用户名: 密码: 验证码:
白细胞介素17促进成骨细胞诱导破骨样细胞分化的作用和机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     正畸牙槽骨改建的第一步是牙槽骨的吸收,成熟的破骨细胞(osteoclast,OC)是唯一行使骨吸收功能的细胞,OC的分化和成熟主要依赖于成骨细胞(osteoblasts, OB)的调控。OB通过与OC的细胞间连接以及分泌可溶性因子调控OC的分化和成熟,这些因子称为OC分化相关因子。机械力作用下,OB产生OC分化相关因子,通过多种途径和机制参与和调节OC的分化和功能。在目前发现的调节OC分化的细胞因子中,核转录因子kB受体活化因子配基(receptor activator of NF-κB ligand, RANKL)和巨噬细胞集落刺激因子(macrophage colony-stimulating factor, M-CSF)是两个关键调节因子。此外,一些炎性细胞因子也具有重要的调节作用,如白细胞介素(interleukin, IL)-1, IL-6,肿瘤坏死因子(tumor necrosis factor, TNF)-a等,能够直接或间接促进OC的分化和活化,又被称为骨吸收炎性因子。除了细胞因子,一些脂质作为信号传递分子,参与骨重建过程。其中,前列腺素(prostaglandin, PG)E2的作用非常显著,可促进OC分化和骨吸收,并调节炎症反应。在正畸牙移动的龈沟液中,PGE2的表达水平较高。本研究相关的前期实验发现,压力上调成骨细胞表达PGE2,进而上调RANKL、M-CSF的表达和下调骨保护蛋白(osteoprotegerin, OPG)的表达,从而诱导OC分化。
     IL-17是一种重要的促炎性细胞因子,1993年首次由活化的T细胞(TH17)克隆而来,直到近年来人们才对其有了一定的认识。IL-17结构独特,与其他已知的蛋白和白介素的结构没有相似性,在人类和鼠类的基因组包括至少6个成员(A-F)和5个受体成员(RA-RE).而功能方面,IL-17具有强大的促炎症作用和骨吸收的作用。近年来的研究发现,IL-17可促进IL-1,TNF-a的合成,诱导IL-6和IL-8在成纤维细胞内的表达。可增强OB内TNF-α、PGF2a诱导IL-6的合成作用,IL-17可上调多种细胞内RANKL的表达而促进OC的分化。作为最新发现的骨吸收炎性因子,IL-17在多种涉及骨丢失疾病中的重要作用不断被发现和深入研究,如牙周炎,风湿性关节炎,骨关节炎等。因此,我们设想IL-17参与正畸过程中的牙槽骨的吸收,通过OB促进OC的分化和功能。但是机械力作用下IL-17在OB内的表达情况,目前国内外尚无报道,而IL-17通过什么机制参与OC的分化过程,目前尚不清楚。
     因此,本研究通过检测压力作用下IL-17及其受体在OB内的表达;研究IL-17A调控OC分化相关因子在OB内的表达及其作用机制;检测IL-17调节OB诱导OC分化的作用,探讨IL-17在体外介导OB诱导OC的作用,为进一步阐明正畸牙移动和牙槽骨改建的分子生物学机制提供理论和实践依据。
     实验方法
     1.检测压力作用下,IL-17及其受体在OB内的表达情况.
     以来自新生小鼠颅骨的细胞系-MC3T3-E1细胞作为OB,用含10%FBS的a-MEM培养。按2.0 x 104 cells/cm2的密度将细胞接种于96孔板,用含50 mM磷酸甘油和50μg/ml抗坏血酸的培养液培养7-10天,茜素红染色观察矿化结节。按相同密度将细胞接种于100 mm培养皿,待细胞融合80%,换用含1%FBS的a-MEM培养液培养12h后,开始施加压力。按实验室以往研究,采用细胞均匀加力装置施加0、1.0、2.0或3.0g/cm2(0、98、196或294Pa)的压力,加力时间分别为1h、3h、6h、9h、12h或24h。活细胞计数试剂盒检测压力对细胞生长的影响,选择对细胞生长影响小的1.0和2.0g/cm2作为实验组。加力结束后,采用实时定量RT-PCR检测IL-17家族、IL-17受体家族、IL-lα、IL-6mRNA表达情况,采用细胞免疫荧光技术和ELISA方法检测加力9h后IL-17A蛋白表达情况。
     按相同密度将细胞接种于100 mm培养皿,待细胞融合80%,换用含1%FBS的a-MEM培养液培养12h后,加入0或10 ng/ml的IL-17A继续培养6h、24h或72h,实时定量RT-PCR检测IL-17受体mRNA表达情况。
     2.检测IL-17A调控OC分化相关因子在OB内表达的作用及机制。
     按2.0×104 cells/cm2的密度将MC3T3-E1细胞接种于100 mm培养皿,待细胞融合80%,换用含1%FBS的a-MEM培养液培养12h。分别进行以下实验。
     (1)加入0、0.1110ng/ml的IL-17A继续培养6h、12h、24h、48h或72h。实时定量RT-PCR检测RANKL、OPG、M-CSF、IL-lα、IL-6、TNF-α、COX-1和COX-2mRNA表达情况,ELISA方法检测PGE2、RANKL、OPG、M-CSF、IL-lα、IL-6和TNF-a蛋白表达情况。
     (2)加入0或1.5 ng/ml的PGE2继续培养24h。实时定量RT-PCR检测RANKL、OPG、M-CSF、IL-lα、IL-6和TNF-a mRNA表达情况。
     (3)加入0或10 ng/ml的IL-17A和/或10μ,M塞来昔布(COX-2抑制剂)继续培养24h或72h。ELISA方法检测PGE2、RANKL、OPG、M-CSF、IL-la、IL-6和TNF-α蛋白表达情况。3.检测IL-17A间接诱导破骨样细胞(osteoclast-like cells,OCL)分化的作用和机制。
     按2.0 x 104 cells/cm2的密度将MC3T3-E1细胞接种于100 mm培养皿,待细胞融合80%,加入0或10 ng/ml的IL-17A的含1%FBS的a-MEM继续培养72h。再换用含1%FBS的a-MEM培养12h,收集细胞培养上清。按照30%的比例与含10%FBS的a-MEM混合,加入50 ng/ml的RANKL,作为条件培养液。以鼠源性单核-巨噬细胞系RAW264.7作为破骨细胞前体,用含10%FBS的a-MEM培养,2天换液一次。按1.25 x 104 cells/cm2的密度将RAW264.7细胞接种于96孔板,孵育24h后,换用条件培养液培养3,5,7或10天,抗酒石酸酸性磷酸酶(TRAP)染色鉴定和计数OCL。按1.25×104 cells/cm2的密度将RAW264.7细胞接种于6孔板,孵育24h后,换用条件培养液培养3,5,7或10天,实时定量RT-PCR和Western-blot方法分别检测组织蛋白酶K、基质金属蛋白酶(MMP)-9和碳酸酐酶(CA) II mRNA和蛋白表达情况。
     按2.0 x 104 cells/cm2的密度将MC3T3-E1细胞接种于100 mm的培养皿,待细胞融合80%,加入的IL-17A (0或10 ng/ml)和/或10μM塞来昔布的含1%FBS的a-MEM继续培养72h。再换用含1%FBS的a-MEM培养12h,收集细胞培养上清。按照30%的比例与含10%FBS的a-MEM混合,加入50 ng/ml的RANKL,作为条件培养液。按1.25 x 104 cells/cm2的密度将RAW264.7细胞接种于96孔板或6孔板,孵育24h后,换用条件培养液培养7天,TRAP染色鉴定和计数OCL,实时定量RT-PCR方法检测组织蛋白酶K、MMP-9和CAIImRNA表达情况。
     实验结果
     1.压力作用下,IL-17及其受体在OB内的表达情况。
     1.1压力作用下,IL-17家族mRNA在OB内的表达情况
     在一个加力周期内,对照组和实验组的IL-17(A-F) mRNA的表达逐渐升高,6h达到最高,9h后表达逐渐降低,IL-17A mRNA的表达水平在IL-17家族中最高。与对照组相比,IL-17A.IL-17D和IL-17E mRNA的表达在1.0和2.0g/cm2的压力加载后的3h,6h,9h,12h和24h均显著增强(P<0.05或P<0.01);IL-17B.IL-17C和IL-17F mRNA的表达在1.0或2.0 g/cm2的压力加载后的6h,9h,12h和24h均显著增强(P<0.05或P<0.01)。在细胞加力后的初期和中期(3h,6h,9h),IL-17A-F mRNA的表达随着压力的增加而增强,但在细胞加力后的后期(12h,24h),IL-17A-F mRNA在1.0 g/cm2力值加载条件下比2.0g/cm2加载条件下的表达更多。
     1.2压力作用下,IL-17受体家族mRNA在OB内的表达情况
     在一个加力周期内,对照组和实验组的IL-17RA、IL-17RC和IL-17RD mRNA的表达逐渐升高,9h达到最高,12h后表达逐渐降低,IL-17RB和IL-17RE mRNA的表达逐渐升高,6h达到最高,9h后表达逐渐降低。IL-17RC mRNA的表达水平在IL-17受体家族中最高。与对照组相比,IL-17RA和IL-17RE mRNA的表达在1.0和2.0g/cm2的压力加载后的6h,9h,12h和24h均显著增强(P<0.05或P1):IL-17RC和IL-17RD mRNA的表达在1.0或2.0 g/cm2的压力加载后的6h,9h和12h均显著增强(P<0.05或P<0.01);IL-17RB mRNA的表达在1.0和2.0 g/cm2的压力加载后的3h,6h和9h均显著增强(P<0.05或P<0.01)。在细胞加力的初期和中期(3h,6h,9h),IL-17RA-RE mRNA的表达随着压力的增加而增强,但在细胞加力的后期(12h,24h),IL-17 RA-RE mRNA在1.0 g/cm2力值加载条件下比2.0g/cm2加载条件下的表达更多。
     1.3压力作用下,IL-17A蛋白在OB内的表达情况
     细胞加力9h后,对照组中未见IL-17A蛋白的表达;细胞加载1.0g/cm2压力的实验组,部分细胞的细胞质内呈现红色荧光,IL-17A蛋白水平为7.125 pg/ml,细胞加载2.0 g/cm2压力的实验组,部分细胞的细胞质内呈现红色荧光,IL-17A蛋白水平为9.019 pg/ml。表明随压力增加,IL-17A蛋白表达增加。
     1.4 IL-17A调节IL-17受体家族mRNA在OB内的表达情况
     IL-17A作用于成骨细胞后,与对照组相比,IL-17RA、IL-17RB、IL-17RC和IL-17RE mRNA的表达均有显著增加(P<0.05),但IL-17RD的表达没有显著性差异。
     1.5压力作用下,IL-la和IL-6mRNA在OB内的表达情况
     在一个加力周期内,对照组和实验组的IL-1a和IL-6 mRNA的表达逐渐升高。与对照组相比,IL-1αmRNA的表达在1.0或2.0g/cm2的压力加载后的6h、9h、12h和24h均显著增强(P<0.01); IL-6 mRNA的表达在1.0或2.0 g/cm2的压力加载后的9h、12h和24h均显著增强(P<0.05或P<0.01)。
     2.IL-17A调控OC分化相关因子在OB内表达的作用及机制。
     2.1 IL-17A调节RANKL、OPG、M-CSFmRNA和蛋白在OB内的表达情况
     在IL-17A刺激作用下,与对照组相比,实验组的RANKL和M-CSF mRNA表达显著增加,OPG mRNA表达显著降低:RANKL mRNA表达在24h-72h增加了1.3-1.8倍(P<0.05或P<0.01),M-CSF mRNA表达在72h增加了1.6-1.9倍(P<0.01),OPG mRNA表达在48h-72h降低了0.8-0.9(P<0.05)。
     IL-17A刺激成骨细胞72h后,与对照组相比,实验组的RANKL和M-CSF蛋白表达显著增加,OPG蛋白表达显著降低:RANKL蛋白表达增加了1.9-2.4倍(P1.2-1.4倍(P<0.05), OPG蛋白表达降低了0.7-0.8倍(P<0.05)。
     2.2 IL-17A调节骨吸收炎性因子mRNA和蛋白在OB内的表达情况
     对照组和实验组的IL-1αmRNA表达逐渐降低,直到48h;IL-6 mRNA表达逐渐升高到24h,48h后逐渐降低;TNF-a mRNA表达逐渐升高,直到72h。在IL-17A刺激作用下,与对照组相比,实验组的骨吸收炎性因子mRNA表达显著增加:IL-lαmRNA表达在6h-72h增加了1.3-4.3倍(P<0.05或P<0.01),IL-6mRNA表达在6h-72h增加了1.3-2.5倍(P<0.05或P<0.01),TNF-a mRNA表达在12h-72h增加了1.2-3.5倍(P<0.05或P<0.01)。
     IL-17A刺激OB的24h后,与对照组相比,实验组的骨吸收炎性因子蛋白表达显著增加:IL-1a蛋白表达显著增加了1.3-1.5倍(P<0.05或P<0.01),IL-6蛋白表达显著增加了2.1-2.6倍(P<0.01),IL-17A刺激OB的72h后,TNF-a蛋白表达显著增加了1.5倍(P<0.01)。2.3 IL-17A调节COX-1和COX-2 mRNA在OB内的表达情况
     对照组和实验组的COX-2 mRNA表达逐渐降低,直到48h。在IL-17A刺激作用下,与对照组相比,实验组COX-2mRNA表达在6h、12h和24h显著增加了1.2-2.4倍(P<0.01)。但COX-1的mRNA表达不受IL-17A的影响。2.4 IL-17A和/或celecoxib调节PGE2在OB内的表达情况
     在IL-17A刺激作用下,与对照组相比,实验组的PGE2蛋白表达显著增加,并呈剂量依赖性的特点:在6h,24h和72h分别增加了1.06-2.19倍,1.57-2.05倍和2.75-3.50倍。在IL-17A和celecoxib共同作用的24h, celecoxib阻滞了IL-17A对PGE2的刺激作用,PGE2蛋白含量显著降低,接近于对照组的水平。表明IL-17A是通过上调COX-2的表达而增加PGE2的表达。
     2.5 PGE2调节OC分化相关因子mRNA在OB内的表达情况
     在PGE2作用下,与对照组相比,实验组的RANKL和M-CSF的nRNA表达显著增加(P<0.01),OPG的mRNA表达显著降低(P<0.05);实验组的IL-1a和IL-6的mRNA表达显著增加(P<0.01),但TNF-α的]mRNA表达无显著性差异。2.6 celecoxib对IL-17A调节OC分化相关因子蛋白在OB内表达的影响作用
     在IL-17A和celecoxib共同作用的72h后,celecoxib阻滞了IL-17A对RANKL、OPG和M-CSF的刺激作用,RANKL和M-CSF蛋白含量显著降低,OPG蛋白表达显著增加,接近于对照组的水平。
