用户名: 密码: 验证码:
水稻耐冷性遗传研究及低温胁迫相关基因Osdhn2的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻籼粳杂种具有强大的杂种优势,但籼粳杂种的低温敏感性是限制其利用的因素之一。以17个不同类型的籼、粳、爪哇型品种及其杂种为材料,通过分期播种,研究了温度变化对花粉育性的影响。结果表明,当花粉母细胞减数分裂期的日平均气温低于22-23℃时,亚种间杂种的花粉育性显著降低,不同组合花粉育性存在明显差异,而品种间杂种和常规品种的花粉育性受影响较小;当花粉母细胞减数分裂期的日平均气温低于20℃时,常规品种和品种间杂种的花粉发育也受到不同程度的影响,不同品种与组合间存在差异。花粉母细胞减数分裂期的日平均温度与花粉育性的相关性分析表明,温度与亚种间杂种花粉育性呈显著正相关。说明减数分裂期的亚种间杂种花粉育性受温度影响,温度对亚种间杂种花粉育性的影响较常规品种大.为探明籼粳杂种低温花粉不育的遗传基础,以籼稻品种3037和粳型广亲和品种02428的F_2分离群体进行了低温花粉不育的遗传分析。通过推迟播种调节抽穗期后,F_2群体花粉母细胞减数分裂期的日平均温度为21~23℃,调查了F_2群体各单株的花粉育性。利用108对SSR引物构建了包含157个F_2单株,覆盖12条染色体的分子标记连锁图谱。该连锁图的总长度为1857.8 cM,标记间平均距离为16.26 cM。采用区间作图法对F_2群体花粉不育性进行QTL分析,共检测到2个低温花粉不育QTL,即qLTSPS2和qLTSPS5,分别位于第2、5染色体,其加性效应分别为0.021、0.045,显性效应分别为-0.246、-0.251,显性度分别为11.7和4.8,具有超显性效应,分别解释表型变异的15.6%、11.9%。两因素的方差分析表明这两个QTL之间不存在互作。
     利用强耐冷品种日本晴和不耐冷品种Kasalath及其衍生的98个(Nipponbare/Kasalath∥Nipponbare)回交重组自交家系(BILs)进行了水稻芽期耐冷性数量性状基因座的检测和遗传效应分析。25℃正常条件下水稻发芽7d,芽长5-10mm,5℃低温处理10d,之后升温至25℃,缓苗10d,调查活苗率,并以活苗率作为芽期耐冷性的表型值,分析亲本和98个BILs的芽期耐冷性表现。采用复合区间作图法,共检测到4个芽期耐冷性QTL,分别位于第3、第7和第12染色体上,命名为qSCT-3-1、qSCT-3-2、qSCT-7和qSCT-12。4个QTL的LOD值分别为3.51,3.68,2.03和3.61,可解释群体表型变异的12.11%,12.66%,6.82%和15.86%。在第3染色体检测到的qSCT-3-1与前人检测到的耐盐QTL在同一区间,qSCT-3-2与前人检测到的低温发芽QTL在同一区间。通过生物信息学的方法发现在第3染色体qSCT-3-1所在区域存在一个KS型脱水蛋白。利用RT-PCR方法,从水稻中克隆了该KS型脱水蛋白基因(Osdhn2,GenBank登录号:D26538)。对克隆的Osdhn2基因的生物信息学分析表明:其亲源关系与茄子的脱水蛋白更近,Osdhn2编码蛋白与茄子的脱水蛋白同源性达86%;而与大麦和小麦的KS型蛋白基因同源性67%。序列分析表明Osdhn2编码蛋白具有两个脱水蛋白保守的结构域,即一个富含赖氨酸片段(K片段)和一个丝氨酸片段(S片段)。进一步分离克隆了Osdhn2的基因组DNA,Osdhn2基因具有1个完整的外元,1个内元位于3'端非编码区。组织表达谱分析表明,Osdhn2在幼苗的根中低表达,在未成熟胚、幼穗、叶片、茎中都有表达,盐胁迫后根中表达增加。定量PCR表明Osdhn2在雌蕊中高表达,而在花药中低表达,开花授精后,在种子中表达迅速降低。定量PCR表明在干旱和低温胁迫处理后,其表达显著增强。利用PCR克隆了9311和Kasalath的Osdhn2基因及其上游约800bp启动子序列,对其进行了序列比较,发现9311在该区域与日本晴不存在序列差异,而Kasalath在启动子上游557bp处存在一个碱基的差异。为进一步研究该启动子组织表达特性,从日本晴克隆了1.3kb的启动子序列,构建了Osdhn2基因启动子GUS转基因表达载体,目前已获得转基因幼苗。
     将Osdhn2基因克隆到原核表达载体pET32a(+)系统,诱导基因表达,携带有Osdhn2的大肠杆菌在800mmol/LNaCl或700mmol/L KCl或4℃处理后其生长速度明显快于对照。这表明,携带水稻KS型脱水蛋白的大肠杆菌可以提高大肠杆菌耐低温和耐盐能力。
     为分析Osdhn2基因的功能,我们构建了Osdhn2基因的CaMV35S驱动的过量表达载体,并转化芽期不耐冷的籼稻品种Kasalath,转基因T_1代种子经潮霉素抗性筛选和PCR鉴定后,对阳性株系芽期耐冷性鉴定,发现其芽期耐冷能力明显好于野生型,初步说明KS型脱水蛋白基因与水稻耐冷性有关;在200mM NaCl溶液中发芽和生长3周后,转基因株系耐盐能力也明显提高。为了功能互补分析,我们构建了该基因的RNA干扰载体,并以玉米Ubiquitin启动子驱动,目前已获得转基因幼苗。
There existed a number of biological constraints in exploiting the heterosis between indiea and japonica hybrid rice.The low-temperature-sensitive sterility(LTSS) of indica-japoniea hybrid has become one of the major problems in indica-japonica hybrid rice breeding after the solution to the problem of poor fertility of the hybrids with the finding of wide-compatibility gene.The previous studies revealed that the LTSS might be caused by low-temperature-sensitive pollen sterility(LTSPS).However,the genetic basis of LTSPS remained unclear.
