用户名: 密码: 验证码:
中温固体氧化物燃料电池阴极材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。传统的SOFC在高温下工作。高温操作能促进快的反应动力学,减少了对贵金属催化剂的需求,还能让碳氢化合物燃料内重整,废热适合再利用。然而,从经济的角度来讲,SOFC在目前还不能够和已有的发电技术相竞争,主要是由于高温(>800℃)操作带来的诸多问题,包括电池组件的高温氧化、腐蚀、化学扩散和反应造成的性能衰减等。一个降低成本的方法就是降低工作温度到700℃以下。然而,降低SOFC的工作温度至500-700℃这个中温范围,仍旧是SOFC发展中的一个挑战。SOFC的整个电化学性能会随着工作温度的下降而下降,这主要是由于电极的极化电阻增加以及电解质电导率下降造成的。来自电解质上的问题在一定程度上,已经通过使用新型电解质材料和电解质薄膜化技术解决了。因此,关注的焦点从电解质转向了电极。因为电极在SOFC中表现出较高比例的电压损失。阴极成为电极发展关注的中心,这主要是因为氧还原反应在SOFC低温工作时更加难被激活发生反应。因此,开发高电化学催化活性的阴极对于中温SOFC至关重要。
     本博士学位论文的目的就是开发新的阴极,使其具有高的催化活性和长久的使用寿命。
     论文第一章,大致介绍了SOFC的工作原理和关键材料如电解质,阴极,阳极和连接材料。此外,还简单介绍了SOFC的现状和发展趋势,基于SOFC中温化的趋势,确立了本论文的研究目标:即开发新型的混合离子电子导体(MIEC)阴极材料和具有新颖微结构的复合阴极。
     论文第二章,为了理解氧还原过程,简要介绍了SOFC阴极氧还原反应中的三种反应路径。由于MIEC是最具潜力的阴极材料,所以有必要深入理解多孔MIEC中的氧还原过程。通过系统地分析和讨论连续理论模型,建立了对MIEC电极的氧还原过程清晰的认知图像。
     论文第三章,考察了La_(2-x)Sr_xCo_(0.8)Ni_(0.2)O_(4+δ)(LSCN,x=0,0.4,0.8,1.2,1.6)-Ce_(0.9)Gd_(0.1)O_(1.95)(GDC)作为中、低温固体氧化物燃料电池阴极的可行性。K_2NiF_4型氧化物La_2Co_(0.8)Ni_(0.2)O_(4+δ)是一种超氧化学计量的氧化物,这类氧化物在450℃到650℃这一温度范围内具有高的氧扩散和氧表面交换系数,根据第二章中提到的连续理论模型的结论来看,它是一种潜在的MIEC阴极材料。我们做了一系列的实验表征了这类复合电极。其主要结果如下:
     1)对称电池的交流阻抗谱表明在一系列的LSCN-GDC复合电极中,La_(1.2)Sr_(0.8)Co_(0.8)Ni_(0.2)O_(4+δ)基电极有着最小的界面极化阻抗,即600℃电极没有活化时的阻抗为1.36Ωcm~2。
     2)当单电池在200mAcm~(-2)的电流下通过30分钟后,可以观察到明显的活化效应。
     3)以La_(1.2)Sr_(0.8)Co_(0.8)Ni_(0.2)O_(4+δ)-GDC为阴极的电池在600℃的输出功率为350mWcm~(-2),且在36小时的0.5V恒压放电测试中,输出功率没有明显下降,十分稳定。
     这些结果表明,La_(2-x)Sr_xCo_(0.8)Ni_(0.2)O_(4+δ)是潜在的适合在中低温操作的阴极材料。进一步的工作将集中在改善LSCN-GDC的电化学活性上,即通过改变复合电极中GDC的含量,以及通过降低制备温度来增大表面积,还可以优化Sr的掺杂量来提高电极的性能。
     论文第四章,开发了一种高稳定的中温SOFC电极,这种电极是La_(0.6)Sr_(0.4)Co_(3-δ)(LSC)基的浸渍复合电极。这种复合电极的制备过程是:先通过丝网印刷和高温共烧工艺制备阴极的多孔骨架(Ce_(0.8)Sm_(0.2)O_(1.9),SDC),然后以离子浸渍为手段在多孔骨架中负载高活性的阴极颗粒(LSC)。该电极的特征是:电极骨架完好地和电解质相连接,而细小的LSC颗粒均匀地附着在SDC骨架的内表面。其中,完好连接的结构为氧离子传输提供了通道(氧离子从阴极经过多孔骨架SDC传输到电解质基底上),LSC颗粒之间的接触连接为电子的传输提供了通道(电子从集电极经过LSC传输到反应活性位)。对该电极的优化和电化学性能表征的主要结果如下:
     1) LSC的浸渍含量及LSC浸渍颗粒的焙烧温度均对浸渍电极的性能有明显的影响。在一定的操作温度下,浸渍电极的性能随着LSC的浸渍含量的变化而变化,浸渍含量有一个最佳值,它对应于电极的最低极化阻抗。在浸渍量低于最佳浸渍含量时,电极阻抗随着浸渍含量的增加而减小。在浸渍量高于最佳浸渍含量时,电极阻抗随着浸渍含量的增加而增加。浸渍颗粒LSC的焙烧温度也对电极性能产生影响。在浸渍颗粒完全成相的前提下,升高焙烧温度使得电极阻抗增加。对于LSC浸渍的颗粒而言,最佳的焙烧温度是800℃焙烧2小时。
     2)复合电极的电化学性能通过电化学阻抗谱来表征。尽管LSC和SDC的热膨胀系数差别很大,但是结果却证明了这种浸渍阴极具有高的热抗震性。该浸渍电极在20次500-800℃的热循环过程和10次从室温到800℃的热循环过程测试结束后,界面电阻没有增加。并且这种电极的长期稳定性同样令人兴奋,在600℃恒温72天的长期测试中,浸渍电极的阻抗基本恒定不变。因此,浸渍的LSC-SDC电极有高的热抗震性和很好的长期稳定性。
     3)考察了以浸渍LSC-SDC为阴极的单电池性能。以浸渍含量为55%,焙烧温度为800℃焙烧2小时的电极作为单电池的阴极。浸渍阴极和单电池均表现出极好的性能。单电池表现出高的长期性能,在650℃,电池经过0.5V恒压放电89小时后,电池的最大输出功率达到0.815 W cm~(-2)。而在四次热循环测试后,同样650℃测得的功率下降了20%,这主要是由于阴极和集电层Ag的分层造成的。
     目前的研究已经表明LSC浸渍电极表现出相当好的电化学性能、高的抗热循环或抗热震荡性、低的界面阻抗值。这些结果表明我们成功地开发出了一种适合中温工作的、可靠的、高性能的电极。值得一提的是:共烧制备的多孔骨架结构为浸渍阴极提供了通用的模板,可以通过改变浸渍的电子导电相材料和浸渍材料的形貌来制备多种高性能的复合阴极。
     论文第五章,成功制备了具有纳米网络状结构的复合阴极。这种复合阴极是以离子浸渍为手段,通过简单控制沉积下来的硝酸盐前驱物的粒子焙烧的升温速率来改变在多孔骨架中负载的阴极颗粒的形貌。其主要结果如下:
     1)具有纳米网络结构的阴极是由不到50nm的氧化物纳米颗粒相互连接形成纳米丝构成的。小颗粒表现出大的表面积和高的孔隙率,并形成了通畅的离子和电子传导路径,因此表现出相当低的界面极化阻抗。
     2)改变焙烧温度被发现是最有效的制备高性能纳米网络状电池的方法。与所有关于SSC文献报道的阴极阻抗相比,纳米网状SSC.SDC浸渍阴极表现出最低的界面极化电阻。500℃时界面极化阻抗为0.21Ωcm~2,600℃时界面极化阻抗为0.052Ωcm~2。单电池的性能也是SSC中最高的,在500℃时最大功率输出为0.44 Wcm~(-2)。
     尽管长期稳定的机理和纳米网络状形成的机理都还没有被进一步确定,但我们的结果却暗示了一个新的能显著改善低温SOFC性能的方向。
Solid oxide fuel cells (SOFCs) are a forward looking technology for a highly efficient, environmental friendly power generation. The traditional SOFCs are operated at high temperature. The high operating temperature promotes rapid reaction kinetics, eliminates the need of precious metal catalysts, allows internal reforming of hydrocarbon fuels, and produces high quality byproduct heat suitable for co-generation However, SOFCs are currently not economically competitive to the existing power generation technologies due to problems associated mainly with high temperature (>800℃) operations, including performance degradation of cell components due to high temperature oxidation, corrosion, chemical interdiffusion and reaction. One approach to cost reduction is lowering the SOFC operating temperature to below 700℃,However, reducing the operation temperature of SOFCs to the intermediate temperature range of 500-700℃is still a challenge in the SOFC development. The overall electrochemical performance of an SOFC will decrease with the reduction in the operating temperature due to increased polarization resistances of the electrode reactions and decreased electrolyte conductivity. The problem coming from electrolyte has been solved to a certain extent by using new electrolyte materials or adopting film technique. Therefore, the shift in emphasis has been driven from the electrolyte to the electrodes where the electrodes show a higher percentage of the voltage loss for IT-SOFCs. The cathode has been the center of the focus in the electrode development largely because oxygen reduction is the more difficult reaction to activate in SOFCs operated at reduced temperatures. Consequently, development of cathode with high electrocatalytic activity becomes critical for IT-SOFCs.
