C, LIU Y, et al. A simple systematic design ofphenylcarbazole derivatives for host materials to high-efficiency phosphorescentorganic light-emitting diodes[J]. Journal of Materials Chemistry C,2013,1(25):3967-3975.
    [28] HUANG H, WANG Y, WANG B, et al. Controllably tunablephenanthroimidazole–carbazole hybrid bipolar host materials for efficient greenelectrophosphorescent devices[J]. Journal of Materials Chemistry C,2013,1(37):5899-5908.
    [29] DENG L, LI J, WANG G X, et al. Simple bipolar host materials incorporatingCN group for highly efficient blue electrophosphorescence with slow efficiencyroll-off[J]. Journal of Materials Chemistry C,2013,1(48):8140-8145.
    [30] HUANG H, WANG Y, PAN B, et al. Simple Bipolar Hosts with High GlassTransition Temperatures Based on1,8‐Disubstituted Carbazole for Efficient Blueand Green Electrophosphorescent Devices with “Ideal” Turn‐on Voltage[J].Chemistry-A European Journal,2013,19(5):1828-1834.
    [31] LEE Y T, CHANG Y T, LEE M T, et al. Solution-processed bipolar smallmolecular host materials for single-layer blue phosphorescent organic light-emittingdiodes[J]. Journal of Materials Chemistry C,2014,2(2):382-391.
    [32] TAO Y, WANG Q, YANG C, et al. A simple carbazole/oxadiazole hybridmolecule: an excellent bipolar host for green and red phosphorescent OLEDs[J].Angewandte Chemie,2008,120(42):8224-8227.
    [33] TAO Y, WANG Q, SHANG Y, et al. Multifunctional bipolartriphenylamine/oxadiazole derivatives: highly efficient blue fluorescence, redphosphorescence host and two-color based white OLEDs[J]. ChemicalCommunications,2009(1):77-79.
    [34] TAO Y, WANG Q, YANG C, et al. Tuning the optoelectronic properties ofcarbazole/oxadiazole hybrids through linkage modes: hosts for highly efficient greenelectrophosphorescence[J]. Advanced Functional Materials,2010,20(2):304-311.
    [35] TAO Y, GONG S, WANG Q, et al. Morphologically and electrochemically stablebipolar host for efficient green electrophosphorescence[J]. Physical ChemistryChemical Physics,2010,12(10):2438-2442.
    [36] TAO Y, WANG Q, YANG C, et al. Multifunctional Triphenylamine/OxadiazoleHybrid as Host and Exciton‐Blocking Material: High Efficiency GreenPhosphorescent OLEDs Using Easily Available and Common Materials[J]. AdvancedFunctional Materials,2010,20(17):2923-2929.
    [37] KAUTNY P, LUMPI D, WANG Y, et al. Oxadiazole based bipolar hostmaterials employing planarized triarylamine donors for RGB PHOLEDs with lowefficiency roll-off[J]. Journal of Materials Chemistry C,2014.
    [38] FAN C, ZHAO F, GAN P, et al. Simple Bipolar Molecules Constructed fromBiphenyl Moieties as Host Materials for Deep‐Blue Phosphorescent OrganicLight‐Emitting Diodes[J]. Chemistry-A European Journal,2012,18(18):5510-5514.
    [39] HU J Y, PU Y J, YAMASHITA Y, et al. Excimer-emitting single molecules withstacked π-conjugated groups covalently linked at the1,8-positions of naphthalene forhighly efficient blue and green OLEDs[J]. Journal of Materials Chemistry C,2013,1(24):3871-3878.
    [40] WONG K T, LIAO Y L, LIN Y T, et al. Spiro-configured bifluorenes: Highlyefficient emitter for UV organic light-emitting device and host material for redelectrophosphorescence[J]. Organic letters,2005,7(23):5131-5134.
    [41] LI Z H, WONG M S, FUKUTANI H, et al. Synthesis and light-emittingproperties of bipolar oligofluorenes containing triarylamine and1,2,4-triazolemoieties[J]. Organic letters,2006,8(19):4271-4274.