     Seventeen rice cultivars and hybrids in different types(indica,japonica,javanica,indica hybrid,japonica hybrid and inter-subspecific hybrid) were evaluated to determine the effect of temperature on pollen fertility.Results showed that the pollen fertility of inter-subspecific hybrids was greatly reduced at miosis stage when the average daily temperature dropped to 22.0-23.0℃,and the extent of pollen fertility reduction varied greatly in different hybrids.However,the pollen fertility reduction of indica and japanica hybrids and conventional cultivars was not obvious under the same temperature conditions. When the average daily temperature dropped to 20℃,pollen development of conventional cultivars and hybrids was also affected.Correlation analysis revealed that there existed positive correlation between pollen fertility and average daily temperature.Temperature at miosis stage was a key factor to pollen development,and the pollen fertility of inter-subspecific hybrids was more sensitive to low temperature than that of conventional variety.
     To explore the genetic basis of LTSPS in indica-japonica hybrid rice,an F_2 genetic population derived from 3037(indica) and 02428(japonica) was developed.At the booting stage,pollen fertility of F_2 population together with parents were surveyed after the treatment with low temperature daily average 21~23℃.The linkage map was constructed containing 108 SSR markers distributed throughout the whole 12 chromosome with average marker interval 16.26 cM.Using software MapMaker/QTL,two putative QTL, namely qLTSPS2 and qLTSPS5 on chromosomes 2 and 5 were detected by interval mapping,which can explain the phenotypie variation 15.6%and 11.9%respectively.The additive effects were 0.021 and 0.045,dominant effects were -0.246 and -0.215,and the degrees of dominance were 11.7 and 4.8,respectively for the two QTL,therefore the mode of gene action in response to low-temperature stress was overdominanee and LTSPS is mainly the result of interaction between the indica and japonica alleles within each locus.In addition,two-way ANOVA showed that the two QTL acted essentially independent of each other in conditioning LTSPS.
     Low temperature induced retardation of seedling growth is a common problem in temperate dee growing areas.To gather more information regarding cold-tolerance in rice (Oryza sativa L.),we identified gene loci controlling cold tolerance at early seedling stage. We analyzed the quantitative trait loci(QTL) using 98 backcross-inbred lines(BIL) derived from the backeross between Nipponbare(strongly cold-tolerant rice,as recurrent parent) and Kasalath(cold susceptible dee).A total of 4 QTL were detected,located on four regions on chromosomes 3,7 and 12,which can explain the phenotypie variation 12.11%, 12.66%,6.82%and 15.86%respectively.The additive effects were 11.16,11.14,-8.8 and -14.59,respectively for the four QTL.