     This p.h. D thesis aims to develop new cathodes with high catalytical activity and long life-time.
     In chapter 1, the principle of SOFCs and key component materials such as electrolytes, cathodes, anodes and connector, were generally introduced. In addition, the situation and the trend of SOFCs' development were also briefly reviewed. Based on the trend in intermediate-temperature operation for SOFCs, development of new mixed ionic and electronic conductors (MIECs) and composite cathodes with novel microstructures was selected as the object of this thesis.
     In chapter 2, three reaction paths were briefly introduced to understand the oxygen reduction process. Since the MIECs are the most potential cathodes, it is needed to get an insight into the oxygen reduction process in porous MIEC.An image of oxygen reduction process in MIEC was set up through the systematic analysis and discussion on a continuum model.
     In chapter 3, composites consisting of La_(2-x)Sr_xCo_(0.8)Ni_(0.2)O_(4+δ) (LSCN, x=0,0.4, 0.8, 1.2, 1.6) and Ce_(0.9)Gd_(0.1)O_(1.95) (GDC) have been investigated as the cathodes for low-and-intermediate temperature solid oxide fuel cells (SOFCs).K_2NiF_4 structured La_2Co_(0.8)Ni_(0.2)O_(4+δ) is an oxygen overstoichiometric oxide with high oxygen diffusion and oxygen surface exchange coefficients in the temperature range from 450 to 650℃, resulting in a potential MIEC cathode material according to the conclusion drawn from the continuum model which is mentioned in chapter 2. A series of experiments were conducted to characterize the composites. The main achievements are summarized as follows:
     1) AC impedance spectroscopy on symmetric cells indicated that among the series of LSCN-GDC composites, La_(1.2)Sr_(0.8)Co_(0.8)Ni_(0.2)O_(4+δ)based electrode had the lowest interfacial polarization resistance, which was 1.36Ωcm~2 at 600℃when the electrode was not activated.
     2) Significant activation effect was observed with a single cell when current treatment was performed at 200mAcm~(-2) within 30min. The single cell with La_(1.2)Sr_(0.8)Co_(0.8)Ni_(0.2)O_(4+δ)-GDC as the cathode generated a power density up to 350mWcm~(-2) at 600℃.
     3) In addition, the performance was pretty stable when a constant output voltage of 0.5 V was set for 36 h.
     These results suggest that La_(2-x)Sr_xCo_(0.8)Ni_(0.2)O_(4+δ) could be promising materials as the cathodes for SOFCs that operated at low-and-intermediate temperatures. Further work will focus on improving the electrochemical activity of the LSCN-GDC composites by changing the GDC content, by decreasing the fabrication temperature leading to greater surface area, and by optimizing the amount of Sr-dopant.
     In chapter 4, a highly stable electrode based on La_(0.6)Sr_(0.4)Co_(3-δ) (LSC) was developed for intermediate temperature solid oxide fuel cells (IT-SOFCs). The electrode was prepared by impregnating LSC into a porous samaria-doped ceria (SDC, Sm_(0.2)Ce_(0.8)O_(1.9)) frame, which was deposited to an SDC electrolyte using screen-printing and co-firing techniques. The electrode frame (SDC) was well-connected with SDC electrolyte, and the fine LSC particles coated the SDCframe. This well-connected structure makes a pathway for oxygen ion transport between the cathode (through the SDC frame) and the electrolyte (the SDC substrate) since SDC is an excellent oxide conductor. Connect among LSC particles results in a pathway for electron transport from electron collector to the reactive sites. Optimization of the LSC impregnated SDC composite was performed and its electrochemical properties were characterized. The main achievements are summarized as follows:
     1) Both the loading of LSC and the firing temperature have significant influence on the performance of the LSC-impregnated SDC composite electrode. At a certain operating temperature, the lowest interfacial resistance of the electrode corresponded to an optimal loading. Lower or higher the loading resulted in a larger resistance. And it is the same case in the firing temperature. The optimal firing temperature which is also the lowest phase-forming temperature is 800℃for 2h.
     2) The electrochemical properties of the composite electrode were investigated by impedance spectroscopy. High stability upon thermal cycle was demonstrated for this composite electrode although LSC and SDC have significant difference in thermal expansion. After 20 times of 500-to-800℃thermal cycles and 10 times of room-temperature-to-800℃thermal cycles, no increase in area specific resistance (ASR) was observed for such electrodes. And the long-term stability is also exciting. The resistance of the impregnated electrode kept constant when it was held at 600℃for 72 days. So the LSC impregnated SDC composite electrode had high resistance to thermal shock/cycles and good long-term stability despite significant TEC mismatch exists between LSC catalyst and SDC electrolyte.