    [42] WEI Y, CHEN C T. Doubly ortho-linked cis-4,4'-bis (diarylamino)stilbene/fluorene hybrids as efficient nondoped, sky-blue fluorescent materials foroptoelectronic applications[J]. Journal of the American Chemical Society,2007,129(24):7478-7479.
    [43] LIAO Y L, LIN C Y, WONG K T, et al. A novel ambipolar spirobifluorenederivative that behaves as an efficient blue-light emitter in organic light-emittingdiodes[J]. Organic letters,2007,9(22):4511-4514.
    [44] CHEN H F, YANG S J, TSAI Z H, et al.1,3,5-Triazine derivatives as newelectron transport–type host materials for highly efficient green phosphorescentOLEDs[J]. Journal of Materials Chemistry,2009,19(43):8112-8118.
    [45] CHIEN C H, KUNG L R, WU C H, et al. A solution-processable bipolarmolecular glass as a host material for white electrophosphorescent devices[J]. Journalof Materials Chemistry,2008,18(29):3461-3466.
    [46] HSU F M, CHIEN C H, SHU C F, et al. A Bipolar Host Material ContainingTriphenylamine and Diphenylphosphoryl‐Substituted Fluorene Units for HighlyEfficient Blue Electrophosphorescence[J]. Advanced Functional Materials,2009,19(17):2834-2843.
    [47] HSU F M, CHIEN C H, SHIH P I, et al. Phosphine-oxide-containing bipolar hostmaterial for blue electrophosphorescent devices[J]. Chemistry of Materials,2009,21(6):1017-1022.
    [48] CHIEN C H, HSU F M, SHU C F, et al. Efficient red electrophosphorescencefrom a fluorene-based bipolar host material[J]. Organic Electronics,2009,10(5):871-876.
    [49] CHEN H F, WANG T C, HUNG W Y, et al. Spiro-configured bipolar hostsincorporating4,5-diazafluroene as the electron transport moiety for highly efficientred and green phosphorescent OLEDs[J]. Journal of Materials Chemistry,2012,22(19):9658-9664.
    [50] HUNG W Y, WANG T C, CHIU H C, et al. A spiro-configured ambipolar hostmaterial for impressively efficient single-layer green electrophosphorescent devices[J].Physical Chemistry Chemical Physics,2010,12(36):10685-10687.
    [51] ZHENG C J, YE J, LO M F, et al. New ambipolar hosts based on carbazole and4,5-diazafluorene units for highly efficient blue phosphorescent OLEDs with lowefficiency roll-off[J]. Chemistry of Materials,2012,24(4):643-650.
    [52] MéHES G, NOMURA H, ZHANG Q, et al. Enhanced ElectroluminescenceEfficiency in a Spiro‐Acridine Derivative through Thermally Activated DelayedFluorescence[J]. Angewandte Chemie International Edition,2012,51(45):11311-11315.
    [53] NAKAGAWA T, KU S Y, WONG K T, et al. Electroluminescence based onthermally activated delayed fluorescence generated by a spirobifluorenedonor–acceptor structure[J]. Chem. Commun.,2012,48(77):9580-9582.
    [54] JEON S O, LEE J Y. Synthesis of fused phenylcarbazole phosphine oxide basedhigh triplet energy host materials[J]. Tetrahedron,2010,66(36):7295-7301.
    [55] YU D, ZHAO F, HAN C, et al. Ternary ambipolar phosphine oxide hosts basedon indirect linkage for highly efficient blue electrophosphorescence: towards hightriplet energy, low driving voltage and stable efficiencies[J]. Advanced Materials,2012,24(4):509-514.
    [56] YU D, ZHAO F, ZHANG Z, et al. Insulated donor–π–acceptor systems based onfluorene-phosphine oxide hybrids for non-doped deep-blue electroluminescentdevices[J]. Chemical Communications,2012,48(49):6157-6159.