     Dehydrins(DHNs,LEA D11 family) are among the most commonly observed proteins induced by environmental stress associated with dehydration or low temperature.A novel full-length cDNA of a KS-type dehydrin,designated Osdhn2,has been isolated by the combination of bioinformatics and PCR based approaches.A homology tree of KS-type dehydrin from various species including solanum wheat barley arabidopsis alfalfa ricinus citrus revealed that Osdhn2 had a closer evolutionary relationship with solanum. Meanwhile,the putative peptide of Osdhn2 includes two important Putative conserved domains:lysine segment(K segment) and serine segment(S segment).Furthermore,the corresponding genomie clone was isolated and sequenced,and it was composed of 1 exons and 1 introns in the 3'UTR.RT-PCR analysis showed that the Osdhn2 transcripts were detected in all tissues including shoot,matured leaves,old leaves,and developing seeds but low levels in root.The Real-Time PCR revealed that the abundance of Osdhn2 transcripts was detected markedly in matured leaves,pistil.Osdhn2 expression improved after drought,salt and low temperature stress.
     In order to identify the function of Osdhn2,in vitro functional analyses were performed using an Escherichia coli heterologous expression system.Osdhn2 were cloned and expressed in a pET-32a(+) system.E.coli cells containing the recombinant plasmids or empty vector as controls were treated by salt and low temperature stress.Compared with control cells,the E.coli cells expressing Osdhn2 showed a shorter lag period and improved growth when transferred to LB liquid media containing 800 mmol/L NaCl or 700 mmol/L KCl or after 4℃treatment.The results indicate that the E.coli expression system is a simple,useful method to identify the function of some stress-tolerant genes from plants.
     The overexpression binary vector of Osdhn2 fused with the constitutively expression promoter CaMV35S has been constructed and transformed to indiea rice Kasalath.The cold tolerance at early seedling stage of transgenic Kasalath has been improved compared with the wild-type and salt tolerance of transgenic Kasalath is also improved when germinated in presence of 200mM NaCl solution.The results showed that the function of Osdhn2 is related to confer clod and salt tolerance.To carry out the complementary test,the RNAi binary vector of Osdhn2 has been constructed and transformed.Also the promoter of Osdhn2 fusion GUS binary construct is also underway.
引文
陈大洲,钟平安,肖叶青,等.利用SSR标记定位东乡野生稻苗期耐冷性其因.江西农业大学学报(自然科学版).2002,24(6):753-757.
    戴陆圆,叶昌荣,熊建华,等.水稻耐冷性鉴定方法.中国水稻科学.1999,12(1):62-63.
    金润渊.日本关于水稻耐冷性鉴定及其遗传的研究.水稻文摘.1990,9(3):1-5.
    李和标,李传国.籼粳杂种F1结实率稳定性研究.江苏农业学报.1995,11(3):7-11
    吕川根,邹江石.水稻亚种间亲和性的研究进展.江苏农业学报.2000,16(1):50-56
    吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响.作物学报,2002,28(41):499-504
    潘铁夫.农作物低温冷害及其防御.北京:农业出版社,1983.
    钱前,曾大力,何平,等.水稻籼粳交DH群体苗期的耐冷性QTLs分析.科学通报.1999,44(22):2402-2408.
    乔永利,韩龙直,安永平,等.水稻芽期耐冷性QTL的分子定位.中国农业科学.2005,38(2):217-221.
    滕胜,曾大力,钱前,等.低温条件下水稻发芽力QTL的定位分析.科学通报.2001,46(21):1800-1803.
    杨杰,万建民,翟虎渠,等.温度对亚种间杂种花粉育性的影响.中国水稻科学,2003,17(2):145-148.
    严长杰,李欣,朱立煌,等.利用分子标记定位水稻芽期耐冷性基因,中国水稻科学.1999,13(3):134-138.
    叶昌荣,廖新华,戴陆圆,等.水稻孕穗期耐冷性影响因子.中国水稻科学.1998,12(1):6-10.
    袁隆平.从育种角度展望我国水稻的增产潜力.杂交水稻.1996,11(4):1-4.
    詹庆才,曾曙珍,熊伏星,等.水稻苗期耐冷性QTLs的分子定位.湖南农业大学学报(自然科学版).2003,29(1):7-11.
    邹江石,聂毓琦,潘启民.广亲和选系02428在籼粳亚种间杂交的初步利用.中国农业科学.1989,22(1):6-14.