     3) The performance of the cell with the LSC-impregnated SDC as cathode was investigated. With 55wt% LSC loading and firing at 800℃for 2h, the impregnated cathode and single cell showed excellent performance. The cell showed the peak power output of 0.815 W cm~(-2) at 650℃after running with a constant voltage output of 0.5V for 89h. After four thermal cycling tests, the cell performance measured at 650℃reduced about 20% mainly due to the delamination between the cathode and Ag current collecting layer.
     The present study has demonstrated that the LSC-impregnated electrode shows remarkable performance. The high resistance to thermal cycles and thermal shock has been achieved. In addition, very low ASR has been achieved. These results imply that a reliable electrode with high thermal resistance and high performance has beendeveloped for IT-SOFCs. It should be noted that the well-connected SDC frame can be used as a general template which can be impregnated by other electronic conductors (with/witout special microstructures) to achieve more composite electrodes with high performance.
     In chapter 5, nano-network structured Sm_(0.5)Sr_(0.5)CoO_(3-δ)cathodes for low-temperature SOFCs have been successfully fabricated by simply increasing the rate to heat the precursor nitrates deposited from a well-developed ion-impregnation process. The main achievements are summarized as follows:
     1) The cathodes are consisted of oxide nanowires formed from the nanobeads of less than 50 nm in diameter thus exhibiting large surface area and high porosity, forming straight path for ion and electron conduction, and consequently showing remarkably low interfacial polarization resistances.
     2) Change in the firing rate has found to be a highly effective approach to the fabrication of high-performance nano-network electrodes for low temperature SOFCs, producing the lowest interfacial polarization resistances (0.21Ωcm~2 at 500℃and 0.052Ωcm~2 at 600℃) ever reported for the SSC cathode materials. An anode supported cell with 10-μm-thick SDC electrolyte demonstrated a peak power density of 0.44 Wcm~(-2) at 500℃,which is also the highest ever reported for the SSC electrodes.
     3) Durability test showed that the cathode performance increased with the operating time probably due to the cathode microstructure evolution to higher porosity to optimize the gas diffusion and well-connected SSC nanowires to strengthen ionic and electronic conducting path.
     Although the long-term stability and formation mechanism of the nano-network electrodes are yet to be further determined, the results indicate a new direction to significantly improve the performance of low temperature SOFCs.
引文
[1] Jiang ZM. 2008. Reflections on energy issues in China,Journal of Shanghai Jiaotong University, 42(3): 345-359.
    [2] Minh NQ. 1993. Ceramic Fuel-Cells. Journal of the American Ceramic Society, 76(3):563-588.
    [3] Badwal SPS, Foger K.1996. Solid oxide electrolyte fuel cell review. Ceramics International,22(3): 257-265.
    [4] Park S, Gorte RJ, Vohs JM. 2001.Tape cast solid oxide fuel cells for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society. 148(5): A443-A447.
    [5] Singhal SC.2002. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 152: 405-410.
    [6] EG&G Technical Services, 2004.I., Fuel Cell Handbook (Seventh Edition), US Department of Energy, Morgantown, WV.
    [7] Singhal SC, Kendall K. 2003. High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications.: Elevier, ISBN 1856173879.
    [8] Demin AK, Tsiakaras PE, Sobyanin VA, Hramova SY. 2002. Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor. Solid State Ionics, 152: 555-560.
    [9] Larminie J, Dicks A. 2003. Fuel Cell Systems Explained. Fuel Cell Systems Explained, Wiley.
    [10] Xia CR, Liu ML. 2001. Low-temperature SOFCs based on Gdo.1Ceo.9O1.95 fabricated by dry pressing. Solid State Ionics. 144(3-4): 249-255.
    [11] Demina A, Tsiakarasb P. 2001. International Journal of Hydrogen Energy. 26.
    [12] 高建峰.2003.中温固体氧化物燃料电池阴极材料及电极过程研究,博士学位论文.
    [13] Minh NQ, Takahashi T. 1995. Science and Technology of Ceramic Fuel Cell, Amsterdam, the Netherlands.
    [14] Hirata Y, Yokomine S, Sameshima S, Shimonosono T, Kishi S, Fukudome H. 2005.Electrochemical properties of solid oxide fuel cell with Sm-doped ceria electrolyte and cermet electrodes. Journal of the Ceramic Society of Japan,113(1321): 597-604.
    [15] Shimonosono T, Hirata Y, Ehira Y, Sameshima S, Horita T, Yokokawa H. 2004. Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb-Wagner method.Solid State Ionics, 174(1-4):27-33.
    [16] Sameshima S, Ono H, Higashi K, Sonoda K, Hirata Y, Ikuma Y.2000. Electrical conductivity and diffusion of oxygen ions in rare-earth-doped ceria. Journal of the Ceramic Society of Japan, 108(12): 1060-1066.
    [17]Kharton VV,Marques FMB,Atkinson A.2004.Transport properties of solid oxide electrolyte ceramics:a brief review.Solid State Ionics 174:135-149.
    [18]Badwal SPS.1992.Zirconia-based solid electrolytes-microstructure,stability and ionic-conductivity.Solid State Ionics,52:23-32.
    [19]DeSouza S,Visco SJ,DeJonghe LC.1997.Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte.Journal of the Electrochemical Society,144:L35-L37.
    [20]Xin XS,Lu Z,Huang XQ,Sha XQ,Zhang YH,Chen KF,Ai N,Zhu RB,Su WH.2006.Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process.Journal of Power Sources,160:1221-1224.
    [21]Bao WT,Chang QB,Yan RQ,Meng GY.2005.The novel combination of electrostatic powder coating with suspension coating for fabricating the dense YSZ thin film on porous anode substrate.Journal of Membrane Science,252:175-181.
    [22]Badwal SPS,Foger K.1997.Materials for solid oxide fuel cells.Materials Forum 21:187-224.
    [23]Nomura K,Mizutani Y,Kawai M,Nakamura Y,Yamamoto O.2000.Aging and Raman scattering study of scandia and yttria doped zirconia.Solid State Ionics,132:235-239.
    [24]Fergus JW.2006.Electrolytes for solid oxide fuel cells.Journal of Power Sources,162:30-40.
    [25]Inaba H,Tagawa H.1996.Ceria-based solid electrolytes-Review.Solid State Ionics,83:1-16.
    [26]Mogensen M,Sammes NM,Tompsett GA.2000.Physical,chemical and electrochemical properties of pure and doped ceria.Solid State Ionics,129:63-94.
    [27]Yamamoto O,Arati Y,Takeda Y,Imanishi N,Mizutani Y,Kawai M,Nakamura Y.1995.Electrical-conductivity of stabilized zirconia with ytterbia and scandia.Solid State Ionics,79:137-142.