    [57] MONDAL E, HUNG W Y, DAI H C, et al. Fluorene‐Based AsymmetricBipolar Universal Hosts for White Organic Light Emitting Devices[J]. AdvancedFunctional Materials,2013,23(24):3096-3105.
    [58] FAN C, CHEN Y, LIU Z, et al. Tetraphenylsilane derivatives spiro-annulated bytriphenylamine/carbazole with enhanced HOMO energy levels and glass transitiontemperatures without lowering triplet energy: host materials for efficient bluephosphorescent OLEDs[J]. Journal of Materials Chemistry C,2013,1(3):463-469.
    [59] WEI Y, WANG W J, HUANG Y T, et al. Blue fluorescent dihydro-indenoindenederivatives with unusual low oxidation potentials as multifunctional OLEDmaterials[J]. Journal of Materials Chemistry C,2014.
    [60] PEI J, WANG J L, CAO X Y, et al. Star-shaped polycyclic aromatics based onoligothiophene-functionalized truxene: synthesis, properties, and facile emissivewavelength tuning[J]. Journal of the American Chemical Society,2003,125(33):9944-9945.
    [61] FUKAGAWA H, YOKOYAMA N, IRISA S, et al. Pyridoindole Derivative asElectron Transporting Host Material for Efficient Deep‐blue PhosphorescentOrganic Light‐emitting Diodes[J]. Advanced Materials,2010,22(42):4775-4778.
    [62] LIN S L, CHAN L H, LEE R H, et al. Highly EfficientCarbazole‐π‐Dimesitylborane Bipolar Fluorophores for Nondoped Blue OrganicLight‐Emitting Diodes[J]. Advanced Materials,2008,20(20):3947-3952.
    [63] LIN M S, CHI L C, CHANG H W, et al. A diarylborane-substituted carbazole asa universal bipolar host material for highly efficient electrophosphorescencedevices[J]. Journal of Materials Chemistry,2012,22(3):870-876.
    [64] SHI H, XIN D, DONG X, et al. A star-shape bipolar host material based oncarbazole and dimesitylboron moieties for fabrication of highly efficient red, greenand blue electrophosphoresent devices[J]. Journal of Materials Chemistry C,2013.
    [65] TSAI M H, HONG Y H, CHANG C H, et al.3‐(9‐Carbazolyl) carbazoles and3,6‐Di (9‐carbazolyl) carbazoles as Effective Host Materials for Efficient BlueOrganic Electrophosphorescence[J]. Advanced Materials,2007,19(6):862-866.
    [66] JIANG W, DUAN L, QIAO J, et al. High-triplet-energy tri-carbazole derivativesas host materials for efficient solution-processed blue phosphorescent devices[J].Journal of Materials Chemistry,2011,21(13):4918-4926.
    [67] GAO Z Q, LUO M, SUN X H, et al. New Host Containing Bipolar CarrierTransport Moiety for High‐Efficiency Electrophosphorescence at Low Voltages[J].Advanced Materials,2009,21(6):688-692.
    [68] TAKIZAWA S, MONTES V A, ANZENBACHER JR P. Phenylbenzimidazole-based new bipolar host materials for efficient phosphorescent organic light-emittingdiodes[J]. Chemistry of Materials,2009,21(12):2452-2458.
    [69] HUNG W Y, TU G M, CHEN S W, et al. Phenylcarbazole-dipyridyl triazolehybrid as bipolar host material for phosphorescent OLEDs[J]. Journal of MaterialsChemistry,2012,22(12):5410-5418.
    [70] WANG L, XU P, CHEN J, et al. A simple carbazole-N-benzimidazole bipolarhost material for highly efficient blue and single layer white phosphorescent organiclight-emitting diodes[J]. Journal of Materials Chemistry C,2014.
    [71] KIM S H, PARK S, KWON J E, et al. Organic Light‐Emitting Diodes with aWhite‐Emitting Molecule: Emission Mechanism and Device Characteristics[J].Advanced Functional Materials,2011,21(4):644-651.