    曾亚文,申士全,林兴华,等.籼梗水稻杂交后代孕穗期耐冷性研究.华中农业大学学报.2000,19(5):411-416.
    中国农业科学院主编,中国稻作科学,中国农业出版社出版.1986,619-623
    Adachi J,Aizawa K,Akimura T.Collection,mapping and annotation of over 28,000 cDNA clones from japonica rice.Science.2003,301(5631):376-379.
    Agarwal M.Hao YJ,Kapoor A,et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.,J.Biol.Chem.2006,281:37636-37645.
    Aguan K,Sugawara K,Suzuki Net al.Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method.Plant Cell Physiol.1991,32:1285-1289
    Allagulova C R,Gimalov F R,Shakirova F M,et al.The plant dehydrins:structure and putative functions.Biochemistry.2003,68:945-951.
    Andayal V.C,Maekill D.J.Mapping of QTL associated with cold tolerance during the vegetative stage in rice.J.Experimental Botany.2003a,54:2579-2585.
    Andayal V C,Mackill D J.QTL conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica/indiea cross.Theor.Appl.Genet.2003b,106:1084-1090.
    Artus N N,Uemura M,Steponkus P L,et al.Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance.Proc.Natl.Acad.Sci.USA.1996,93:13404-13409.
    Artlip T,Wisniew ski M.Tissue specific expression ofa dehydrin gene in one year old 'Rio O so Gem' peach trees.J Am Soc Hort Sci.1997,122:784-787.
    Aryadeep R C,Chaitali R,Dibyendu N.Transgenic tobacco plants over-expressing the heterologous lea gene Rab 16A from rice during high salt and water deficit display enhanced tolerance to salinity stress.Plant Cell Rep.2007,26:1839-1859.
    Asghar R,Fenton R D,DeM ason D A,et al.Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin.Protoplasma.1994,177:87-94.
    Basten C J,Weir B S,Zeng Z B.QTL CARTOGRAPHER:a reference manual and tutorial for QTL mapping.Department of Statistics,North Carolina State University,Raleigh,North Carolina,USA.1998.
    Benedict C,Geisler M,Trygg J et al.Consensus by democracy.Using meta analyses of microarray and genomie data to model the cold acclimation signaling pathway in Arabidopsis.Plant Physiol.2006,141:1219-1232.
    Borovskii G B,Stupnikova I V,Antipina A I et al.Accumulation of dehydrin-like proteins in the mitoehondria of cereals in response to cold,freezing,drought and ABA treatment.BMC Plant Biology.2002,2:1-7
    Borsani,Zhu J,Verslues P E et al.Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005,123:1279-1291.
    Bracale M, Levi M, Savini C et al. Water deficit in pea root tips: effects on the cell cycle and on the production of dehydrin like proteins. Ann Bot. 1997, 79: 593-600.
    Bravo L A, Gallardo J; Navarrete A, et al. Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant. 2003,118: 262-26
    Bray E A, Bailey-Serres J, Weretilny KE. Responses to abiotic stresses. In: Buchanan B,Gruissem W, Jones RL, ed. Biochemistry and molecular biology of plants. MD:American Society of Plant Physiologists. 2000,1158-1203.
    Busk P K, Pages M. Regulation of abscisic acid induced transcription. Plant Mol Biol. 1998,37: 425-435.
    Cai Q, Moore G A, Guy C L. An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol. 1995,29(1):11-23.
    Cellier F, Conejero G, Casse F. Dehydrin transcript fluctuations during a day/night cycle in drought stressed sunflower. J Exp Bot. 2000, 51: 299-304.
    Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 2003,17:1043-1054.
    Choi D W , Close T J. A newly identified barley gene, dhn 12, encodes a YSK2 DHN, is located on chromosome 6H and has embryo specific expression. Theor. Apll. Genet.2000,100: 1274-1278.
    Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physl. Plant. 1996, 97: 795-803.
    Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physl. Plant. 1997,100: 291-296.
    Cook, D. Fowler S, Fiehn O, et al. A prominent role for the CBF cold responsive pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci.2004,101:15243-15248.
    Dai XY, Xu YY, Ma Q B, et al. Over-expression of a R1R2R3 MYB gene, OsMYB3R-2,increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis.Plant Physiol. 2007,143:1739-1751.
    Danyluk J , Perron A, HoudeM, et al. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 1998,10:623-638.
    Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol.2005,139:847-856.
    Dong C.H, Hu X, Tang W, et al. A putative Arabidopsis nucleoporin AtNUP160 is critical for RNA export and required for plant tolerance to cold stress. Mol. Cell. Biol. 2006a,26:9533-9543.