     在IL-17A和celecoxib共同作用24h后,celecoxib阻滞了IL-17A对IL-1a和IL-6的刺激作用, IL-1a和IL-6蛋白含量显著降低,接近于对照组的水平,IL-17A和celecoxib共同作用72h后,TNF-α的蛋白表达与对照组相比无显著性差异。
     3.IL-17A间接诱导oCL分化的作用。
     3.1 IL-17A诱导OCL形成的作用
     用IL-17A处理或未处理的条件培养液培养RAW264.7细胞的第3天,可见TRAP染色阳性的多核巨细胞(OCL)出现,第5天和第7天,细胞体积变大,数量增加,第10天,OCL逐渐减少。在第5天和第7天,与对照组相比,IL-17A处理的条件培养液诱导的OCL体积较大,数量显著增多,分别增加1.45倍和1.34倍(P<0.01)。3.2 IL-17A调节cathepsin K, MMP-9和CAⅡmRNA在OCL内的表达情况
     用IL-17A处理或未处理的条件培养液培养RAW264.7细胞的10天内,cathepsin K, MMP-9 mRNA的表达逐渐增加,CAⅡmRNA的表达没有明显变化,只在第10天轻微增加。与对照组相比,实验组的cathepsin K mRNA的表达在第5天和7天分别增加了1.50和1.40倍(P<0.05或P<0.01),实验组的MMP-9 mRNA的表达在第7天增加了1.31倍(P<0.01)。但实验组的CAⅡmRNA的表达没有明显变化。
     3.3 IL-17A调节cathepsin K, MMP-9和CAⅡ蛋白在OCL内的表达情况
     用IL-17A处理或未处理的条件培养液培养RAW264.7细胞的第10天,cathepsin K, MMP-9和CAⅡ蛋白表达与其mRNA表达相似。与对照组相比,实验组的cathepsin K的蛋白表达增加了1.35倍(P<0.01),实验组的MMP-9的蛋白表达增加了1.42倍(P<0.01)。而实验组的CAⅡ的蛋白表达没有明显变化。
     3.4 celecoxib对IL-17A诱导OCL形成的影响作用
     用IL-17A处理或未处理的条件培养液培养RAW264.7细胞的第7天,与对照组相比,IL-17A处理的条件培养液诱导的OCL体积较大,数量显著增多(P<0.01)。用IL-17A和celecoxib处理的条件培养液培养RAW264.7,OCL数量显著下降,接近于对照组的水平。celecoxib阻滞了lL-17A对OCL的间接诱导作用。
     3.5 celecoxib对IL-17A调节cathepsin K和MMP-9 mRNA表达的影响作用
     用IL-17A和celecoxib处理的条件培养液培养RAW264.7, cathepsin K和MMP-9mRNA显著下降(P<0.05),接近于对照组的水平。表明COX-2抑制剂阻滞了IL-17A对cathepsin K和MMP-9 mRNA表达的上调作用。
     结论1.成骨细胞MC3T3-E1可在mRNA水平表达6个IL-17家族成员(IL-17A-F)和5个受体家族成员(IL-17RA-RE),并在蛋白水平表达IL-17A,因此,成骨细胞也可产生IL-17。
     2.压力诱导IL-la, IL-6, IL-17及其受体的mRNA和IL-17A蛋白在成骨细胞内的表达增强,而且IL-17A在其家族成员中的表达水平最高。提示IL-17可能参与机械力诱导的牙槽骨吸收过程。
     3.IL-17A显著上调RANKL和M-CSF,下调OPG的mRNA和蛋白在成骨细胞内的表达:IL-17A显著上调IL-1α, IL-6和TNF-a的mRNA和蛋白在成骨细胞内的表达,证实IL-17A在体外调控成骨细胞内的破骨细胞分化相关因子的表达。
     4.IL-17A通过上调COX-2/PGE2的表达(可被celecoxib沮滞),从而调控破骨细胞分化相关因子在成骨细胞内的表达,揭示了该调控作用的机制。
     5.IL-17A促进成骨细胞诱导破骨样细胞的分化,并上调cathepsin K, MMP-91的mRNA和蛋白在破骨样细胞中的表达,证实IL-17在体外促进成骨细胞诱导破骨样细胞的分化和功能。
     6.IL-17A通过上调成骨细胞内COX-2/PGE2的表达(可被celecoxib阻滞),调控破骨细胞分化相关因子的表达,从而促进成骨细胞诱导破骨样细胞的分化和功能,揭示了IL-17在体外促进成骨细胞诱导破骨样细胞的分化相关的机制。
     7.本研究探讨了IL-17在体外介导成骨细胞诱导破骨样细胞分化的作用,为进一步阐明正畸牙移动和牙槽骨改建的分子生物学机制提供理论和实践依据。
Background and Objective
     Alveolar bone resorption is the first step of bone remodeling during orthodontic treatment and mature osteoclast (OC) is the only cell to be responsible for bone resorption. OB mediate pOC diffentiation and activation by multiple factors and ways..Those factors were called bone resorption-relative factors. Mechanical stress induces OB to produce such facorrs. Among them, Receptor activator of NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) are the two key factors inducing OC differentiation and function. Inflammatory mediators released from periodontal tissue trigger the biological process of alveolar bone resorption. Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-αare known as born resorption-related-inflammatory cytokines and play important roles to stimulate OC differentiation and activity. Higher levels of prostaglandin E2 (PGE2) were found in the gingival crevicular fluid of teeth undergoing orthodontic movement. PGE2 is able to mediate the inflammatory response and to induce bone resorption through the stimulation of OC differentiation. In addition, the application of compressive force induces bone formation by increasing levels of PGE2 in OB. These reports suggest that PGE2 plays an important role in bone remodeling affecting bone resorption and formation via autocrine action. We recently reported that compressive force induces osteoclast differentiation by increasing M-CSF production and decreasing OPG production via PGE2 in OB.
     IL-17 is a kind of inflammatory cytokines.It originally was cloned from activated T cells (Thl7 cells) but is well known until resently. It shares little or no homology with other proteins and interleukins. At least six members of the family and five subtypes of receptors (IL-17Rs) are in the human and mouse genomes. IL-17 induced inflammation and affect osteoclastic resorption indirectly via osteoblasts. Some reports indicate that IL-17 shows a synergistic effect with IL-10 and TNF-a and induces production of IL-6 in fibroblasts. In OB, there were reported that IL-17 enhanced the synthesis of TNF-a-stimulated IL-6 synthesis and prostaglandin F2a-stimulated IL-6. IL-17 stimulates bone resorption by inducing RANKL expression. So we hypothesize that IL-17 involves in and mediates the process of alveolar bone resorption via OB.However, the expression of IL-17 in OB induced by orthodonic force has not been reported.
     Therefore, in the present study, we examined the effect of compressive force on the expression of IL-17 and their receptors in OB. We also examined the effect of different concertration of IL-17 on OC differentiation via OB and the indirect effect of IL-17 inducing OC formation, and investigate in vitro the roles of IL-17 inducing OCL formation via OB. This study will contribute to a better understanding of the molecular biology mechanism of orthodontic tooth movement and alveolar bone remodeling.
     Methods
     1. Measure the expression of mRNA and protein of IL-17s and their receptors in osteoblast during compressive force.
     MC3T3-E1 cells from a mouse calvarial cell line were used as osteoblast-like cells. MC3T3-E1 cells were maintained in a-minimal essential medium containing 10% (v/v) heat-inactivated fetal bovine serum at 37℃in a humidified atmosphere of 95% air and 5% CO2. MC3T3-E1 cells were placed into 96-well tissue plates at a density of 2.0 x 104 cells/cm2 and cultured for 7-10 days in a-MEM containing 50 mMβ-glycerophosphate and 50μg/ml ascorbic acid. The presence of mineralized nodules was determined by staining with alizarin red S. For being applied the compressive force, MC3T3-E1 cells were seeded in 100-mm cell culture dishes at a density of 2.0×104 cells/cm2 and incubated until 90% confluent. The cells were then compressed continuously using a uniform compression method similar to those described previously. The cells were subjected to 1.0,2.0 or 3.0 g/cm2 (98,196 or294 Pa, respectively) compressive force for 1,3,6,9,12, or 24 h. The cell growth was measured by Cell Counting Kit after being subjected to the compressive force. Then 1.0 and 2.0g/cm2 compressive force were chosen for experiment. The expression of mRNA of IL-17s, their receptors and IL-la, IL-6 was measured by Real time RT-PCR. IL-17A protein expression after 9h was measured by immunofluorescence and ELISA.