    [72] ROTHMANN M M, FUCHS E, SCHILDKNECHT C, et al. Designing a bipolarhost material for blue phosphorescent OLEDs: Phenoxy-carbazole substitutedtriazine[J]. Organic Electronics,2011,12(7):1192-1197.
    [73] SHAO S, DING J, YE T, et al. A Novel, Bipolar Polymeric Host for HighlyEfficient Blue Electrophosphorescence: a Non‐Conjugated Poly (aryl ether)Containing Triphenylphosphine Oxide Units in the Electron‐Transporting MainChain and Carbazole Units in Hole‐Transporting Side Chains[J]. AdvancedMaterials,2011,23(31):3570-3574.
    [74] SHAO S, DING J, WANG L, et al. White Electroluminescence fromAll-Phosphorescent Single Polymers on a Fluorinated Poly (arylene ether phosphineoxide) Backbone Simultaneously Grafted with Blue and Yellow Phosphors[J]. Journalof the American Chemical Society,2012,134(50):20290-20293.
    [75] HOLMES R J, D ANDRADE B W, Forrest S R, et al. Efficient, deep-blueorganic electrophosphorescence by guest charge trapping[J]. Applied Physics Letters,2003,83(18):3818-3820.
    [76] REN X, LI J, HOLMES R J, et al. Ultrahigh energy gap hosts in deep blueorganic electrophosphorescent devices[J]. Chemistry of materials,2004,16(23):4743-4747.
    [77] SHIH P I, CHIEN C H, CHUANG C Y, et al. Novel host material for highlyefficient blue phosphorescent OLEDs[J]. Journal of Materials Chemistry,2007,17(17):1692-1698.
    [78] Lin J J, Liao W S, Huang H J, et al. A highly efficient host/dopant combinationfor blue organic electrophosphorescence devices[J]. Advanced Functional Materials,2008,18(3):485-491.
    [79] YEH S J, WU M F, CHEN C T, et al. New Dopant and Host Materials forBlue‐Light‐Emitting Phosphorescent Organic Electroluminescent Devices[J].Advanced Materials,2005,17(3):285-289.
    [80] WU M F, YEH S J, CHEN C T, et al. The Quest for High‐Performance HostMaterials for Electrophosphorescent Blue Dopants[J]. Advanced Functional Materials,2007,17(12):1887-1895.
    [81] TSUBOI T, LIU S W, WU M F, et al. Spectroscopic and electrical characteristicsof highly efficient tetraphenylsilane-carbazole organic compound as host material forblue organic light emitting diodes[J]. Organic Electronics,2009,10(7):1372-1377.
    [82] TSAI M H, LIN H W, SU H C, et al. Highly Efficient Organic BlueElectrophosphorescent Devices Based on3,6‐Bis (triphenylsilyl) carbazole as theHost Material[J]. Advanced Materials,2006,18(9):1216-1220.
    [83] YEH H C, CHIEN C H, SHIH P I, et al. Polymers derived from3,6-fluorene andtetraphenylsilane derivatives: Solution-processable host materials for greenphosphorescent OLEDs[J]. Macromolecules,2008,41(11):3801-3807.
    [84] KANG J W, LEE D S, PARK H D, et al. A host material containingtetraphenylsilane for phosphorescent OLEDs with high efficiency and operationalstability[J]. Organic Electronics,2008,9(4):452-460.
    [85] SHEN Q, YE S, YU G, et al. Synthesis of tetraarylsilanes and its usage as blueemitters in electroluminescence[J]. Synthetic Metals,2008,158(21):1054-1058.
    [86] HAN W S, SON H J, WEE K R, et al. Silicon-Based blue Phosphorescence hostmaterials: structure and photophysical Property relationship on Methyl/PhenylsilanesAdorned with4-(N-Carbazolyl) phenyl groups and Optimization of theirelectroluminescence by Peripheral4-(N-Carbazolyl) phenyl Numbers[J]. The Journalof Physical Chemistry C,2009,113(45):19686-19693.