    Dong, C.H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses,HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.Proc. Natl. Acad. Sci. U. S. A. 2006b, 103:8281-8286.
    Egerton Warburton L M, Balsamo R A, Close T J. Temporal accumulation and ultrastructural localization of dehydrins in Zea mays L. Physl. Plant. 1997,101:545-555.
    Eom J, Baker W, Kintanar A, et al. The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured in solution. Plant Sci. 1996,115:17-24.
    Eulgem T. The WRKY superfamily of plant transcription factors. Trends Plant Sci.2000,5:199-206.
    Fowler S, Thomashow M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002,14:1675-1690.
    Fowler S.G, Cook D, Thomashow MF. Low temperature induction of Arabidopsis CBF1,2,and 3 is gated by the circadian clock. Plant Physiol. 2005,137:961-968.
    Fujino K, Sekiguchi H, Sato, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet.2004,108:794-799.
    Giordani T, Natali L, D'Ercole A, et al. Expression of dehydrin gene during embryo development and drought stress in ABA deficient mutants of sunflower (Helianthus annuus L.) .Plant Mol Biol. 1999,39:739-748.
    Goday A, Jensen A B, Culianez Macia F A, et al. The maize abcisic acid responsive protein RAB17 is located in the nucleus and interactes with nuclear localization signals. Plant Cell. 1994,6:351-360.
    Godoy J, Lunar R, Torres Schumann S, et al. Expression, tissue distribution and subcellular localization of dehydrin TA S14 in salt stressed tomato plants. Plant Mol Biol.1994,26:1921-1934.
    Gong Z, Lee H, Xiong L, et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci.U.S. A 2002,99:11507-11512.
    Gong Z, Dong C H, Lee H, et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell.2005,17:256-267.
    Gowrishankar J. Identification of osmoresponsive genes in E. coli: Evidence for participation of potassium and praline transport systems in osmoregegulation. J.Biochem. 1985,164:434-445.
    Hannah M A, Heyer A G, Hincha D K et al. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005,1(2): 179-196
    Hannah MA, Wiese D, Freund S, et al. Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 2006,142:98-112.
    Hara M, Terashima S, Kuboi T. Characterization and cryoprotective activity of cold responsive dehydrin from Citrus unshiu. J Plant Physiol, 2001,158:1333-1339.
    Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta.2003,217:290-298.
    Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus Dehydrin. Plant Physiol Biochem. 2004,42:657-662.
    Hara M, Fujinaga M, Kuboi T. Metal binding by citrus dehydrin with histidine-rich Domains. J. Exp. Bot.. 2005,56 (420):2695-2703.
    Hayase H T, Satake J, Nishiyama, et al. Male Sterility caused by cooling treatment at the meiotic stage in rice plants. The most sensitive stage to cooling and the fertilizing ability of pistils. Proc. Crop Sci. Japan. 1969,39: 706-711.
    Higo, K., Y. Ugawa, M. Iwamoto, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Research. 1999,27 : 297-300
    Hsieh T. H, Lee J. T, Charng Y Y, et al. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 2002a,130:618-626.
    Hsieh T. H, Lee J. T, Yang P T, et al. Heterology expression of the Arabidopsis C-repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 2002b, 129:1086-1094.
    Houde M,Daniel C,Lachapelle M,et al.Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues.Plant J.1995,8:583-593.
    Hu Y.X,Wang Y H,Liu X F,et al.Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development.Cell Res.2004,14:8-15.
    Ikeda R.Research on hybrid dee in Japan-progress and future direction(in Japanese).J..Agric.Sci.1994,49:478-492.
    Ikehashi H,Araki H.Screening and genetic analysis of wide-compatibility in F;hybrid of distant crosses in rice(Oryza sativa L.).Ibaraki:Technical Bulletin of Tropical Agriculture Center,1987,1-79.
    Ishimaru K.Identification of a locus increasing dee yield and physiological analysis of its function.Plant Physiology.2003,133:1083-1090.
    Ismail A M,Hall A E,Close T J.Allelie variation ofa dehydrin gene cosegregates with chilling tolerance during seedling emergence,Proc.Natl.Acad.Sci.USA.1999a,96:13566-13570.
    Ismail A M,Hall A E,Close T J.Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea.Plant Physl.1999b,120:237-244.