     MC3T3-E1 cells were seeded onto 100-mm cell tissue culture dishes at a density of 2 x 104cells/cm2. After overnight incubation, the cells were cultured for 6h,24h or 72 h in a-MEM with 0 or 10ng/ml IL-17A. The expression of mRNA of IL-17Rs was measured by Real time RT-PCR.
     2. Measure the effect of IL-17A on PGE2 and cytokines expression in osteoblast.
     MC3T3-E1 cells were seeded onto 100-mm cell tissue culture dishes at a density of 2 x 104cells/cm2. Then change the medium with 1% FBS for 12h after 80% confluent.
     (1) The cells were cultured for up to 72 h in a-MEM with 0,0.1,1.0, or lOng/ml IL-17A. The expression of mRNA of COX 1, COX2, RANKL, OPG, M-CSF, IL-la, IL-6, TNF-a was measured by Real time RT-PCR. The expression of protein of PGE2, RANKL, OPG, M-CSF, IL-la, IL-6, TNF-a was measured by ELISA.
     (2) The cells were cultured for up to 24 h in a-MEM with 0 or 1.5 ng/ml PGE2. The expression of mRNA of RANKL, OPG, M-CSF, IL-la, IL-6 andTNF-a was measured at 24h by RT-PCR.
     (3) The cells were cultured for up to 72 h in a-MEM with 0, or 10 ng/ml IL-17A alone or in the presence of 10μM celecoxib. The expression of protein of PGE2, RANKL, OPG, M-CSF, IL-la, IL-6, TNF-a was measured by ELISA.
     3. The effct of IL-17A on osteoclast-like cells differentiation via osteoblast.
     MC3T3-E1 cells were seeded onto 100-mm culture dishes at a density of 2 x 104 cells cm 2 and left overnight to settle. The cells were then cultured for up to 72 h inα-MEM with 0 or 10 ng mL-1 IL-17A. The cell culture medium was changed to a-MEM without IL-17A, and the cells cultured for a further 24 h. Each sample of culture medium collected was diluted to 30% and supplemented with 50 ng mL-1 of soluble RANKL to be used as conditioned medium. RAW264.7 cells were plated into 96-well microplates at a density of 1.25 x 104 cells cm-2 and left overnight to settle. Conditioned medium plus or minus IL-17A was then added to the cells for up to 10 days. Cells were then fixed and stained on days 3,5,7, and 10 of culture using a TRAP staining kit. RAW264.7 cells were plated into 6-well microplates at a density of 1.25×104 cells cm-2 and cultured for up to 10 days in the conditioned medium. The expression of mRNA and protein of cathepsin K, MMP-9 and CAII was measured by Real time RT-PCR and Western-blot respectively.
     MC3T3-E1 cells were seeded onto 100-mm culture dishes at a density of 2×104 cells cm-2 and left overnight to settle. The cells were then cultured for up to 72 h in the presence or absence of 10ng/ml IL-17A and/or 10μM celecoxib. The cell culture medium was changed to a-MEM without IL-17A and celecoxib, and the cells cultured for a further 24 h. Each sample of culture medium collected was diluted to 30% and supplemented with 50 ng mL-1 of soluble RANKL to be used as conditioned medium. RAW264.7 cells were plated into 96-well microplates or 6-well microplates at a density of 1.25×104 cells cm-2 and left overnight to settle. Conditioned medium was then added to the cells for 7 days. Osteoclastogenesis was measured by TRAP staining. The expression of protein of cathepsin K and MMP-9 was measured by Western-blot.
     Results
     1. The expression of mRNA and protein of IL-17s and their receptors in osteoblast during compressive force.
     1.1 The expressions of IL-17s mRNA with compressive force
     With or without compressive force, the expressions of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F mRNA increased gradually until 6 h of culture, and decreased gradually after 9 h. In addition, the expression of IL-17A was the highest among IL-17s with or without compressive force. The expressions of IL-17A, IL-17D, and IL-17E mRNA increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 after 3,6,9,12, and 24 h of culture. The expressions of IL-17B, IL-17C, and IL-17F increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 after 6,9,12, and 24 h of culture. The expressions of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F at 3,6, and 9 h of culture increased with the strength of the compressive force compared to the control, whereas the expression at 1.0 g/cm2 after 12 and 24 h of culture indicated a higher value than that at 2.0 g/cm2 compressive force at the same time points.
     1.2 The expression of lL-17Rs mRNA with compressive force
     With or without compressive force, the expressions of IL-17RA, IL-17RC, and IL-17RD mRNA increased gradually until 9 h of culture, and decreased gradually after 12 h. The expressions of IL-17RB and IL-17RE increased gradually until 6 h of culture, and decreased gradually after 9 h. In addition, the expression of IL-17RC mRNA was the highest among IL-17Rs with or without compressive force. The expressions of IL-17RA and IL-17RE increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 over 6-24 h of culture. The expressions of IL-17RC and IL-17RD increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 over 6-12 h of culture. The expression of IL-17RB increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 over 3-9 h of culture. The expressions of IL-17RA, IL-17RB, IL-17RC, IL-17RD and IL-17RE increased with the compressive force strength compared to the control at 3,6 and 9 h of culture, whereas the expressions at 1.0 g/cm2 and 12 and 24 h of culture indicated a higher value than that at 2.0 g/cm2 compressive force at the same time points, excluding IL-17RC at 24 h.
     1.3 The expression of lL-17A protein with compressive force
     IL-17A protein was not detected after 9h of compressive force stimulation in control group. Red fluorescence was detected in the cytoplasm of part of cells in the compressive force stimulating group.IL-17A protein level is 7.125pg/ml With 1.0 g/cm2 compressive force and 9.019pg/ml with 2.0 g/cm2 compressive force.
     1.4 The expression of IL-17 Rs protein with IL-17A stimulation
     MC3T3-E1 cells were cultured with or without 10 ng/ml IL-17A for up to 72 h. Compared to the control, the gene expression of IL-17RA, IL-17RB, IL-17RC, and IL-17RE increased significantly in the presence of 10 ng/ml IL-17A after culture for 6, 24, or 72 h, whereas the expression of IL-17RD was not affected.
     1.5 The expression of lL-1αand IL-6 mRNA with compressive force
     With or without compressive force, the expressions of IL-la and IL-6 mRNA increased gradually. The expressions of IL-la mRNA increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 after 6,9,12, and 24 h of culture(P<0.01). The expressions of IL-6 increased significantly compared to the control at 1.0 and/or 2.0 g/cm2 after 9,12, and 24 h of culture (P<0.05或P<0.01)
     2. The effect of IL-17A on PGE2 and cytokines expression in osteoblast.
     2.1 Effect of IL-17A on the expression of RANKL, M-CSF and OPG mRNA and protein
     Compared to the control, the expression of RANKL and M-CSF increased significantly in the presence of 0.1,1.0, and/or lOng/ml IL-17A after culture for 24 and/or 72 h. On the other hand, the expression of OPG decreased significantly in the presence of 0.1,1.0, and 10ng/ml IL-17A after 72 h. The expression increased by 1.3-1.8-fold on RANKL (P>0.05 or P>0.01), by 1.6-1.9-fold on M-CSF (P>0.01) and decreased by 0.8-0.9 on OPG (P>0.05).
     With the addition of IL-17A after 72h, the production of RANKL and M-CSF increased and OPG decreased significantly compared to control levels:the expression increased by 1.9-2.4-fold on RANKL (P>0.05), by 1.2-1.4-fold on M-CSF (P>0.05) and by 0.7-0.8 on OPG (P>0.05).
     2.2 Effect of IL-17A on the expression of inflammatory cytokines mRNA and protein
     In both the presence and absence of IL-17A, IL-la expression decreased gradually until 48 h of culture, whereas TNF-a expression increased gradually until 72 h of culture. The expression of IL-6 increased gradually until 24 h of culture and decreased after 48 h. With the addition of IL-17A, the production of each cytokine increased significantly compared to control levels at 6,12,24,48 and/or 72 h of culture:the 0xpression increased by 1.3-4.3-fold on IL-la (P<0.05 or P<0.01),1.3-2.5-fold on IL-6(P<0.05 or P<0.01) and 1.2-3.5-fold on TNF-a(P<0.05 or P<0.01).
     With the addition of IL-17A after 24h or 72h, the production of IL-1α, IL-6 and TNF-a increased significantly compared to control levels:the expression increased by 1.3-1.5-fold on IL-la (P<0.05 or P<0.01), by 2.1-2.6-fold on IL-6 (P<0.01) and by 1.5-fold on TNF-a (P<0.01).
     2.3Effect of IL-17A on the expression of COXs mRNA
     In both the presence and absence of IL-17A, COX-2 expression decreased gradually until 48 h of culture. With the addition of IL-17A, COX-2 expression increased significantly compared to control levels at 6,12 and 24 h:the expression increased by 1.2-2.4-fold. In contrast, COX-1 expression was not affected by the addition of IL-17A and was changed depending on the culture days.
     2.4 Effect of IL-17A and/or celecoxib on PGE2 production
     With the addition of IL-17A, PGE2 production at 6,24, and 72 h of culture increased by 1.06-2.19,1.57-2.05, and 2.75-3.50-fold, respectively, in a dose-dependent manner in the presence of IL-17A. When celecoxib was present in the culture media, the stimulatory effect of IL-17A on PGE2 production was inhibited since the levels of PGE2 production remained similar to those in the untreated controls. These data suggest that the indirect stimulatory effect of IL-17A on PGE2 levels is dependent on COX-2 activity.
     2.5 Effect of PGE2 on the production of osteoclast differention-related factors
     With the addition of PGE2 after 24h, the production of RANKL and M-CSF increased significantly compared to control levels (P<0.01), whereas the production of OPG decreased significantly compared to control levels (P<0.05).
     With the addition of PGE2 after 24h, the production of IL-la and IL-6 increased significantly compared to control levels (P<0.01), but the production of TNF-a was not affected.
     2.6 Effect of lL-17A and celecoxib on the expression of osteoclast differention-related factors protein
     When celecoxib was present in the culture with IL-17A, it appeared to block the stimulatory effect of IL-17A on the production of RANKL, M-CSF and OPG; the levels of these productions in cells treated with both IL-17A and celecoxib were similar to that in the controls without IL-17A.
     When celecoxib was present in the culture with IL-17 A, it appeared to block the stimulatory effect of IL-17A on the production of IL-1 a, IL-6; the levels of these productions in cells treated with both IL-17A and celecoxib were similar to that in the controls without IL-17A. In contrast, TNF-a was not affected by the addition of celecoxib.
     3. The indirect effect of IL-17A on osteoblast-like cells differentiation via osteoblast.
     3.1 Indirect effects of IL-17A on TRAP staining of osteoclast-like cells
     The multinucleated cell numbers increased after 3 days of culture. In both conditioned medium from IL-17A-treated and untreated cells, the number of TRAP-positive multinucleated cells increased gradually until day 7 of culture, and decreased from day 7 to 10. TRAP staining of osteoclast-like cells in the conditioned medium from IL-17-treated cells on days 5 and 7 of culture was stronger than the conditioned medium from untreated control cells. The number of TRAP-positive multinucleated cells increased significantly in the conditioned medium from IL-17A-treated cells compared to that of the controls on days 5 and 7 of culture, increasing by 1.45-and 1.34-fold, respectively.
     3.2 Indirect effects of IL-17A on cathepsin K, MMP-9, and CAⅡmRNA expression
     In both conditioned medium from IL-17A-treated and untreated MC3T3-E1 cells, the expression of cathepsin K and MMP-9 increased gradually until day 10 of culture, whereas CA II expression remained unchanged until day 7, eventually increasing on day 10. Cathepsin K expression in the conditioned medium from IL-17A-treated cells increased significantly by 1.50-and 1.40-fold, on days 7 and 10 of culture, respectively, compared with that of the conditioned medium from untreated control cells. In addition, MMP-9 expression in the medium from IL-17A-treated cells increased significantly by 1.31-fold compared to untreated cells on day 10 of culture. CA II expression remained unaffected by IL-17A treatment until day 10 of culture.