    [87] GONG S, CHEN Y, YANG C, et al. De Novo Design of Silicon‐BridgedMolecule Towards a Bipolar Host: All‐Phosphor White Organic Light‐EmittingDevices Exhibiting High Efficiency and Low Efficiency Roll‐Off[J]. AdvancedMaterials,2010,22(47):5370-5373.
    [88] GONG S, CHEN Y, LUO J, et al. Bipolar Tetraarylsilanes as Universal Hosts forBlue, Green, Orange, and White Electrophosphorescence with High Efficiency andLow Efficiency Roll‐Off[J]. Advanced Functional Materials,2011,21(6):1168-1178.
    [89] GONG S, FU Q, WANG Q, et al. Highly Efficient Deep‐BlueElectrophosphorescence Enabled by Solution‐Processed Bipolar TetraarylsilaneHost with Both a High Triplet Energy and a High‐Lying HOMO Level[J].Advanced Materials,2011,23(42):4956-4959.
    [90] GONG S, FU Q, ZENG W, et al. Solution-Processed Double-Silicon-BridgedOxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence[J].Chemistry of Materials,2012,24(16):3120-3127.
    [91] BURROWS P E, PADMAPERUMA A B, SAPOCHAK L S, et al. Ultravioletelectroluminescence and blue-green phosphorescence using an organic diphosphineoxide charge transporting layer[J]. Applied physics letters,2006,88(18):183503.
    [92] PADMAPERUMA A B, SAPOCHAK L S, BURROWS P E. New chargetransporting host material for short wavelength organic electrophosphorescence:2,7-bis (diphenylphosphine oxide)-9,9-dimethylfluorene[J]. Chemistry of materials,2006,18(9):2389-2396.
    [93] VECCHI P A, PADMAPERUMA A B, QIAO H, et al. A dibenzofuran-basedhost material for blue electrophosphorescence[J]. Organic letters,2006,8(19):4211-4214.
    [94] SAPOCHAK L S, PADMAPERUMA A B, CAI X, et al. Inductive Effects ofDiphenylphosphoryl Moieties on Carbazole Host Materials: Design Rules for BlueElectrophosphorescent Organic Light-Emitting Devices [J]. The Journal of PhysicalChemistry C,2008,112(21):7989-7996.
    [95] CAI X, PADMAPERUMA A B, SAPOCHAK L S, et al. Electron and holetransport in a wide bandgap organic phosphine oxide for blueelectrophosphorescence[J]. Applied Physics Letters,2008,92(8):083308.
    [96] SWENSEN J S, POLIKARPOV E, VON RUDEN A, et al. Improved Efficiencyin Blue Phosphorescent Organic Light‐Emitting Devices Using Host Materials ofLower Triplet Energy than the Phosphorescent Blue Emitter[J]. Advanced FunctionalMaterials,2011,21(17):3250-3258.
    [97] JEON S O, YOOK K S, JOO C W, et al. Phenylcarbazole‐Based PhosphineOxide Host Materials For High Efficiency In Deep Blue Phosphorescent OrganicLight‐Emitting Diodes[J]. Advanced Functional Materials,2009,19(22):3644-3649.
    [98] YOOK K S, JEON S O, LEE J Y. Pure white phosphorescent organiclight-emitting diodes using a phosphine oxide derivative as a high triplet energy hostmaterial[J]. Thin Solid Films,2010,518(20):5827-5831.
    [99] JEON S O, JANG S E, SON H S, et al. External Quantum Efficiency Above20%in Deep Blue Phosphorescent Organic Light‐Emitting Diodes[J]. AdvancedMaterials,2011,23(12):1436-1441.
    [100] CHOU H H, CHENG C H. A highly efficient universal bipolar host for blue,green, and red phosphorescent OLEDs[J]. Advanced Materials,2010,22(22):2468-2471.