    [28]Badwal SPS,Ciacchi FT,Milosevic D.2000.Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation.Solid State Ionics,136:91-99.
    [29]Kondoh J,Shiota H,Kikuchi S,Tomii Y,Ito Y,Kawachi K.2002.Changes in aging behavior and defect structure of Y_2O_3 fuuly stabilized Z1O_2 by In_2O_3 doping.Journal of the Electrochemical Society,149:J59-J72.
    [30]Eguchi K,Setoguchi T,Inoue T,Arai H.1992.Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells.Solid State Ionics,52:165-172.
    [31]Yahiro H,Eguchi K,Arai H.1989.Electrical-properties and reducibilities of ceria rare earth oxide systems and their application to solid oxide fuel-cell.Solid State Ionics 36:71-75.
    [32]Hohnke DK.1981.Ionic-conduction in doped oxides with the fluorite structure.Solid State Ionics,5:531-534.
    [33]Steele BCH.2000.Appraisal of Ce_(1-y)Gd_yO_(2-y/2) electrolytes for IT-SOFC operation at 500 degrees C.Solid State Ionics,129:95-110.
    [34]Zha S,Xia C,Meng G.2003.Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells.Journal of Power Sources,115:44-48.
    [35]Zhang TS,Ma J,Cheng H,Chan SH.2006.Ionic conductivity of high-purity Gd-doped ceria solid solutions.Materials Research Bulletin,41:563-568.
    [36]Dalslet B,Blennow P,Hendriksen PV,Bonanos N,Lybye D,Mogensen M.2006.Assessment of doped ceria as electrolyte.Journal of Solid State Electrochemistry,10:547-561.
    [37]Charojrochkul S,Choy KL,Steele BCH.1999.Cathode electrolyte systems for solid oxide fuel cells fabricated using flame assisted vapour deposition technique.Solid State Ionics,121:107-113.
    [38]Rossignol C,Ralph JM,Bae JM,Vaughey JT.2004.Ln_(1-x)Sr_xCoO_3(Ln=Gd,Pr) as a cathode for intermediate-temperature solid oxide fuel cells.Solid State Ionics,175:59-61.
    [39]Tompsett GA,Sammes NM,Yamamoto O.1997.Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes.Journal of the American Ceramic Society,80:3181-3186.
    [40]Hatchwell C,Sammes NM,Brown IWM.1999.Fabrication and properties of Ce0.8Gd0.2O1.9 electrolyte-based tubular solid oxide fuel cells.Solid State Ionics,126:201-208.
    [41]Steele BCH,Heinzel A.2001.Materials for fuel-cell technologies.Nature,414:345-352.
    [42]Steele BCH.2000.Materials for IT-SOFC stacks 35 years R&D:the inevitability of gradualness?Solid State Ionics,134:3-20.
    [43]Sahibzada M,Steele BCH,Zheng K,Rudkin RA,Metcalfe IS.1997.Development of solid oxide fuel cells based on a Ce(Gd)O_(2-x) electrolyte film for intermediate temperature operation.Catalysis Today,38:459-466.
    [44]Doshi R,Von Richards L,Carter JD,Wang X,Krumpelt M.1999.Development of solid-oxide fuel cells that operate at 500 degrees C.Journal of the Electrochemical Society,146:1273-1278.
    [45]Ishihara T,Matsuda H,Takita Y 1994.Doped LaGaO_3 perovskite-type oxide as a new oxide ionic conductor.Journal of the American Chemical Society,116:3801-3803.
    [46]Feng M,Goodenough JB.1994.A superior oxide-ion electrolyte.European Journal of Solid State and Inorganic Chemistry,31:663-672.
    [47]Ishihara T.2006.Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells.Bulletin of the Chemical Society of Japan,79:1155-1166.
    [48]Majewski P,Rozumek M,Aldinger F.2001.Phase diagram studies in the systems La_2O_3-SrO-MgO-Ga_2O_3 at 1350-1400 degrees C in air with emphasis on Sr and Mg substituted LaGaO_3.Journal of Alloys and Compounds,329:253-258.
    [49]Huang K,Tichy R,Goodenough JB,Milliken C.1998.Superior perovskite oxide-ion conductor;strontium-and magnesium-doped LaGaO_3:Ⅲ,Performance tests of single ceramic fuel cells.Journal of the American Ceramic Society,81:2581-2585.
    [50]Stevenson JW,Hasinska K,Canfield NL,Armstrong TR.2000.Influence of cobalt and iron additions on the electrical and thermal properties of(La,Sr)(Ga,Mg)O_(3-delta).Journal of the Electrochemical Society,147:3213-3218.
    [51]Ishihara T,Ishikawa S,Hosoi K,Nishiguchi H,Takita Y.2004.Oxide ionic and electronic conduction in Ni-doped LaGaO_3-based oxide.Solid State Ionics,175:319-322.
    [52]Khorkounov BA,Nafe H,Aldinger F.2006.Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity.Journal of Solid State Electrochemistry,10:479-487.
    [53]Ishihara T,Tsuruta Y,Yu CY,Todaka T,Nishiguchi H,Takita Y.2003.La(Sr)Ga(Fe)O_3 perovskite oxide as a new mixed ionic-electronic conductor for oxygen permeating membrane.Journal of the Electrochemical Society,150:E17-E23.
    [54]Ishihara T,Ando M,Enoki M,Takita Y.2006.Oxide ion conductivity in La(Sr)Ga(Fe, Mg)O_3 and its application for solid oxide fuel cells.Journal of Alloys and Compounds,408:507-511.
    [55]Maric R,Ohara S,Fukui T,Yoshida H,Nishimura M,Inagaki T,Miura K.1999.Solid oxide fuel cells with doped lanthanum gallate electrolyte and LaSrCoO3 cathode,and Ni-samaria-doped ceria cermet anode.Journal of the Electrochemical Society,146:2006-2010.
    [56]Huang KQ,Wan JH,Goodenough JB.2001.Increasing power density of LSGM-based solid oxide fuel cells using new anode materials.Journal of the Electrochemical Society,148:A788-A794.
    [57]Wan JH,Yan JQ,Goodenough JH.2005.LSGM-based solid oxide fuel cell with 1.4 W/cm(2) power density and 30 day long-term stability.Journal of the Electrochemical Society,152:A1511-A1515.
    [58]Inagaki T,Nishiwaki F,Kanou J,Yamasaki S,Hosoi K,Miyazawa T,Yamada M,Komada N.2006.Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte.Journal of Alloys and Compounds,408:512-517.
    [59]Ishikawa H,Enoki M,Ishihara T,Akiyama T.2007.Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O_(3-delta) for electrolyte of solid oxide fuel cells.Journal of Alloys and Compounds,430:246-251.
    [60]Choy K,Bai W,Clarojrochkul S,Steele BCH.1998.The development of intermediate-temperature solid oxide fuel cells for the next millennium.Journal of Power Sources,71:361-369.