     3.3 Indirect effects of IL-17A on cathepsin K, MMP-9, and CAⅡprotein expression
     When the protein levels of cathepsin K and MMP-9 in the conditioned medium from IL-17A-treated cells were quantified, similar to the data observed from the mRNA analysis, their levels increased by 1.35-and 1.42-fold, respectively, compared with the untreated control cells. CAⅡexpression was again unaffected by indirect IL-17A treatment. Thus, the indirect effects of IL-17A on cathepsin K, MMP-9, and CAⅡmRNA expression levels were correlated with their protein levels in conditioned media.
     3.4 Indirect effect of IL-17A and/or celecoxib on TRAP staining of osteoclast-like cells
     TRAP staining of osteoclast-like cells in the conditioned medium from IL-17-treated MC3T3-E1 cells was significantly stronger than untreated cells. The addition of celecoxib to the IL-17A conditioned media reduced TRAP staining of osteoclast-like cells to levels identical to the untreated cells. In addition, celecoxib blocked the stimulatory indirect effect of IL-17A on the number of TRAP-positive multinucleated cells.
     3.5 Indirect effects of IL-17A and/or celecoxib on cathepsin K and MMP-9 mRNA expression
     The mRNA levels of both cathepsin K and MMP-9 in the conditioned medium from MC3T3-E1 cells treated with both IL-17A and celecoxib were similar to those in the controls lacking IL-17A. These data suggest that COX-2 inhibition by celecoxib inhibits the ability of IL-17A to stimulate cathepsin K and MMP-9 expression in the conditioned media.
     Conclusion
     1. MC3T3-E1 cells express six different IL-17 subtypes and five different IL-17R subtypes at the mRNA level and IL-17A at protein level.
     2. Compressive force induces the expression of IL-la,IL-6, IL-17s and IL-17Rs in these cells, which suggests that IL-17s may be involved in the alveolar bone resorption during orthodontic tooth movement.
     3. IL-17A increased the mRNA and protein expression of RANKL and M-CSF, decreased expression of OPG in dose-dependent way. IL-17A also stimulates the expression of bone resorption-related inflammatory cytokines. It indicates that IL-17A in vitro regulates bone resorption-related cytokines expression in osteoblast.
     4. IL-17A stimulates bone resorption-related cytokines expression through an autocrine mechanism involving celecoxib-blocked PGs by increasing COX-2 expression, mainly PGE2, in osteoblasts.
     5. IL-17A stimulates not only the differentiation of RAW264.7 cells into osteoclast-like cells but also the expression of cathepsin K and MMP-9 in osteoclast-like cells. It indicates that IL-17A in vitro indirectly stimulates the differentiation and function of osteoclast-like cells via osteoblasts.
     6. IL-17A stimulates osteoclast-like cells differentiation through an autocrine mechanism involving celecoxib-blocked PGs by increasing COX-2 expression, mainly PGE2, in osteoblasts.
     7. This study will contrubuteto a better understanding of molecule mechanism of bone remodeling during tooth movement.
引文
1. Teitelbaum SL. Bone resorption by osteoclast. Sceince 2000; 289:1504-1508.
    2. Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 1994; 56:357-366.
    3. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 2002; 8:147-159.
    4. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie M.T, Martin J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrin Rev 1999; 20:345-357.
    5. Lee SK, Lorenzo J. Cytokines regulating osteoclast formation and function. Curr Opin Rheumatol 2006; 18:411-8.
    6. Umeda S, Takahashi K, Naito M, Shultz LD, Takagi K. Neonatal changes of osteoclasts in osteopetrosis (op/op) mice defective in production of functional macrophage colony-stimulating factor (M-CSF) protein and effects of M-CSF on osteoclast development and differentiation. J Submicrosc Cytol Pathol 1996; 28: 13-26.
    7. Mizuno A, Amizuka N, Irie K, et al. Severeosteoporosis in mice lacking osteoclasogenesis inhibitory factor osteoprotegerin. Biochem Biophys Res Commun 1998; 247:610-5.
    8. Simonet W.S, Lacey D.L, Dunstan C.R, Kelley M, Chang M.-S, Luthy R, Nguyen H.Q, Wooden S, Bennett L, et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell 1997; 89:309-9.
    9. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 15:473:139-46.
    10. Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys Res Commun 1999; 256:449-455.
    11. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys 2008; 473:201-9.
    12. Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 2008; 116:89-97.
    13. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop.2006;129:469.el-69.e32.
    14. Jager A, Zhang, D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, Gotz W. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod 2005; 27:1-11.
    15. Basaran G, Ozer T, Kaya F.., Hamamci O. Interleukins 2,6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofac Orthop 2006;130:7.el-7.e6.
    16. Bletsa A, Berggreen E, Brudvik P. Interleukin-la and tumor necrosis factor-a expression during the early phases of orthodontic tooth movement in rats. Eur J Oral Sci 2006;114:423-429.
    17. Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, et al. Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch Oral Biol 2008; 53:488-496.
    18. Li H, Cuartas E, Cui W, Choi Y, Crawford TD, Ke HZ, Kobayashi KS, Flavell RA, Vignery A. IL-1 receptor-associated kinase M is a central regulator of osteoclast differentiation and activation. JExp Med 2005; 201:1169-1177.
    19. Rossa C, Ehmann K, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK signaling is required for IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. J Interferon Cytokine Res 2006; 26:719-729.
    20. Akaogi J, Nozaki T, Satoh M, Yamada H.Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy. Endocr Metab Immune Disord Drug Targets.2006; 6:383-394.
    21. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145: 3297-3303.
    22. Rozen N, Ish-Shalom S, Rachmiel A, Stein H, Lewinson D. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 2000; 26:469-74.
    23. Gao Y, Morita I, Maruo N, Kubota T, Murota S, Aso T.Expression of IL-6 receptor and GP130 in mouse bone marrow cells during osteoclast differentiation. Bone. 1998;22:487-93.
    24. Gardner CR. Comparison of morphological effects of PGE2 and TGFbeta on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Tissue Res 2007; 330:111-121.
    25. Lee K.J, Park Y.C, Yu H.S, Choi S.H, Yoo Y.J. Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am. J. Orthod. Dentofac. Orthop.2004; 125:168-177.
    26. Sanuki R, Mitsui N, Suzuki N, Koyama Y, Yamaguchi A, Isokawa K, Shimizu N, Maeno M. Effect of compressive force on the production of prostaglandin E2 and its receptors in osteoblastic Saos-2 cells. Connect Tiss Res 2007; 48:246-253.
    27. Rouvier E, Luciani M.F, Mattei M.G, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993;150:5445-5456.
    28. Yao Z, Timour M, Painter S, Fanslow W, Spriggs, M. Complete nucleotide sequence of the mouse CTLA8 gene. Gene 1996;168:223-225.
    29. Chan FK. Three is better than one:pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-107.
    30. Takahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Cli.Periodontol 2005; 32:369-374.
    31. Botero JE, Contreras A, Parra B. Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol Immunol 2008;23:291-298.
    32. Kramer JM, Gaffen SL. Interleukin-17:a new paradigm in inflammation, autoimmunity, and therapy. J Periodontol 2007; 78:1083-1093.
    33. Aggarwal S, Gurney AL. IL-17:prototype member of an emerging cytokine family. J Leukoc Biol 2002;71:1-8.
    34. Moseley, T.A., Haudenschild, D.R., Rose, L., Reddi, A.H. (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev.14:155-174.
    35. Latz E, Verma A, Visintin A, Gong M, Sirois C.M, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 2007; 8:772-779.
    36. Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol 2008; 38:2845-2854.
    37. Van Bezooijen R, Farih-Sips H.C, Papapoulos SE, Lowik CW. Interleukin-17:a new bone acting cytokine in vitro. J Bone Miner Res 1999;9:1513-1521.
    38. Bezerra MC, Carvalho JF, Prokopowitch AS, Pereira RM. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res 2005; 38:161-170.
    39. Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res 2002; 4: 281-9.
    40. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183:2593-603.
    41. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis.J Clin Invest 1999;103:1345-1352.
    42. Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B. Effect of interleukin-32gamma on differentiation of osteoclasts from CD14+ monocytes. Arthritis Rheum 2010; 62:515-523.
    43. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor a-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts:a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis
    Rheum 2001; 44:2176-2184.
    44. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB-and PI3-kinase/Aktdependent pathways. Arthritis Res 2004; 6: R120-128.
    45. Takahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Clin Periodontol 2005; 32:369-374.
    46. Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 2004; 91:1053-1061.
    47. Tokuda H, Kozawa O, Uematsu T. Interleukin (IL)-17 enhances prostaglandin F2a-stimulated IL-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2002; 66:427-433.
    1. Krishnan, V., Davidovitch, Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop 2006;129:469.el-469.e32.
    2. Lee, K.J., Park, Y.C., Yu, H.S., Choi, S.H., Yoo, Y.J. Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am. J. Orthod. Dentofac. Orthop 2004;125:168-177.
    3. Tuncer, B. B., Ozmerlc, N., Tuncer, C., Teoman, I., Cakilci, B., Yucel, A., Alpar, R., Baros, K. Levels of interleukin-8 during tooth movement. Angle Orthod 2004; 75:631-636.
    4. Jager, A., Zhang, D., Kawarizadeh, A., Tolba, R., Braumann, B., Lossdorfer, S., Gotz, W. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur. J. Orthod 2005; 27:1-11.
    5. Basaran, G., Ozer, T., Kaya, F.A., Hamamci, O. Interleukins 2,6, and 8 levels in human gingival sulcus during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop 2006; 130:7.el-7.e6.
    6. Bletsa, A., Berggreen, E., Brudvik, P. Interleukin-la and tumor necrosis factor-a expression during the early phases of orthodontic tooth movement in rats. Eur. J. Oral Sci 2006; 114:423-429.
    7. Rouvier, E., Luciani, M.F., Mattei, M.G, Denizot, F., Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol 1993; 150:5445-5456.
    8. Yao, Z., Timour, M., Painter, S., Fanslow, W., Spriggs, M. Complete nucleotide sequence of the mouse CTLA8 gene. Gene 1996; 168:223-225.
    9. Kramer, J.M., Gaffen, S.L. Interleukin-17:a new paradigm in inflammation, autoimmunity, and therapy. J. Periodontol 2007; 78:1083-1093.
    10. Aggarwal, S., Gurney, A.L. IL-17:prototype member of an emerging cytokine family. J. Leukoc. Biol 2002;71:1-8.
    11. Moseley, T.A., Haudenschild, D.R., Rose, L., Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14:155-174.
    12. Yao, Z., Fanslow, W., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau, M.R., Cohen, J.I., Spriggs, M.K. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3:811-821.
    13. Yao, Z., Spriggs, M.K., Derry, J.M., Strockbine, L., Park, L.S., VandenBos, T., Zappone, J.D., Painter, S.L., Armitage, R.J. Molecular characterization of the human interleukin (IL)-17 receptor. Cytokin 1997; e9:794-800.
    14. Chen, L., Wei, X.Q., Evans, B., Jiang, W., Aeschlimann, D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur. J. Immunol 2008; 38:2845-2854.
    15. Chan, F.K. Three is better than one:pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-107.
    16. Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C.M., Klein, D.C., Monks, B.G., McKnight, C.J., Lamphier, M.S., Duprex, W.P., Espevik, T., Golenbock, D.T. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol 2007; 8:772-779.
    17. Kuestner, R., Taft, D., Haran, A., Brandt, C., Brender, T., Lum, K., Harder, B., et al. Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J. Immunol 2007; 179:5462-5473.