    [101] DING J, WANG Q, ZHAO L, et al. Design of star-shaped moleculararchitectures based on carbazole and phosphine oxide moieties: towards amorphousbipolar hosts with high triplet energy for efficient blue electrophosphorescentdevices[J]. Journal of Materials Chemistry,2010,20(37):8126-8133.
    [102] JIANG W, DUAN L, QIAO J, et al. Tuning of charge balance in bipolar hostmaterials for highly efficient solution-processed phosphorescent devices[J]. Organicletters,2011,13(12):3146-3149.
    [103] YANG X, HUANG H, PAN B, et al. Modified4,4′,4″-Tri (N-carbazolyl)triphenylamine as a Versatile Bipolar Host for Highly Efficient Blue, Orange, andWhite Organic Light-Emitting Diodes[J]. The Journal of Physical Chemistry C,2012,116(28):15041-15047.
    [104] WADA A, YASUDA T, ZHANG Q, et al. A host material consisting of aphosphinic amide directly linked donor–acceptor structure for efficient bluephosphorescent organic light-emitting diodes[J]. Journal of Materials Chemistry C,2013,1(13):2404-2407.
    [105] HAN C, XIE G, XU H, et al. A Single Phosphine Oxide Host forHigh‐Efficiency White Organic Light‐Emitting Diodes with Extremely LowOperating Voltages and Reduced Efficiency Roll‐Off[J]. Advanced Materials,2011,23(21):2491-2496.
    [106] HAN C, XIE G, XU H, et al. Towards Highly Efficient Blue‐PhosphorescentOrganic Light‐Emitting Diodes with Low Operating Voltage and ExcellentEfficiency Stability[J]. Chemistry-A European Journal,2011,17(2):445-449.
    [107] HAN C, XIE G, LI J, et al. A New Phosphine Oxide Host based onortho‐Disubstituted Dibenzofuran for Efficient Electrophosphorescence: TowardsHigh Triplet State Excited Levels and Excellent Thermal, Morphological andEfficiency Stability[J]. Chemistry-A European Journal,2011,17(32):8947-8956.
    [108] ZHAO J, XIE G H, YIN C R, et al. Harmonizing triplet level and ambipolarcharacteristics of wide-gap phosphine oxide hosts toward highly efficient and lowdriving voltage blue and green PHOLEDs: an effective Strategy based onSpiro-Systems[J]. Chemistry of Materials,2011,23(24):5331-5339.
    [109] HAN C, ZHANG Z, XU H, et al. Controllably Tuning Excited‐State Energy inTernary Hosts for Ultralow‐Voltage‐Driven Blue Electrophosphorescence[J].Angewandte Chemie International Edition,2012,51(40):10104-10108.
    [110] HAN C, ZHANG Z, XU H, et al. Short-axis substitution approach selectivelyoptimizes electrical properties of dibenzothiophene-based phosphine oxide hosts[J].Journal of the American Chemical Society,2012,134(46):19179-19188.
    [111] HAN C, ZHANG Z, XU H, et al. Convergent Modulation of Singlet and TripletExcited States of Phosphine‐Oxide Hosts through the Management of MolecularStructure and Functional‐Group Linkages for Low‐Voltage‐DrivenElectrophosphorescence[J]. Chemistry-A European Journal,2013,19(1):141-154.
    [112] HUANG T H, LIN J T, CHEN L Y, et al. Dipolar Dibenzothiophene S,S‐Dioxide Derivatives Containing Diarylamine: Materials for Single‐LayerOrganic Light‐Emitting Devices[J]. Advanced Materials,2006,18(5):602-606.
    [113] MOSS K C, BOURDAKOS K N, BHALLA V, et al. Tuning the intramolecularcharge transfer emission from deep blue to green in ambipolar systems based ondibenzothiophene S, S-dioxide by manipulation of conjugation and strength of theelectron donor units[J]. The Journal of Organic Chemistry,2010,75(20):6771-6781.