    [61]Mathews T,Manoravi P,Antony MP,Sellar JR,Muddle BC.2000.Fabrication of La(1-x)Sr(x)Ga(1-y)Mg(y)O(3-(x plus y)/2) thin films by pulsed laser ablation.Solid State Ionics,135:397-402.
    [62]Skinner SJ.2001.Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes.Int.J.Inorg.Mater.,3:113-121.
    [63]Godickemeier M,Sasaki K,Gauckler LJ,Riess I.1996.Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes.Solid State Ionics,86-88:691.
    [64]Lane JA,Adler S,Middleton PH,Steele BCH.1995.Solid Oxide Fuel Cell(SOFC-Ⅳ):584-596.
    [65]Ohbayashi H,Kudo T,Gejo T.1974.Crystallographic,electric and thermochemical properties of perovskite-type LN_(1-x)Sr_xCoO_3(LN-lanthanoid element).Jpn.J.Appl.Phys.13:1-7.
    [66]Tu HY,Takeda Y,Imanishi N,Yamamoto O.1997.Ln(1-x)Sr(x)CoO(3)(Ln=Sm,Dy) for the electrode of solid oxide fuel cells.Solid State Ionics,100:283-288.
    [67]Ishihara T,Honda M,Nishiguchi H,Takita Y.1997.in:Solid Oxide Fuel Cells V.,Stimming U,Singhal SC,Tagawa H,Lahnert W.The Electrochemical Society Proceedings Series,Pennington,NJ,(Eds),PV 97-40,p.301
    [68]Tu HY,Takeda Y,Imanishi N,Yamamoto O.1999.Ln(0.4)Sr(0.6)Co(0.8)Fe(0.2)O(3-delta) (Ln = La,Pr,Nd,Sm,Gd) for the electrode in solid oxide fuel cells.Solid State Ionics,117:277-281.
    [69]Ishihara T,Fukui S,Nishiguchi H,Takita Y 2002.La-doped BaCoO_3 as a cathode for intermediate temperature solid oxide fuel cells using a LaGa03 base electrolyte.J.Electrochem.Soc.149(7):A823-A828.
    [70]Tu HY,Takeda Y,Imanishi N,Yamamoto O.1997.Ln(1-x)Sr(x)CoO(3)(Ln=Sm,Dy) for the electrode of solid oxide fuel cells.Solid State Ionics,100:283-288.
    [71]Tai LW,Nasrallah MM,Anderson HU.1993.in Singhal SC,Iwahara H.(Eds.),SOFC III, Proceedings Volume,Vol 93-4,Electrochemical Society,NJ,p.241-251.
    [72]Shao Z,Halle SM.2004.A high-performance cathode for the next generation of solid-oxide fuel cells.Nature,431:170-173.
    [73]Boehm E,Bassat JM,et al.2003.Oxygen transport properties of La_2Ni_(1-x)Cu_xO_(4+δ) mixed conducting oxides.Solid State Science,5:973-981.
    [74]Yaremchenko AA,Kharton W,Patrakeev MV,et al.2003.P-type electronic conductivity,oxygen permeability and stability of La_2Ni_(0.9)Co_(0.1)O_(4+δ).J.Mater.Chem.13:136-144.
    [75]Kharton VV,Viskup AP,Kovalevsky AV,et al.2001.Ionic transport in oxygen-hyperstoichiometric phases with K_2NiF_4-type structure.Solid State Ionics,143:337-353.
    [76]Xia CR,Liu ML.2002.Novel cathodes for low-temperature solid oxide fuel cells.Advanced Materials,14:521
    [77]Takeda T,Kanno R,Tsubosaka K,Takeda Y.2002.Low temperature SOFCs with the ruthenium pyrochlore cathode.Electrochemistry,70:969-971.
    [78]Bae JM,Steele BCH.1999.Properties of pyrochlore ruthenate cathodes for intermediate temperature solid oxide fuel cells.Journal of Electroceramics,3:37-46.
    [79]Mcintosh S,Gorte RJ.2004.Direct hydrocarbon solid oxide fuel cells.Chemical Reviews,104:4845-4865.
    [80]Rostrup-Nielsen JR,Sehested J,Norskov JK.2002.Hydrogen and synthesis gas by steam-and CO2 reforming.Advances in Catalysis,47:65-139.
    [81]Zhan ZL,Barnett SA.2005.An octane-fueled solid oxide fuel cell,Science,308:844-847.
    [82]Paratihar SK,Basu RN,Mazumder S,Maiti HS.1999.in:Singhal SC,Dokiya M,(Eds.),Proceedings of the Sixth International Symposium On Solid Oxide Fuel Cells(SOFC-Ⅵ),Honolulu,Hawaii,513.
    [83]Itoh H,Yamamoto T,Mori M,Horita T,Sakai N,Yokokawa H,Dokiya M.1997.Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes.Journal of the Electrochemical Society,144:641-646.
    [84]Iwata T.1996.Characterization of Ni-YSZ anode degradation for substrate-type solid oxide fuel cells.Journal of the Electrochemical Society,143:1521-1525.
    [85]Huebner W,Anderson HU,Reed DM,Sehlin SR,Deng X.1995.in:Dokiya M,Yamamoto O,Tagawa H,Singhal SC.(Eds.),Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells(SOFC-Ⅵ),Yokohama,Japan,159.
    [86]Tintinelli A,Rizzo C,Giunta G,Selvaggi A.1994.in:Bossel U.(Ed.),Proceedings of the First European Solid Oxide Fuel Cells Forum,vol.1,Lucerne,Switzerland,455.
    [87]Steele BCH.1994.in:Bossel U.(Ed.),Proceedings of the First European Solid Oxide Fuel Cells Forum,vol.1,Lucerne,Switzerland,375.
    [88]Zhu W,Ding D,Xia C.2008.Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method:A modeling comparison.Electrochemical and Solid State Letters,11:B83-B86.
    [89]Itoh H,Yamamoto T,Mori M,Mori N,Watanabe T.1996.in:Thorstensen B.(Ed.).Proceedings of the Second European Solid Oxide Fuel Cells Forum,vol.1,Oslo,Norway,453.
    [90]Lee JH,Moon H,Lee HW,Kim J,Kim JD,Yoon KH.2002.Quantitative analysis of microstructure and its related electrical property of SOFC anode,Ni-YSZ cermet.Solid State Ionics,148:15-26.
    [91]Haslam JJ,Pham AQ,Chung BW,DiCarlo JF,Glass RS.2005.Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell.Journal of the American Ceramic Society,88:513-518.
    [92]Gorte RJ,Vohs JM.2003.Novel SOFC anodes for the direct electrochemical oxidalion of hydrocarbons.Journal of Catalysis,216:477-486.
    [93]Matsuzaki Y,Yasuda I.2000.The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part I.Dependence on temperature,time,and impurity concentration.Solid State Ionics,132:261-269.
    [94]Koide H,Someya Y,Yoshida T,Maruyama T.2000.Properties of Ni/YSZ cermet as anode for SOFC.Solid State Ionics,132:253-260.