    18. Lee, J., Ho, W.H., Maruoka, M., Corpuz, R.T., Baldwin, D.T., Foster, J.S., Goddard, A.D., Yansura, D.G., Vandren, R.L., Wood, W.I., Gurney, A.L. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem 2001; 276:1660-1664.
    19. Bettelli, E., Oukka, M., Kuchroo, V.K. T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol 2007; 8:345-350.
    20. Mori, H., Nishida, K., Ozaki, T., Inoue, H., Nakanishi, T. Isolation of a mRNA preferentially expressed in synoviocytes from rheumatoid arthritis that is identical with lumican, which encodes a collagen binding, extracellular matrix protein. J. Hard Tissue Biol 2008; 17:125-130.
    21. Van Bezooijen, R., Farih-Sips, H.C., Papapoulos, S.E., Lowik, C.W. Interleukin-17:a new bone acting cytokine in vitro. J. Bone Miner. Res 1999; 9: 1513-1521.
    22. Bezerra, M.C., Carvalho, J.F., Prokopowitch, A.S., Pereira, R.M. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz. J. Med. Biol. Res 2005; 38: 161-170.
    23. Takahashi, K., Azuma, T., Motohira, H., Kinane, D.F., Kitetsu, S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J. Clin. Periodontol 2005; 32:369-374.
    24. Botero, J.E., Contreras, A., Parra, B. Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol. Immunol 2008; 23:291-298.
    25. Koyama, Y., Mitsui, N., Suzuki, N., Yanagisawa, M., Sanuki, R., Isokawa, K., Shimizu, N., Maeno, M. Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch. Oral Biol 2008; 53:488-496.
    26. Mitsui, N., Suzuki, N., Maeno, M., Mayahara, K., Yanagisawa, M., Otsuka, K., Shimizu, N. Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E2 production appropriately. Life Sci 2005; 77:3168-3182.
    27. Mitsui, N., Suzuki, N., Maeno, M., Yanagisawa, M., Koyama, Y, Otsuka, K., Shimizu, N. Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci 2006; 78:2697-2706.
    28. Sanuki, R., Mitsui, N., Suzuki, N., Koyama, Y, Yamaguchi, A., Isokawa, K., Shimizu N, Maeno M. Effect of compressive force on the production of prostaglandin E2 and its receptors in osteoblastic Saos-2 cells. Connect. Tiss. Res 2007; 48:246-253.
    29. Sanuki, R., Shionome, C., Kuwabara, A., Mitsui, N., Koyama, Y, Suzuki, N., Zhang, F., Shimizu, N., Maeno, M. Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect. Tissue Res 2010; 51,150-158.
    30. Kanai, K., Nohara, H., Hanada, K. Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J. Jpn. Orthod. Soc 1992; 51:153-163.
    31.Watanabe, K., Saito, I., Hanada, K. Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1. J. Jpn. Orthod. Soc 1998; 57:173-179.
    32. Kanzaki, H., Chiba, M., Shimizu, Y., Mitani, H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res 2002; 17:210-220.
    33. Ginzinger, DG. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream.p Hematol 2002; 30:503-512.
    34. Lehmann, U., Kreipe, H. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 2001; 25:409-418.
    35. Sudo, H., Kodama, H., Amagai, Y., Yamamoto, S., Kasai, S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol 1983; 96:191-198.
    36. Fujita, T., Izumo, N., Fukuyama, R., Meguro, T., Nakamura, H., Kohno, T., Koida, M. Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfal in bone cells. Biochem. Biophys. Res. Commun 2001; 280:348-352.
    37. Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S., Nanes, M.S. Expression of the osteoblast differentiation factor RUNX2 (Cbfal/AML3/Pebp2αA) is inhibited by tumor necrosis factor-a. J. Biol. Chem 2002; 277:2695-2701.
    38. Ozawa, H., Imamum, K., Abe, E., et al. Effect of a continuously applied compressive pressure on mouse osteoblast-like cells (MC3T3-E1) in vitr. J cell Physiol.1990; 142:177-185.
    39. Fitzgerald, J., Hughes-Fulford, M. Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. FASEB J 1999; 13:553-557.
    40.张建兴,黄生高,钟孝欢,熊培颖.人牙周膜细胞体外培养和机械压力模型构建.口腔医学研究.2006;22:38-42.
    41. Venkatachalam, K., Mummidi, S., Cortez, D.M., Prabhu, S.D., Valente, A.J., Chandrasekar, B. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol 2008; 294:H2078-H2087.
    42. Kokubu, T., Haudenschild, D.R., Moseley, T.A., Rose, L., Reddi, A.H. Immunolocalization of IL-17A, IL-17B, and their receptors in chondrocytes during fracture healing. J. Histochem. Cytochem 2008; 56:89-95.
    43. Saban, M.R., Simpson, C., Davis, C., Wallis, G, Knowlton, N., Frank, M.B., Centola, M., Gallucci, R.M., Saban, R. Discriminators of mouse bladder response to intravesical Bacillus Calmette-Guerin (BCG). BMC Immunol 2007;8:6.
    44. Zaph, C., Du, Y., Saenz, S.A., Nair, M.G, Perrigoue, J.G, Taylor, B.C., Troy, A.E., Kobuley, D.E., Kastelein, R.A., Cua, D.J., Yu, Y, Artis, D. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med 2008; 205:2191-2198.
    1. Takahashi, N., Udagawa, N., Suda, T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun 1999; 256:449-455.
    2. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie M.T, Martin J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrin Rev 1999; 20:345-357.
    3. Teitelbaum SL. Bone resorption by osteoclast. Sceince 2000; 289:1504-1508.
    4. Mizuno A, Amizuka N, Irie K, et al. Severeosteoporosis in mice lacking osteoclasogenesis inhibitory factor osteoprotegerin. Biochem Biophys Res Commun 1998; 247:610-5.
    5. Simonet W.S, Lacey D.L, Dunstan C.R, Kelley M, Chang M.-S, Luthy R, Nguyen H.Q, Wooden S, Bennett L, et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell 1997; 89:309-9.
    6. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 15:473:139-46.
    7. Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys 2008; 473:201-9.
    8. Lee KJ, Park YC, Yu HS, Choi SH, Yoo YJ. Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am J Orthod Dentofac Orthop 2004; 125:168-177.
    9. Tuncer BB, Ozmerlc N, Tuncer C, Teoman I, Cakilci B, Yucel A, et al. Levels of interleukin-8 during tooth movement. Angle Orthod 2004; 75:631-636.
    10. Jager A, Zhang D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod 2005;27:1-11.
    11. Basaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2,6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofac Orthop 2006;130:7.e1-e6.
    12. Bletsa A, Berggreen E, Brudvik P. Interleukin-1α and tumor necrosis factor-a expression during the early phases of orthodontic tooth movement in rats. Eur J Oral Sci 2006;114:423-429.
    13. Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, et al. Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch Oral Biol 2008; 53:488-496.
    14. Li H, Cuartas E, Cui W, Choi Y, Crawford TD, Ke HZ, Kobayashi KS, Flavell RA, Vignery A. IL-1 receptor-associated kinase M is a central regulator of osteoclast differentiation and activation. J Exp Med 2005; 201:1169-1177.
    15. Rossa C, Ehmann K, Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK signaling is required for IL-1 beta and TNF-alpha-induced RANKL expression in bone marrow stromal cells. J Interferon Cytokine Res 2006; 26:719-729.
    16. Akaogi J, Nozaki T, Satoh M, Yamada H. Role of PGE2 and EP receptors in the pathogenesis of rheumatoid arthritis and as a novel therapeutic strategy. Endocr Metab Immune Disord Drug Targets.2006; 6:383-394.
    17. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145: 3297-3303.
    18. Rozen N, Ish-Shalom S, Rachmiel A, Stein H, Lewinson D. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 2000; 26:469-74.
    19. Gao Y, Morita I, Maruo N, Kubota T, Murota S, Aso T.Expression of IL-6 receptor and GP130 in mouse bone marrow cells during osteoclast differentiation. Bone. 1998;22:487-93.
    20. Gardner CR. Comparison of morphological effects of PGE2 and TGFbeta on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Tissue Res 2007; 330:111-121.
    21. Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2009; 19:192-198.
    22. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, et al. Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 2000;141:2054-2061.
    23. Suda K, Udagawa N, Sato N, Takami M, Itoh K, Woo JT, et al. Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol 2004; 172: 2504-2510.
    24. Millet I, McCarthy TL, Vignery A. Regulation of interleukin-6 production by prostaglandin E2 in fetal rat osteoblasts:role of protein kinase A signaling pathway. J Bone Miner Res 1998;13:1092-10100.
    25. Park YG, Kang SK, Noh SH, Park KK, Chang YC, Lee YC, et al. PGE2 induces IL-lb gene expression in mouse osteoblasts through a cAMP-PKA signaling pathway. Int Immunopharmacol 2004;4:779-789.
    26. Dudic A, Kiliaridis S, Mombelli A, Giannopoulou C. Composition changes in gingival crevicular fluid during orthodontic tooth movement:comparisons between tension and compression sides. Eur J Oral Sci 2006; 114:416-422.
    27. Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 2008; 116:89-97.
    28. Sanuki, R., Shionome, C., Kuwabara, A., Mitsui, N., Koyama, Y, Suzuki, N., Zhang, F., Shimizu, N., Maeno, M. Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect. Tissue Res.2010; 51:150-158.
    29. Shishodia S, Koul D, Aggarwal BB. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J Immunol.2004; 173: 2011-2022.
    30. Igarashi K, Woo JT, Stern PH. Effects of a selective cyclooxygenase-2 inhibitor, celecoxib, on bone resorption and osteoclastgenesis in vitro. Biochem Pharmacol. 2002; 63:523-532.
    31. Im GI, Kwon BC, Lee KB. The effect of COX-2 inhibitors on periprosthetic osteolysis. Biomaterials.2004;25:269-275.
    32. Ono K, Akatsu T, Murakami T, et al. Involvement of cyclooxygenase-2 in osteoclast formation and bone destruction in bone metastasis of mammary carcinoma cell lines. J Bone Miner Res.2002; 17:774-81.
    33. Zhang X, Morham SG, Langenbach R, et al. Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res. 2001;16:660-70.
    34. Tsuboi H, Nampe A, Matsui Y, et al. Celecoxib prevents juxtaarticular osteopenia and growth plate destruction adjacent to inflamed joints in rats with collagen-induced arthritis. Mod Rheumatol.2007;17:115-22.
    35. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993; 150:5445-5456.
    36. Yao Z, Timour M, Painter S, Fanslow W, Spriggs M. Complete nucleotide sequence of the mouse CTLA8 gene. Gene 1996; 168:223-225.
    37. Kramer JM, Gaffen SL. Interleukin-17:A new paradigm in inflammation, autoimmunity, and therapy. J Periodontol 2007; 78:1083-1093.
    38. Chan FK. Three is better than one:pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-107.
    39. Van Bezooijen R, Farih-Sips HC, Papapoulos SE, Lowik CW. Interleukin-17:a new bone acting cytokine in vitro. J Bone Miner Res 1999; 9:1513-1521.
    40. Bezerra MC, Carvalho JF, Prokopowitch AS, Pereira RM. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res 2005; 38:161-170.
    41. Udagawa N, Kotake S, Kamatani N, Takahashi N, Suda T. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res 2002; 4: 281-9.
    42. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. JExp Med 1996;183:2593-603.
    43. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999;103:1345-1352.
    44. Kim YG, Lee CK, Oh JS, Kim SH, Kim KA, Yoo B. Effect of interleukin-32gamma on differentiation of osteoclasts from CD 14+ monocytes. Arthritis Rheum 2010; 62:515-523.