    [114] YE J, ZHENG C J, OU X M, et al. Management of Singlet and Triplet Excitonsin a Single Emission Layer: A Simple Approach for a High‐EfficiencyFluorescence/Phosphorescence Hybrid White Organic Light‐Emitting Device[J].Advanced Materials,2012,24(25):3410-3414.
    [115] YU L, LIU J, HU S, et al. Red, Green, and Blue Light‐Emitting PolyfluorenesContaining a Dibenzothiophene‐S, S‐Dioxide Unit and EfficientHigh‐Color‐Rendering‐Index White‐Light‐Emitting Diodes MadeTherefrom[J]. Advanced Functional Materials,2013,23(35):4366-4376.
    [116] DIAS F B, BOURDAKOS K N, JANKUS V, et al. Triplet Harvesting with100%Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge TransferOLED Emitters[J]. Advanced Materials,2013,25(27):3707-3714.
    [117] HSU F M, CHIEN C H, HSIEH Y J, et al. Highly efficient redelectrophosphorescent device incorporating a bipolartriphenylamine/bisphenylsulfonyl-substituted fluorene hybrid as the host[J]. Journalof Materials Chemistry,2009,19(42):8002-8008.
    [118] SASABE H, SEINO Y, KIMURA M, et al. A m-Terphenyl-Modifed SulfoneDerivative as a Host Material for High-Efficiency Blue and Green PhosphorescentOLEDs[J]. Chemistry of Materials,2012,24(8):1404-1406.
    [119] SEINO Y, SASABE H, PU Y J, et al. High‐Performance Blue PhosphorescentOLEDs Using Energy Transfer from Exciplex[J]. Advanced Materials,2014.
    [120] ZHANG Q, LI J, SHIZU K, et al. Design of efficient thermally activated delayedfluorescence materials for pure blue organic light emitting diodes[J]. Journal of theAmerican Chemical Society,2012,134(36):14706-14709.
    [121] WU S, AONUMA M, ZHANG Q, et al. High-efficiency deep-blue organiclight-emitting diodes based on a thermally activated delayed fluorescence emitter[J]. J.Mater. Chem. C,2013,2(3):421-424.
    [122]胡德华.含硅类宽禁带母体材料的设计合成与光电性质研究[D].吉林大学,2011.
    [123] MARTIN R L. Natural transition orbitals[J]. The Journal of chemical physics,2003,118(11):4775-4777.
    [124] CHO Y J, LEE J Y. Tetraphenylsilane-based high triplet energy host materials forblue phosphorescent organic light-emitting diodes[J]. The Journal of PhysicalChemistry C,2011,115(20):10272-10276.
    [125] HU D, LU P, WANG C, et al. Silane coupling di-carbazoles with high tripletenergy as host materials for highly efficient blue phosphorescent devices[J]. Journalof Materials Chemistry,2009,19(34):6143-6148.
    [126] CHOU H H, CHEN Y H, HSU H P, et al. Synthesis of Diimidazolylstilbenes asn‐Type Blue Fluorophores: Alternative Dopant Materials for Highly EfficientElectroluminescent Devices[J]. Advanced Materials,2012,24(43):5867-5871.
    [127] WANG Z, LU P, CHEN S, et al. Phenanthro [9,10-d] imidazole as a newbuilding block for blue light emitting materials[J]. Journal of Materials Chemistry,2011,21(14):5451-5456.
    [128] GAO Z, LIU Y, WANG Z, et al. High‐Efficiency Violet‐Light‐EmittingMaterials Based on Phenanthro [9,10‐d] imidazole[J]. Chemistry-A EuropeanJournal,2013,19(8):2602-2605.
    [129] HU D, SHEN F, LIU H, et al. Separation of electrical and optical energy gaps forconstructing bipolar organic wide bandgap materials[J]. Chem. Commun.,2012,48(24):3015-3017.
    [130]李维军.扭曲结构DA分子的设计,合成及激发态性质研究[D].吉林大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700