    [95]Mcintosh S,Gorte RJ.2004.Direct hydrocarbon solid oxide fuel cells.Chem.Rev.104:4845-4865.
    [96]Atkinson A,Barnett S,Gorte RJ,Irvine JTS,Mcevoy AJ,Mogensen M,Singhal SC,Vohs J.2004.Advanced anodes for high-temperature fuel cells,Nature Materials,3:17-27.
    [97]Xie Z,Xia CR,Zhang MY,Zhu W,Wang HT.2006.Ni_(1-x)Cu_x alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel,J.Power Sources,161:1056-1061.
    [98]Tao SW,Irvine JTS.2003.A redox-stable efficient anode for solid-oxide fuel cells,Nature Materials,2:320-323.
    [99]Vernoux P,Guillodo M,Fouletier J,Hammou A.2000.Alternative anode material for gradual methane reforming in solid oxide fuel cells.Solid State Ionics,135:425-431.
    [100]Sfeir J,Buffat PA,Mockli P,Xanthopoulos N,Vasquez R,Mathieu HJ,Van herle J,Thampi KR.2001.Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes.Journal of Catalysis,202:229-244.
    [101]Hui SQ,Petric A.2002.Electrical properties of yttrium-doped strontium titanate under reducing conditions.Journal of the Electrochemical Society,149:J1-J10.
    [102]Marina OA,Canfield NL,Stevenson JW.2002.Thermal,electrical,and electrocatalytical properties of lanthanum-doped strontium titanate.Solid State Ionics,149:21-28.
    [103]Hui S,Petric A.2002.Electrical conductivity of yttrium-doped SrTiO3:influence of transition metal additives.Materials Research Bulletin,37:1215-1231.
    [104]Hui SQ,Petric A.2002.Evaluation of yttrium-doped SrTiO_3 as an anode for solid oxide fuel cells.Journal of the European Ceramic Society,22:1673-1681.
    [105]Huang YH,Dass RI,Xing ZL,Goodenough JB.2006.Double perovskites as anodes materials for solid-oxide fuel cells,Science,312:254-257.
    [106]Ruiz-Morales JC,Canales-Vazques J,Savaniu C,Marrero-Lopes D,Zhou WZ,Irvine TS.2006.Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation,Nature,439:568-571.
    [107]Skorodumova NV,Simak SI,Lundqvist BI,Abrikosov LA,Johansson B.2002.Quantum origin of the oxygen storage capability of ceria.Physical Review Letters,89:455-461.
    [108]Steele BCH,Middleton PH,Rudkin RA.1990.Material science aspects of SOFC technology with special reference to anode development.Solid State Ionics,40-1:388-393.
    [109]Metcalfe IS,Middleton PH,Petrolekas P,Steele BCH.1992.Hydrocarbon activation in solid-state electrochemical-cells.Solid State Ionics,57:259-264.
    [110]Slater PR,Irvine JTS.1999.Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases,(Ba/Sr/Ca/La)(0.6)M(x)Nb(1-x)O(3-delta)(M = Mg,Ni,Mn,Cr,Fe,In,Sn):evaluation as potential anode materials for solid oxide fuel cells.Solid State Ionics,124:61-72.
    [111]Slater PR,Irvine JTS.1999.Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells:synthesis and electrical characterisation.Solid State Ionics,120:125-134.
    [112]Kaiser A,Bradley JL,Slater PR,Irvine JTS.2000.Tetragonal tungsten bronze type phases (Sr_(1-x)Ba_x)_(0.6)Ti_(0.2)Nb_(0.8)O_(3-delta):Material characterisation and performance as SOFC anodes.Solid State Ionics,135:519-524.
    [113]Kramer S,Spears M,Tuller HL.1994.Conduction in titanate pyrochlores-role of dopeants.Solid State Ionics,72:59-66.
    [114]Porat O,Heremans C,Tuller HL.1997.Stability and mixed ionic electronic conduction in Gd_2(Ti_(1-x)Mo_x)_2O_7 under anodic conditions.Solid State Ionics,94:75-83.
    [115]Holtappels P,Poulsen FW,Mogensen M.2000.Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications.Solid State Ionics,135:675-679.
    [116]Yasuda I,Hikita T.1993.Electrical-conductivity and defect structure of calcium-doped lanthanum chromites.Journal of the Electrochemical Society,140:1699-1704.
    [117]Quadakkers WJ,Piron-Abellan J,Shemet V,Singheiser L.2003.Metallic interconnectors for solid oxide fuel cells-a review.Materials at High Temperatures,20:115-127.
    [1] Minh NQ, Takahashi T.1995. Science and Technology of Ceramic Fuel Cells. Elsevier, Amsterdam.
    [2]Ai N,Lu Z,Chen KF,Huang XQ,Liu YW,Wang RF,Su WH.2006.Preparation of Sm_(0.2)Ce_(0.8)O_(1.9) membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC.Journal of Membrane Science,286(1-2):255-259.
    [3]Will J,Mitterdorfer A,Kleinlogel C,Perednis D,Gauckler LJ.2000.Fabrication of thin electrolytes for second-generation solid oxide fuel cells.Solid State Ionics,131:79-96.
    [4]Song JH,Park SI,Lee JH,Kim HS.2008.Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC.Journal of Materials Processing Technology,198:414-418.
    [5]Singhal SC.2002.Solid oxide fuel cells for stationary,mobile,and military applications.Solid State Ionics,152:405-410.
    [6]Bebelis S,Kotsionopoulos N,Mai A,Rutenbeck D,Tietz F.2006.Electrochemical characterization of mixed conducting and composite SOFC cathodes.Solid State Ionics,177:1843-1848.
    [7]Adler SB.2004.Factors govering oxygen reduction in solid oxide fuel cell cathodes.Chem.Rev.104:4791-4843.
    [8]Steele BCH.1996.Survey of materials selection for ceramic fuel cells.Solid State Ionics,86-88:1223-1234
    [9]Kenjo T,Kanehira Y.2002.Influence of the local variation of the polarization resistance on SOFC cathodes.Solid State Ionics,148:1-14.
    [10]van Heuveln FH,Bouwmeester HJM.,van Berkel FP F.1997.Electrode properties of Sr-doped LaMnO_3 on yittria-stabilized zirconia.J.Elelctrochem.Soc.,144:126-133
    [11]Horita T,Yamaji K,Sakai N,er al,2000.Oxygen reduction sites and diffusion paths at La_(0.9)Sr_(0.1)MnO_(3-x)/yittria-stabilized zirconia interface for different cathodic overvoltages by secondary-ion mass spectrometry.Solid State Ionics,127:55-65
    [12]Gharbage B,Pagnier T,Hammou A.1994.J.Electrochem.Soc,141:2118-2121
    [13]Steele BCH.2000.Materials for IT-SOFC stacks 35 year R&D:the inevitability of gradualness?Solid State Ionics,134:3-20
    [14]Adler SB,Lane JA,Steele BCH.1996.Electrode kinetics of porous mixed-conducting oxygen electrodes.J.Electrochem.Soc.143(11):3554-3564.