    45. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor a-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts:a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis Rheum 2001; 44:2176-2184.
    46. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB-and PI3-kinase/Aktdependent pathways. Arthritis Res 2004; 6: R120-128.
    47. Takahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Clin Periodontol 2005; 32:369-374.
    48. Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 2004; 91:1053-1061.
    49. Tokuda H, Kozawa O, Uematsu T. Interleukin (IL)-17 enhances prostaglandin F2a-stimulated IL-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2002; 66:427-433.
    50. Pinto LG, Cunha TM, Vieira SM, Lemos HP, Verri WA Jr, Cunha FQ, Ferreira SH. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 2010; 48:247-56.
    51. Chabane N, Zayed N, Afif H, Mfuna-Endam L, Benderdour M, Boileau C, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. Histone deacetylase inhibitors suppress interleukin-1 beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes.Osteoarthritis Cartilage 2008;16:1267-74.
    52. Kanda N, Koike S, Watanabe S. IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J Allergy Clin Immunol 2005;116:1144-50.
    53. Watanabe Y, Namba A, Honda K, Aida Y, Matsumura H, Shimizu O, et al. IL-1β stimulates the expression of prostaglandin receptor EP4 in human chondrocytes by increasing production of prostaglandin E2. Connect Tissue Res 2009; 50:186-193.
    54. Lubberts E, van den Bersselaar L, Oppers-Walgreen B, Schwarzenberger P, Coenen-de Roo CJ, Kolls JK, Joosten LA, van den Berg WB. IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J Immunol 2003; 170: 2655-2662.
    55. Chabaud M, Lubberts E, Joosten L, van Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001;3:168-177.
    56. Jovanovic DV, Martel-Pelletier J, Di Battista JA, Mineau F, Jolicoeur FC, Benderdour M, et al. Stimulation of 92-kd gelatinase (matrix metalloproteinase 9) production by interleukin-17 in human monocyte/macrophages:a possible role in rheumatoid arthritis. Arthritis Rheum 2000;43:1134-1144.
    57. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-1β and TNF-a, by human macrophages. J Immunol 1998;160:3513-21.
    58. Chabaud M, Fossiez F, Taupin JL, Miossec P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J Immunol 1998;161:409-14.
    59. Granet C, Miossec P. Combination of the pro-inflammatory cytokines IL-1, TNF-alpha and IL-17 leads to enhanced expression and additional recruitment of AP-1 family members, Egr-1 and NF-kappaB in osteoblast-like cells. Cytokine 2004; 26:169-177.
    60. Leonaviciene L, Bradunaite R, Astrauskas V. Proinflammatory cytokine interleukin-17 and its role in pathogenesis of rheumatoid arthritis. Medicina (Kaunas).2004; 40:419-422.
    61. Tokuda H, Kozawa O, Uematsu T. Interleukin (IL)-17 enhances prostaglandin F2a-stimulated IL-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2002; 66:427-433.
    62. Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 2004; 91:1053-1061.
    63. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145:3297-3303.
    64. Rozen N, Ish-Shalom S, Rachmiel A, Stein H, Lewinson D. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 2000; 26:469-74.
    65. Alhashimi N, Frithiof L, Brudvik P, Bakheit M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop 2001; 119:307-312.
    66. Fletcher BS, Kujubu DA, Perrin DM, et al. Structure of the mitogen-inducible TIS10 gene and demonstration that TIS10-encoded protein is a functional prostaglandin G/H synthase. JBiol Chem 1992;267:4338-44.
    67. Kujubu DA, Fletcher BS, Varnum BC. TIS 10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cell, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 1991;266:12866-72.
    68. Vane J. Towards a better aspirin. Nature 1994;367:215-6.
    69. Xie WL, Chipman JG, Robertson DL, et al. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 1991;88:2692-6.
    70. Okada Y, Pilbeam C, Raisz L, et al. Role of cyclooxygenase-2 in bone resorption. J UOEH 2003,25:185-95.
    71. Khanna IK, Weier RM, Yu Y.1,2-Diarylimidazoles as potent and selective inhibitors of cyclooxygenase-2. J Med Chem 1997;40:1619-33.
    72. Khanna IK, Weier RM, Yu Y, et al.1,2-Diarylimidazoles as potent, cyclooxygenase-2 selective, and orally active anti-inflammatory agents. J Med Chem 1997;40:1634-47.
    73. Penning TD, Talley JJ, Bertenshaw SR, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors:identification of 4-[5-(4-methylphenyl)-3-trifluoromethyl-1 H-pyrazol-1-yl] benzene sulfonamide (SC-58635, celecoxib). J Med Chem 1997;40:1347-65.
    74. Zhang Y, Shaffer A, Portanova J, et al. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. J Pharmacol Exp Ther 1997;283:1069-75.
    75. Stamp LK, Cleland LG, James MJ.Upregulation of synoviocyte COX-2 through interactions with T lymphocytes:role of interleukin 17 and tumor necrosis factor-alpha. J Rheumatol.2004 Jul;31(7):1246-54.
    76. Klein DC, Raisz LG. Prostaglandins:stimulation of bone resorption in tissue culture. Endocrinology 1970; 86:1436-1440.
    77. Hikiji H, Takato T, Shimizu T, Ishii S.The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-126.
    78. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, et al.Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology 2000; 141:2054-61
    79. Kanematsu M, Sato T, Takai H, Watanabe K, Ikeda K, Yamada Y. Prostaglandin E2 induces expression of receptor activator of nuclear factor-kB ligand/osteoprotegerin ligand on pre-B cells:implications for accelerated osteoclastogenesis in estrogen deficiency. J Bone Miner Res 2000:15:1321-9.
    80. Brandstrom H, Bjorkman T, Ljunggren O. Regulation of osteoprotegerin secretion from primary cultures of human bone marrow stromal cells. Biochem Biophys Res Commun 2001;280:831-5.
    81. Delaisse JM, Eeckhout Y, Vaes G. Bone-resorbing agents affect the production and distribution of procollagenase as well as the activity of collagenase in bone tissue. Endocrinology 1988;123:264-276.
    82. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-I and tumor necrosis factor stimulate the formation of human osteoclastlike cells in vitro. J Bone Miner Res 1989; 4:113-118.
    83. Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin I stimulation of bone resorption by rat osteoclasts. J Exp Med 1986;164:104-112.
    84. Akatsu T, Takahashi N, Udagawa N, Imamura K, Yamaguchi A, Sato K, Nagata N, Suda T.Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res 1991; 6:183-189.
    85. Nishihara T, Ishihara Y, Noguchi T, Koga T. Membrane IL-1 induces bone resorption in organ culture. J Immunol 1989; 143:1881-1886.
    86. Dewhirst FE, Ago JM, Peros WJ, Stashenko P. Synergism between parathyroid hormone and interleukin 1 in stimulating bone resorption in organ culture. J Bone Miner Res 1987; 2:127-134.
    87. Takahashi T, Uehara H, Bando Y, Izumi K. Soluble EP2 neutralizes prostaglandin E2-induced cell signaling and inhibits osteolytic tumor growth. Mol Cancer Ther 2008; 7:2807-16.
    88. Liu XH, Kirschenbaum A, Yao S, Levine AC.Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N YAcad Sci 2006; 1068:225-33.
    1. Scheven BA, Visser JW, Nijweide PJ. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haematopoietic stem cell population. Nature 1986;321:79-81.
    2. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR. Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 1984; 99:471-480.
    3. Yavropoulou MP, Yovos JG..Osteoclastogenesis-current knowledge and future perspectives. J Musculoskelet Neuronal Interact 2008; 8:204-216.
    4. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie M.T, Martin J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrin Rev 1999; 20:345-357.
    5. Fujisaki K, Tanabe N, Suzuki N, Kawato T, Takeichi O, Tsuzukibashi O, Makimura M, Ito K, Maeno M. Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life Sci 2007; 80:1311-1318.
    6. Kitami S, Tanaka H, Kawato T, Tanabe N, Katono-Tani T, Zhang F, Suzuki N, Yonehara Y, Maeno M. IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie.2010; 92:398-404.
    7. Yu X, Huang Y, Collin-Osdoby P, Osdoby P. Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 2003; 18: 1404-1418.
    8. Riihonen R, Supuran CT, Parkkila S, Pastorekova S, Vaananen HK, Laitala-Leinonen T. Membrane-bound carbonic anhydrases in osteoclasts. Bone 2007; 40:1021-1031.
    9. Van bezooijen RL, Farih-Sips HC, Papapoulos SE, Lowik CW. Interleukin-17:A new bone acting cytokine in vitro. JBone Miner Res 1999;14:1513-21.
    10. Bezerra MC, Carvalho JF, Prokopowitsch AS, Pereira RM. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz JMed Biol Res 2005; 38:161-70.
    11. Chan FK. Three is better than one:pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-107.
    12. Lubberts E. Th17 cytokines and arthritis. Semin Immunopathol 2010; 32:43-53.
    13. Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, Coenen-de Roo CJ, Joosten LA, van den Berg WB. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 2004; 50:650-659.
    14. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999;103:1345-1352.
    15. Chambers TJ, Revell PA, Fuller K, Athanasou NA. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci 1984; 66:383-399.
    16. De Grooth R, Mieremet RH, Kawilarang-De Haas EW, Nijweide PJ. Murine macrophage precursor cell lines are unable to differentiate into osteoclasts:a possible implication for osteoclast ontogeny. Int J Exp Pathol 1994;75:265-75.
    17. Miyamoto A, Kunisada T, Hemmi H, Yamane T, Yasuda H, Miyake K, Yamazaki H, Hayashi SI. Establishment and characterization of an immortal macrophage-like cell line inducible to differentiate to osteoclasts. Biochem Biophys Res Commun 1998; 242:703-9.
    18. Kawase T, Oguro A, Orikasa M, Burns DM. Characteristics of NaF-induced differentiation of HL-60 cells. J Bone Miner Res 1996;11:1676-1687.
    19. Takeshita S, Kaji K, Kudo A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts J Bone Miner Res 2000; 15:1477-1488.
    20. Takeshita S, Kaji K, Kudo A.Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 2000; 15:1477-88.
    21. Jeschke M, Brandi ML, Susa M. Expression of Src family kinases and their putative substrates in the human preosteoclastic cell line FLG 29.1. J Bone Miner Res 1998;13:1880-1889.
    22. Kim MH, Ryu SY, Choi JS, Min YK, Kim SH. Saurolactam inhibits osteoclast differentiation and stimulates apoptosis of mature osteoclasts.J Cell Physiol 2009;221:618-628.
    23. Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S, Rokutan K. NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 2009; 56:33-41.
    24. Makihira S, Mine Y, Kosaka E, Nikawa H. Titanium surface roughness accelerates RANKL-dependent differentiation in the osteoclast precursor cell line, RAW264.7. Dent Mater J 2007;26:739-45.
    25. You L, Temiyasathit S, Lee P, Kim CH, Tummala P, Yao W, Kingery W, Malone AM, Kwon RY, Jacobs CR. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone 2008;42:172-9.
    26. Sanuki, R., Shionome, C., Kuwabara, A., Mitsui, N., Koyama, Y., Suzuki, N., Zhang, F., Shimizu, N., Maeno, M. Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect. Tissue Res.2010; 51:150-158.
    27. Xu J, Wang C, Han R, et al。Evidence of reciprocal regulation between the high extracelular calcium and RANKL signal tran sduction pathways in RAW cell derived osteoclasts. J Cel Physiol 2005; 202:554-562。
    28. Kim MH, Shim KS, Kim SH. Inhibitory effect of cantharidin on osteoclast differentiation and bone resorption. Arch Pharm Res 2010;33:457-462.
    29. Lee JW, Ahn JY, Hasegawa S, Cha BY, Yonezawa T, Nagai K, Seo HJ, Jeon WB, Woo JT.Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology. 2009;61:125-34.