    [15]付清溪,2002.新型中温燃料电池关键材料的研究,博士学位论文.
    [16]Nagata M,Itoh Y,Iwahara H.1994.Dependence of observed overvoltages on the positioning of the reference electrode on the solid-electrolyte.Solid State Ionics,67:215-224.
    [17]Boukamp BA,Vinke IC,Seshan K,De Vries KJ,Burggraaf AJ.1988.Influence of electrode geometry and NLLS fit analysis of I-V measurements in a three-electrode cell.Solid State Ionics,28-30:1187
    [1] Zheng F, Pederson LR. 1999. Phase Behavior of Lanthanum Strontium Manganites. Journal of The Electrochemical Society, 146(8): 2810-2816.
    [2] Dusastre V, Kilner JA. 1999. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126 (1-2): 163-174.
    [3] Jiang Y, Wang S, Zhang Y, Yan J, Li W. 1998. Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode. Solid State Ionics, 110(1-2):111-119.
    [4] Ishikawa K, Kondo S, Okano H, Suzuki S, Suzuki Y. 1987. Bull. Chem.Soc.Jpn. 60: 1295.
    [5] Vashook VV, Yushkevich II,Kokhanovsky LV, Makhnach LV, Tolochko SP, Kononyuk IF,Altenburg H. 1999. Composition and conductivity of some nickelates. Solid State Ionics,119(1-4):23-30.
    [6] Boehm E, Bassat JM, Mauvy F, Grenier JC, Dordor PA, Wattiaux M, Mc Evoy IAJ. 2000. Proc.of the 4th European Solid Oxide Fuel Cell Forum, U. Bossel, Oberrohrdorf, Switzerland, pp.717-724.
    [7] Munnings CN, Skinner SJ, Amow G,Whitfield PS, Davidson IJ.2005. Oxygen transport in the La_2Ni_(1-x)Co_x0_(4+δ) system. Solid State Ionics, 176(23-24): 1895-1901.
    [8] Al Daroukh M, Vashook VV,Ullmann H, Tietz F, Arual RI.2003. Oxides of the AMO_3 and A_2MO_4-type:structural stability, electrical conductivity and thermal expansion. Solid State Ionics, 158(1-2):141-150.
    [9] Cynthia KMS, Kilner IAJ. 2000. Proc.of the 4th European Solid Oxide Fuel Cell Forum, C.Lucerne, Switzerland, pp. 611-620.
    [10] Mauvy F, Bassat JM, Boehm E, Manaud JP, Dordor P, Grenier JC. 2003. Oxygen electrode reaction on Nd_2NiO_(4+δ) cathode materials: impedance spectroscopy study. Solid State Ionics,158(1-2):17-28.
    [11] Kharton VV, Tsipis EV,Yaremchenko AA, Frade JR. 2004. Surface-limited oxygen transport and electrode properties of La_2Ni_(0.8)Cu_(0.2)O_(4+δ).Solid State Ionics,166(3-4): 327-337.
    [12] DiCarlo JF, Yazdi I, Bhavaraju S, Jacobson AJ. 1993. Electrochemical intercalation of oxygen in lanthanum nickel oxide (La_2NiO_(4+x))(0≤x≤0.145).Chemistry of Materials, 5(12):1692-1693.
    [13] Jorgensen J, Dabrowski B, Pei S, Richards D, Hinks D. 1989. Structure of the interstitial oxygen defect in La_2NiO_(4+δ).Physical Reviews B,40(4):2187-2199.
    [14] Xia CR, Rauch W, Chen FL,Liu ML. 2002.Sm_(0.5)Sr_(0.5)CoO_3 cathodes for low-temperature SOFCs. Solid State Ionics, 149(1-2):11-19.
    [15] Murray EP, Sever MJ, Barnett SA. 2002. Electrochemical performance of (La,Sr)(Co,Fe)O_3-(Ce,Gd)O_3 composite cathodes. Solid State Ionics,148(1-2):27-34.
    [16] Fan X, Xia CR, Yang X, Meng GY. 2004. Microstructures and interfacial resistance of LSM-SDC composite cathodes for IT-SOFCs. J. Inorg. Mater.19(5):1038
    [17] Vashook VV, Ullmann H, Kokhanovsky LV, Kulik VP, Lukashevich VE, Kokhanovskij LV.2000. Composition and electrical conductivity of some cobaltates of the type La_(2-x)Sr_xCoO_(4.5-x/2±δ).Solid State Ionics, 138(1-2):99-104.
    [18] Jiang SP, Chan SH. 2004. A review of anode materials development in solid oxide fuel cells.Journal of Materials Science, 39(14): 4405-4439.
    [19] Leng YJ, Chan SH, Jiang SP,Khor KA. 2004. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170(1-2):9-15.
    [20] Xia CR, Liu ML. 2001.Low-temperature SOFCs based on Gd_(0.1)Ce_(0.9)O_(1.95) fabricated by dry pressing. Solid State Ionics, 144(3-4): 249-255.
    [1] Jiang SP, Chan SH. 2004. A review of anode materials development in solid oxide fuel cells.Journal of Materials Science, 39(14): 4405-4439.
    [2] Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J.2004. Advanced anodes for high-temperature fuel cells. Nature Materials, 3(1):17-27.
    [3] Sata N, Eberman K, Eberl K,Maier J. 2000. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 408: 946-949.
    [4]Gu Q,Falk A,Wu JQ,Lian OY,Park H.2007.Current-Driven Phase Oscillation and Domain-Wall Propagation in W_xV_(1-x)O_2 Nanobeams.Nano Letters,7(2):363-366.
    [5]Vanherle J,Horita T,Kawada T,Sakai N,Yokokawa H,Dokiya M.1996.Sintering behaviour and ionic conductivity of yttria-doped ceria.Journal of the European Ceramic Society,16(9):961-973.
    [6]Laosiripojana N,Assabumrungrat S.2006.The effect of specific surface area on the activity of nano-scale ceria catalysts for methanol decomposition with and without steam at SOFC operating temperatures.Chemical Engineering Science,61(8):2540-2549.
    [7]Tschope A,Kilassonia S,Zapp B,Birringer R.2002.Grain-size-dependent thermopower of polycrystalline cerium oxide.Solid State Ionics,149(3-4):261-273.
    [8]Tschope A.2005.Interface Defect Chemistry and Effective Conductivity in Polycrystalline Cerium Oxide.Journal of Electroceramics,14(1):5-23.
    [9]Sholklapper TZ,Kurokawa H,Jacobson CP,Visco SJ,De Jonghe LC.2007.Nanostructured Solid Oxide Fuel Cell Electrodes.Nano Letters,7(7):2136-2141.
    [10]Putna ES,Stubenrauch J,Vohs JM,Gorte R.J.1995.Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells.Langmuir,11(12):4832-4837.