    30. Hirata K, Taki H, Shinoda K, Hounoki H, Miyahara T, Tobe K, Ogawa H, Mori H, Sugiyama E. Inhibition of tumor progression locus 2 protein kinase suppresses receptor activator of nuclear factor-kappaB ligand-induced osteoclastogenesis through down-regulation of the c-Fos and nuclear factor of activated T cells c1 genes. Biol Pharm Bull 2010; 33:133-137.
    31. Ang ES, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH, Joyce DA, Zheng MH, Xu J. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J Cell Physiol 2009; 221:642-9.
    32. Yago T, Nanke Y, Kawamoto M, Furuya T, Kobashigawa T, Kamatani N, Kotake S.IL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats. Arthritis Res Ther 2007; 9:R96.
    1. Krishnan, V., Davidovitch, Z. (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop. 129:469.el-469.e32.
    2. Lee, K.J., Park, Y.C., Yu, H.S., Choi, S.H., Yoo, Y.J. (2004) Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am. J. Orthod. Dentofac. Orthop. 125:168-177.
    3. Tuncer, B.B., Ozmerlc, N., Tuncer, C., Teoman, I., Cakilci, B., Yucel, A., Alpar, R., Baros, K. (2004) Levels of interleukin-8 during tooth movement. Angle Orthod.75:631-636.
    4. Jager, A., Zhang, D., Kawarizadeh, A., Tolba, R., Braumann, B., Lossdorfer, S., Gotz, W. (2005) Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur. J. Orthod.27:1-11.
    5. Basaran, G.., Ozer, T., Kaya, F.A., Hamamci, O. (2006) Interleukins 2,6, and 8 levels in human gingival sulcus during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop.130:7.e1-7.e6.
    6. Bletsa, A., Berggreen, E., Brudvik, P. (2006) Interleukin-1α and tumor necrosis factor-a expression during the early phases of orthodontic tooth movement in rats. Eur. J. Oral Sci.114:423-429.
    7. Takahashi, N., Udagawa, N., Suda, T. (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun.256:449-455.
    8. Rouvier, E., Luciani, M.F., Mattei, M.G., Denizot, F., Golstein, P. (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150:5445-5456.
    9. Yao, Z., Timour, M., Painter, S., Fanslow, W., Spriggs, M. (1996) Complete nucleotide sequence of the mouse CTLA8 gene. Gene 168:223-225.
    10. Kramer, J.M., Gaff en, S.L. (2007) Interleukin-17:a new paradigm in inflammation, autoimmunity, and therapy. J. Periodontol.78:1083-1093.
    11. Aggarwal, S., Gurney, A.L. (2002) IL-17:prototype member of an emerging cytokine family. J. Leukoc. Biol.71:1-8.
    12. Moseley, T.A., Haudenschild, D.R., Rose, L., Reddi, A.H. (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev.14:155-174.
    13. Yao, Z., Fanslow, W., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau, M.R., Cohen, J.I., Spriggs, M.K. (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811-821.
    14. Yao, Z., Spriggs, M.K., Derry, J.M., Strockbine, L., Park, L.S., VandenBos, T., Zappone, J.D., Painter, S.L., Armitage, R.J. (1997) Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 9:794-800.
    15. Chen, L., Wei, X.Q., Evans, B., Jiang, W., Aeschlimann, D. (2008) IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur. J. Immunol. 38:2845-2854.
    16. Chan, F.K. (2007) Three is better than one: pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37:101-107.
    17. Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C.M., Klein, D.C., Monks, B.G., McKnight, C.J., Lamphier, M.S., Duprex, W.P., Espevik, T., Golenbock, D.T. (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8:772-779.
    18. Kuestner, R., Taft, D., Haran, A., Brandt, C., Brender, T., Lum, K., Harder, B., Okada, S., Ostrander, C.D., Kleindler, J.L., Aujula, S.J., Reardon, B., Moore, M., Shea, P., Schreckhise, R., Bukowski, T.R., Presnell, S., Guerra-Lewis, P., Parrish-Novak, J., Ellsworth, J.L., Jaspers, S., Lewis, K.E., Appleby, M., Kolls, J.K., Rixon, M., West, J.W., Gaz, Z., Levin, S.D. (2007) Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J. Immunol. 179:5462-5473.
    19. Lee, J., Ho, W.H., Maruoka, M., Corpuz, R.T., Baldwin, D.T., Foster, J.S., Goddard, A.D., Yansura, D.G, Vandren, R.L., Wood, W.I., Gurney, A.L. (2001) IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem.276:1660-1664.
    20. Venkatachalam, K., Mummidi, S., Cortez, D.M., Prabhu, S.D., Valente, A.J., Chandrasekar, B. (2008) Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol.294:H2078-H2087.
    21.Bettelli, E., Oukka, M., Kuchroo, V.K. (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol.8:345-350.
    22. Mori, H., Nishida, K., Ozaki, T., Inoue, H., Nakanishi, T. (2008) Isolation of a mRNA preferentially expressed in synoviocytes from rheumatoid arthritis that is identical with lumican, which encodes a collagen binding, extracellular matrix protein. J. Hard Tissue Biol.17:125-130.
    23. Van Bezooijen, R., Farih-Sips, H.C., Papapoulos, S.E., Lowik, C.W. (1999) Interleukin-17:a new bone acting cytokine in vitro. J. Bone Miner. Res. 9:1513-1521.
    24. Bezerra, M.C., Carvalho, J.F., Prokopowitch, A.S., Pereira, R.M. (2005) RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz. J. Med. Biol. Res. 38:161-170.
    25. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Rev.20:345-357.
    26. Koyama, Y., Mitsui, N., Suzuki, N., Yanagisawa, M., Sanuki, R., Isokawa, K., Shimizu, N., Maeno, M. (2008) Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch. Oral Biol.53:488-496.
    27. Takahashi, K., Azuma, T., Motohira, H., Kinane, D.F., Kitetsu, S. (2005) The potential role of interleukin-17 in the immunopathology of periodontal disease. J. Clin. Periodontol.32:369-374.
    28. Botero, J.E., Contreras, A., Parra, B. (2008) Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol. Immunol.23:291-298.
    29. Sudo, H., Kodama, H., Amagai, Y, Yamamoto, S., Kasai, S. (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol.96:191-198.
    30. Fujita, T., Izumo, N., Fukuyama, R., Meguro, T., Nakamura, H., Kohno, T., Koida, M. (2001) Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfal in bone cells. Biochem. Biophys. Res. Commun.280:348-352.
    31. Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S., Nanes, M.S. (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfal/AML3/Pebp2aA) is inhibited by tumor necrosis factor-a. J. Biol. Chem.277:2695-2701.
    32. Williams, D.C., Boder, GB., Toomey, R.E., Paul, D.C., Hillman, Jr. C.C., King, K.L., Van Flank, R.M., Johnston, Jr. C.C. (1980) Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif. Tissue Int.30:233-246.
    33. Mitsui, N., Suzuki, N., Maeno, M., Mayahara, K., Yanagisawa, M., Otsuka, K., Shimizu, N. (2005) Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E2 production appropriately. Life Sci. 77:3168-3182.
    34. Mitsui, N., Suzuki, N., Maeno, M., Yanagisawa, M., Koyama, Y, Otsuka, K., Shimizu, N. (2006) Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci. 78:2697-2706.
    35. Sanuki, R., Mitsui, N., Suzuki, N., Koyama, Y, Yamaguchi, A., Isokawa, K., Shimizu N, Maeno M. (2007) Effect of compressive force on the production of prostaglandin E2 and its receptors in osteoblastic Saos-2 cells. Connect. Tiss. Res. 48:246-253.
    36. Kanai, K., Nohara, H., Hanada, K. (1992) Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J. Jpn. Orthod. Soc. 51:153-163.
    37. Watanabe, K., Saito, I., Hanada, K. (1998) Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1. J. Jpn. Orthod. Soc.57:173-179.
    38. Kanzaki, H., Chiba, M., Shimizu, Y., Mitani, H. (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res. 17:210-220.
    39. Fujisaki, K., Tanabe, N., Suzuki, N., Kawato, T., Takeichi,O., Tsuzukibashi,O., Makimura, M., Ito, K. and Maeno, M. (2007) Receptor activator of NF-kB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life. Sci. 80:1311-1318.
    40. Denlinger, L.C., Fisette, P.L., Garis, K.A., Kwon, G, Vazquez-Torres, A., Simon, A.D., Nguyen, B., Proctor, R.A., Bertics, P.J. and Corbett, JA. (1996) Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J. Biol. Chem.271:337-342.
    41.Kokubu, T., Haudenschild, D.R., Moseley, T.A., Rose, L., Reddi, A.H. (2008) Immunolocalization of IL-17A, IL-17B, and their receptors in chondrocytes during fracture healing. J. Histochem. Cytochem.56:89-95.
    42. Saban, M.R., Simpson, C., Davis, C., Wallis, G., Knowlton, N., Frank, M.B., Centola, M., Gallucci, R.M., Saban, R. (2007) Discriminators of mouse bladder response to intravesical Bacillus Calmette-Guerin (BCG). BMC Immunol. 8:6.
    43. Zaph, C., Du, Y., Saenz, S.A., Nair, M.G, Perrigoue, J.G., Taylor, B.C., Troy, A.E., Kobuley, D.E., Kastelein, R.A., Cua, D.J., Yu, Y, Artis, D. (2008) Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med.205:2191-2198.
    44. Sanuki, R., Shionome, C, Kuwabara, A., Mitsui, N., Koyama, Y, Suzuki, N., Zhang, F., Shimizu, N., Maeno, M. (2010) Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect. Tissue Res.51,150-158.
    45. Tanabe, N., Maeno, M., Suzuki, N., Fujisaki K., Tanaka, H., Ogiso, B., Ito, K. (2005) IL-la stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci.77,615-620.
    1. Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofac Orthop 2006; 129:469.e1-e32.
    2. Lee KJ, Park YC, Yu HS, Choi SH, Yoo YJ. Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am J Orthod Dentofac Orthop 2004; 125:168-177.
    3. Tuncer BB, Ozmerlc N, Tuncer C, Teoman I, Cakilci B, Yucel A, et al. Levels of interleukin-8 during tooth movement. Angle Orthod 2004; 75:631-636.
    4. Jager A, Zhang D, Kawarizadeh A, Tolba R, Braumann B, Lossdorfer S, et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod 2005; 27:1-11.
    5. Basaran G, Ozer T, Kaya FA, Hamamci O. Interleukins 2,6, and 8 levels in human gingival sulcus during orthodontic treatment. Am J Orthod Dentofac Orthop 2006; 130:7.e1-e6.
    6. Bletsa A, Berggreen E, Brudvik P. Interleukin-1α and tumor necrosis factor-a expression during the early phases of orthodontic tooth movement in rats. Eur J Oral Sci 2006; 114:423-429.
    7. Karst M, Gorny G, Galvin RJ, Oursler MJ. Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation. J Cell Physiol 2004; 200:99-106.
    8. Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, et al. Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch Oral Biol 2008; 53:488-496.
    9. Dudic A, Kiliaridis S, Mombelli A, Giannopoulou C. Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur J Oral Sci 2006; 114:416-422.
    10. Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci 2008; 116:89-97.
    11. Gardner CR. Comparison of morphological effects of PGE2 and TGFbeta on osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures. Cell Tissue Res 2007; 330:111-121.
    12. Kawashima M, Fujikawa Y, Itonaga I, Takita C, Tsumura H. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol 2009; 19:192-198.
    13. Sanuki R, Shionome C, Kuwabara A, Mitsui N, Koyama Y, Suzuki N, et al. Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect Tissue Res 2009; in press.
    14. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 1993; 150:5445-5456.