    [11]Craciun R,Park S,Gorte R.J,Vohs JM,Wang C,Worrell WL.1999.A Novel Method for Preparing Anode Cermets for Solid Oxide Fuel Cells.Journal of the Electrochemical Society,146(11):4019-4022.
    [12]Jiang SP,Zhang JP,Apateanu L,Foger K.1999.Deposition of chromium species on Sr-doped LaMnO_3 cathodes in solid oxide fuel cells.Electrochemistry Communications,1(9):394-397.
    [13]Jiang SP.2006.A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells.Materials Science and Engineering:a-Structural Materials Properties Microstructure and Processing,418(1-2):199-210.
    [14]Jiang SP,Leng YJ,Chan SH,Khor KA.2003.Development of(La,Sr)MnO_3-based cathodes for intermediate temperature solid oxide fuel cells.Electrochemical and Solid-State Letters,6(4):A67-A70
    [15]Adler SB.2004.Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes.Chemical Reviews,104(10):4791-4844.
    [16]Ormerod RM.2003.Solid oxide fuel cells.Chemical Society Reviews,32:17-28.
    [17]Minh NQ,Takahashi T.1995.Science and Technology of Ceramic Fuel Cell,Elsevier,Amsterdam,Netherlands,p117.
    [18] Petric A, Huang P, Tietz F. 2000. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 135(1-4): 719-725.
    [19] Dusastre V, Kilner JA. 1999. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics,126(1-2):163-174.
    [20] Murray EP, Sever MJ, Barnett SA. 2002. Electrochemical performance of (La,Sr)(Co,Fe)O_3-(Ce,Gd)O_3 composite cathodes. Solid State Ionics, 148(1-2):27-34.
    [21] 朱威.2006.以碳氢化合物为燃料的中温固体氧化物燃料电池的新型阳极,博士学位论文
    [22] Huang Y, Ahn K,Vohs JM, Gorte RJ. 2004. Journal of the Electrochemical Society, 151(10):A1592-A1597.
    [23] Shao ZP, Haile SM. 2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 431:170-173
    [24] Wanzenberg E, Tietz F, Kek D, Panjan P, Stover D. 2003. Influence of electrode contacts on conductivity measurements of thin YSZ electrolyte films and the impact on solid oxide fuel cells. Solid State Ionics,164(3-4):121-129
    [25] Jiang SP, Love JG,Apateanu L. 2003. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells. Solid State Ionics, 160(1-2):15-26
    [1] Park S, Gorte RJ, Vohs JM. 2001.Tape cast solid oxide fuel cell for the direct oxidation of hydrocarbons. Journal of the Electrochemical Society, 148(6): A443-A447
    [2] Jiang SP, Leng YJ, Chan SH, Khor KA. 2003. Development of (La, Sr)MnO3-based cathodes for intermediate temperature solid oxide fuel cells. Electrochemical and Solid-State Letters,6(4): A67-A70
    [3] Peng RR, Xia CR, Fu QX, Meng GY, Peng DK. 2002. Sintering and electrical properties of (CeO_2)_(0.8)(Sm_2O_3)_(0.1) powders prepared by glycine-nitrate process. Mater. Lett. 56: 1043-1047
    [4]Ding D, Liu BB, Zhu ZN, Zhou S, Xia CR. 2008. High reactive Ce_(0.8)Sm_(0.2)O_(1.9) powders via a carbonate co-precipitation method as electrolytes for low-temperature solid oxide fuel cells,Solid State Ionics,179: 896-899
    [5] Verwey EJW, Orerbeek JTG 1948.Theory of the Stability of Lyophobic Colloids,Elsevier,Amsterdam,
    [6] Jiang SP. 2006. A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering A 418:199-210
    [7] Eguchi K, Setoguchi T, Inoue T,Arai H.1992. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52: 165-172.
    [8]Xia CR,Liu ML.2001.Low-temperature SOFCs based on Gd_(0.1)Ce_(0.9)O_(1.95) fabricated by dry pressing.Solid State Ionics 144:249-255.
    [9]Xia CR,Chen FL,Liu ML.2001.Reduced-temperature solid oxide fuel cells fabricated bu screen printing.Electrochem.Solid-State Lett.4(5):A52-A54.
    [10]Zhang X,Robertson M,Yick S,De Petit C,Styles E,Qu W,Xie YS,Hui R,Roller J,Kesler O,Maric R,Ghosh D.2006.Sm_(0.5)Sr_(0.5)CoO_3+Sm_(0.2)Ce_(0.8)O_(1.9) composite cathode for cermet supported thin Sm_(0.2)Ce_(0.8)O_(1.9) electrolyte SOFC operating below 600℃.J.Power Sources 160:1211-1216.
    [11]Wang ZC,Weng WJ,Chen K,Shen G,Du PY,Han GR.2008.Preparation and performance of nanostructured porous thin cathode for low-temperature solid oxide fuel cells by spin-coating method.J.Power Sources 175:430-435.
    [12]Oishi N,Atkinson A,Brandon NP,Kilner JA,Steele BCH.2005.Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550℃.J.Am.Ceram.Soc.88(6):1394-1396.
    [13]Leng YJ,Chan SH,Jiang SP,Khor KA.2004.Low-temperature SOFC with thin film GDCelectrolyte prepared in situ by solid-state reaction.Solid State Ionics 170:9-15.
    [14]Zhang YH,Huang XQ,Lu Z,Liu ZG,Ge XD,Xu JH,Xin XS,Sha XQ,Su WH.2006.A screen-printed Ce_(0.8)Sm_(0.2)O_(1.9) film solid oxide fuel cell with a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) cathode.J.Power Sources 160:1217-1220.
    [15]Baumann FS,Fleig J,Cristiani G,Stuhlhofer B,Habermeier HU,Maier J.2007.Quantitative comparison of mixed conducting SOFCcathode materials by means of thin film model electrodes.J.Electrochem.Soc.154(9):B931-B941.
    [16]Yan AY,Cheng MJ,Dong YL,Yang WS,Maragou V,Song SQ,Tsiakaras P.2006.Investigation of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) based cathode IT-SOFC-1.The effect of CO_2 on the cell performance.Applied Catalysis B:Environmental 66:64-71.
    [17]Ai N,Lu Z,Chen KF,Huang XQ,Wei B,Zhang YH,Li SY,Xin XS,Sha AQ,Su WH.2006.Low temperature solid oxide fuel cells based on Sm_(0.2)Ce_(0.8)O_(1.9) films fabricated by slurry spin coating.J.Power Sources 159:637-640.
    [18]Jiang SP.2007.Activation,microstructure,and polarization of solid oxide fuel cell cathodes.J.Solid State Electrochem.11:93-102.
    [19]Sholklapper TZ,Radmilovic V,Jacobson CP,Visco SJ,De Jonghe LC.2007.Synthesis and stability of a nanoparticle-infiltrated solid oxide fuel cell electrode.Electrochem.Solid-State Lett.10(4):B74-B76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700