    15. Yao Z, Timour M, Painter S, Fanslow W, Spriggs M. Complete nucleotide sequence of the mouse CTLA8 gene. Gene 1996; 168:223-225.
    16. Kramer JM, Gaffen SL. Interleukin-17:A new paradigm in inflammation, autoimmunity, and therapy. J Periodontol 2007; 78:1083-1093.
    17. Aggarwal S, Gurney AL. IL-17:Prototype member of an emerging cytokine family. J Leukoc Biol 2002; 71:1-8.
    18. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2005; 14:155-174.
    19. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 2007; 8:772-779.
    20. Kuestner R, Taft D, Haran A, Brandt C, Brender T, Lum K, et al. Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J Immunol 2007; 179:5462-5473.
    21. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 2003; 14:155-174.
    22. Lee J, Ho WH, Maruoka M, Corpuz RT, Baldwin DT, Foster JS, et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J Biol Chem 2001; 276:1660-1664.
    23. Venkatachalam K, Mummidi S, Cortez DM, Prabhu SD, Valente AJ, Chandrasekar B. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2008; 294:H2078-H2087.
    24. Chan FK. Three is better than one:pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37:101-107.
    25. Van Bezooijen R, Farih-Sips HC, Papapoulos SE, Lowik CW. Interleukin-17:a new bone acting cytokine in vitro. J Bone Miner Res 1999; 9:1513-1521.
    26. Bezerra MC, Carvalho JF, Prokopowitch AS, Pereira RM. RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res 2005; 38:161-170.
    27. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Rev 1999; 20:345-357.
    28. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor a-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts:a possible role as a "fine-tuning cytokine" in inflammation processes. Arthritis Rheum 2001; 44:2176-184.
    29. Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB-and PI3-kinase/Aktdependent pathways. Arthritis Res 2004; 6:R120-128.
    30. Takahashi K, Azuma T, Motohira H, Kinane DF, Kitetsu S. The potential role of interleukin-17 in the immunopathology of periodontal disease. J Clin Periodontol 2005; 32:369-374.
    31 Tokuda H, Kanno Y, Ishisaki A, Takenaka M, Harada A, Kozawa O. Interleukin (IL)-17 enhances tumor necrosis factor-alpha-stimulated IL-6 synthesis via p38 mitogen-activated protein kinase in osteoblasts. J Cell Biochem 2004; 91:1053-1061.
    32. Tokuda H, Kozawa O, Uematsu T. Interleukin (IL)-17 enhances prostaglandin F2a-stimulated IL-6 synthesis in osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2002; 66:427-433.
    33. Mitsui N, Suzuki N, Maeno M, Mayahara K, Yanagisawa M, Otsuka K, et al. Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E2 production appropriately. Life Sci 2005; 77:3168-3182.
    34. Zhang F, Wang CL, Koyama Y, Mitsui N, Shionome C, Sanuki R, et al. Connective force stimulates the expression of IL-17s and their receptors in osteoblastic MC3T3-E1 cells. Connect Tissue Res 2009; in press.
    35. Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983; 96:191-198.
    36. Watanabe Y, Namba A, Honda K, Aida Y, Matsumura H, Shimizu O, et al. IL-1B stimulates the expression of prostaglandin receptor EP4 in human chondrocytes by increasing production of prostaglandin E2. Connect Tissue Res 2009; 50:186-193.
    37. Kurokouchi K, Kambe F, Kikumori T, Sakai T, Sarkar D, Ishiguro N, et al. Effects of glucocorticoids on tumor necrosis factor a-dependent activation of nuclear factor kB and expression of the intercellular adhesion molecule 1 gene in osteoblast-like ROS 17/2.8 cells. J Bone Miner Res 2000; 15:1707-1715.
    38. Samoto H, Shimizu E, Matsuda-Honjyo Y, Saito R, Nakao S, Yamazaki M, et al. Prostaglandin E2 stimulates bone sialoprotein (BSP) expression through cAMP and fibroblast growth factor 2 response elements in the proximal promoter of the rat BSP gene. JBiol Chem 2003; 278:28659-28667.
    39. Tanabe N, Maeno M, Suzuki N, Fujisaki K, Tanaka H, Ogiso B, et al. IL-la stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci 2005; 77:615-626.
    40. Okada N, Kobayashi M, Mugikura K, Okamatsu Y, Hanazawa S, Kitano S, et al. Interleukin-6 production in human fibroblasts derived from periodontal tissues is differentially regulated by cytokines and a glucocorticoid. J Periodontol Res 1997; 32:559-569.
    41. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145:3297-3303.
    42. Rozen N, Ish-Shalom S, Rachmiel A, Stein H, Lewinson D. Interleukin-6 modulates trabecular and endochondral bone turnover in the nude mouse by stimulating osteoclast differentiation. Bone 2000; 26:469-74.
    43. Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease, Bone 2003; 33:28-37.
    44. Hofbauer LC, Khosla C, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The role of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15:2-12.
    45. Alhashimi N, Frithiof L, Brudvik P, Bakheit M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop 2001; 119:307-312.
    46. Shoji M, Tanabe N, Mitsui N, Suzuki N, Takeichi O, Katono T, et al. Lipopolysaccharide enhances the production of nicotine-induced prostaglandin E2 via an increase in cyclooxygenase-2 expression in osteoblasts. Acta Biochim Biophys Sin 2007; 39:163-172.
    47. Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyarma S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis.J Clin Invest 1999; 103:1345-1352.
    1. N.G. Walsh, T.N. Crotti, S.R. Goldring, E.M. Gravallese, Immunol. Rev.208 (2005) 228-251.
    2. K. Sato, Allergol. Int.57 (2008) 109-114.
    3. M. Feldmann, F.M. Brennan, R.N. Maini, Annu. Rev. Immunol. 14 (1996) 397-440.
    4. T. Suda, N. Takahashi, N. Udagawa, E. Jimi, M.T. Gillespie, J. Martin, Endocr. Rev. 20(1999)345-357.
    5. L.C. Hofbauer, C. Khosla, C.R. Dunstan, D.L. Lacey, W.J. Boyle, B.L. Riggs, J. Bone Miner. Res.15 (2000) 2-12.
    6. H. Tanaka, N. Tanabe, M. Shoji, N. Suzuki, T. Katono, S. Sato, M. Motohashi, M. Maeno, Life Sci. 78 (2006) 1733-1740.
    7. H.K. Vaananen, T. Laitala-Leinonen, Arch. Biochem. Biophys.473 (2008) 132-138.
    8. K. Fujisaki, N. Tanabe, N. Suzuki, T. Kawato, O. Takeichi, O. Tsuzukibashi, M. Makimura, K. Ito, M. Maeno, Life Sci.80 (2007) 1311-1318.
    9. H.E. Broxmeyer, J. Exp. Med. 183 (1996) 2411-2415.
    10. S. Ferretti, O. Bonneau, GR. Dubois, C.E. Jones, A. Trifilieff, J. Immunol.170 (2003)2106-2112.
    11. R.L. van Bezooijen, L. van der Wee-Pals, S.E. Papapoulos, C.W.G.M. Lowik, Ann. Rheum. Dis.61 (2002) 870-876.
    12. K. Takahashi, T. Azuma, H. Motohira, D.F. Kinane, S. Kitetsu, J. Clin. Periodontol.32 (2005) 369-374.
    13. R. Van Bezooijen, H.C. Farih-Sips, S.E. Papapoulos, C.W. Lowik, J Bone Miner. Res.9 (1999) 1513-1521.
    14. M.C. Bezerra, J.F. Carvalho, A.S. Prokopowitch, R.M. Pereira, Braz. J. Med. Biol. Res.38 (2005) 161-170.
    15. F.K. Chan, Cytokine 37 (2007) 101-107.
    16. S. Kotake, N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, S. Saito, K. Inoue, N. Kamatani, M.T. Gillespie, T.J. Martin, T. Suda, J. Clin. Invest. 103(1999)1345-1352.
    17. E. Lubberts, M.I. Koenders, B. Oppers-Walgreen, L. Van den Bersselear, C.J. Coenen-de Roo, L.A. Joosten, W.B. van den Berg, Arthritis. Rheum.50 (2004) 650-659.
    18. S. Kitami, H. Tanaka, T. Kawato, N. Tanabe, T. Katono-Tani, F. Zhang, N. Suzuki, Y. Yonehara, M. Maeno, Biochimie (2010) in press.
    19. H. Sudo, H. Kodama, Y. Amagai, S. Yamamoto, S. Kasai, J. Cell Biol.96 (1983) 191-198.
    20. Y. Katz, O. Nadiv, Y. Beer, Arthritis. Rheum.44 (2001) 2176-2184.
    21. S.Y. Hwang, J.Y. Kim, K.W. Kim, M.K. Park, Y. Moon, W.U. Kim, H.Y. Kim, Arthritis Res.6 (2004) R120-R128.
    22. F. Zhang, C. Wang, Y. Koyama, N. Mitsui, C. Shionome, R. Sanuki, N. Suzuki, K. Mayahara, N. Shimizu, M. Maeno, Connect. Tissue Res. (2010) in press.
    23. L.C. Denlinger, P.L. Fisette, K.A. Garis, G. Kwon, A. Vazquez-Torres, A.D. Simon, B. Nguyen, R.A. Proctor, P.J. Bertics, J.A. Corbett, J. Biol. Chem.271 (1996)337-342.
    24. H. Hotokezaka, E. Sakai, K. Kanaoka, K. Saito, K. Matsuo, H. Kitaura, N. Yoshida, K. Nakayama, J. Biol. Chem.277 (2002) 47366-47372.
    25. H. Tokuda,O. Kozawa, T. Uematsu, Prostaglandins Leukot. Essent. Fatty Acids 66 (2002) 427-433.
    26. H. Tokuda, Y. Kanno, A. Ishisaki, M. Takenaka, A. Harada, O. Kozawa, J. Cell Biochem.91 (2004) 1053-1061.
    27. Y. Watanabe, A. Namba, K. Honda, Y. Aida, H. Matsumura, O. Shimizu, N. Suzuki, N. Tanabe, M. Maeno, Connect. Tiss. Res.50 (2009) 186-193.
    28. R. Sanuki, C. Shionome, A. Kuwabara, N. Mitsui, Y. Koyama, N. Suzuki, F. Zhang, N. Shimizu, M. Maeno, Connect. Tiss. Res. (2010) in press.
    29. N. Tanabe, M. Maeno, N. Suzuki, K. Fujisaki, H. Tanaka, B. Ogiso, K. Ito, Life Sci.77(2005)615-626.
    30. U.K. Laemmli, Nature 227 (1970) 680-685.
    31. T.A. Moseley, D.R. Haudenschild, L. Rose, A.H. Reddi, Cytokine Growth Factor Rev.14(2003)155-174.
    32. T. Yago, Y. Nanke, M. Kawamoto, T. Furuya, T. Kobashigawa, N. Kamatani, S. Kotake, Arthritis Res. Ther.9 (2007) R96.
    33. R. Riihonen, C.T. Supuran, S. Parkkila, S. Pastorekova, H.K. Vaananen, T. Laitala-Leinonen, Bone 40 (2007) 1021-1031
    34. K. Tsukii, N. Shima, S. Nochizuki, K. Yamaguchi, M. Kinosaki, K. Yano, O. Shibata, N. Udagawa, H. Yasuda, T. Suda, K. Higashio, Biochem. Biophys. Res. Commun.246 (1998) 337-341.
    35. M. Tomita, X. Li, Y. Okada, F.N. Woodiel, R.N. Young, C.C. Pilbeam, L.G. Raisz, Bone 30 (2002) 159-163.
    36. K. Suda, N. Udagawa, N. Sato, M. Takami, K. Itoh, J.T. Woo, N. Takahashi, K. Nagai, J. Immunol.17 (2004) 2504-2510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700