    Jang C S,Lee H J,Chang,S J,et al.Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat(Triticum aestivum L.).Plant Science.2004,167:995-112.
    Jean-Made Mouillon,Petter Gustafsson,Pia Harryson.Structural investigation of disordered stress proteins.Comparison of full-length dehydrins with isolated peptides of their conserved segments.2006,Plant Physiology 141:638-650.
    Jensen A B,Goday A,F iguerasM,et al.Phosphorylation mediates the nuclear targeting of the maize RAB17 protein.PlantJ.1998,13:691- 697.
    Jiang L,Xun MM,Wang JK,et al.QTL analysis of cold tolerance at seedling stage in rice (Oryza sativa L.) using recombination inbred lines,Journal of Cereal Science 2008(In press)
    Jones-Rhoades,M.W.Barrel DP,Barrel - Armu B,et al.MicroRNAs and their regulatory roles in plants.Annu.Rev.Plant Biol.2006,57:19-53.
    Kaplan F, Kopka J, Haskell DW, et al. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004,136: 4159-4168.
    Kaye C, Neven L, Hofig A, et al. Characterization of a gene for spinach CAP160 and expression of two spinach cold acclimation proteins in tobacco, Plant Physiol. 1998,116:1367-1377.
    Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs.Nucleic Acids Research, 1987,15:8125-8148
    Kazuoka T, Oeda K, Purification and characterization of COR85 oligomeric complex from cold-acclimated spinach. Plant Cell Physiol. 1994,35: 601-611.
    Kim J.C, Lee SH, Cheong YH, et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J.2001,25:247-259.
    Kim K M, Sohn J K, Kato A, et al. Detection of a QTL for growth of seedling at a suboprimal low temperature in rice by genetics map. Korean J Breeding.1997,29(1):26-27.
    Kazuko Yamaguchi-Shinozaki, Kazuo Shinozaki. Organization of cis-acting regulatory elements in osmotic and cold stress responsive promoters. TRENDS in Plant Science.2005, (10) 2:88-94.
    Komatsu S, Yang G, Khan M, et al. Over-expression of calcium dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol.Genet. Genomics. 2007, 227:713-723.
    Kreps J A, Wu Y, Chang H S, et al. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 2002,130:2129-2141.
    Kruger C, Berkowith O, Stephan UW, et al. A metal binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol. Chem. 2002,277:25062-25068.
    Kunihiro Y, Qian Q, Sato H, et al. QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genetica Sinica. 2002,29:50-55.
    Lan Y, Cai D,. Zheng Y Z, et al. Expression of three different group soybean lea genes enhanced stress tolerance in Escherichia coli. Acta Bot. Sin. .2005,47(5): 613-621.
    Lee B.H, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 2005,17:3155-3175.
    Lee B.H, Kapoor A, Zhu J, et al. STABILIZED1, a Stress-Upregulated nuclear protein, is required for pre-mRNA splicing,mRNA turnover,and stress tolerance in Arabidopsis.Plant Cell.2006,18:1736-1749.
    Lee B.H,Lee H,Xiong L,et al.A mitochondrial complex I defect impairs cold regulated nuclear gene expression.Plant Cell.2002,14:1235-1251.
    Lee H,Xiong L,Gong Z,et al.The Arabidopsis HOS 1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmie partitioning.Genes Dev.2001,15:912-924.
    Lee H,Guo Y,Ohta M,et al.LOS2,a genetic locus required for cold responsive transcription encodes a bi-functional enolase.EMBO J.2002,21:2692-2702.
    Lee J.Y,Lee D.H.Use of serial analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress.Plant Physiol.2003,132:517-529.
    Lee S.C,Huh K.W,An K,et al.Ectopic expression of a cold-inducible transcription factor,CBF1/DREBlb,in transgenie rice(Oryza sativa L.).Mol.Cells.2004,18:107-114.
    Li H B,Zhang Q,Liu A M,et al.A genetic analysis of low-temperature-sensitive sterility in indica-japolica dee hybrids.Plant Breeding.1996,115:305-309.
    Li H B,Wang J,Liu A M,et al.Genetics of low-temperature-sensitive sterility in indica-japonica hybrids office as determined by RFLP analysis.Theor.Appl.Genet.1997,95:1092-1097.
    Lincoln S E,Daly M J,Lander E S.Constructing genetics maps with MapMaker/EXP3.0.Whitehead Institute Technical Report.Cambridge MA.1992
    Li J,Brader G,Tapio Palva E.The WRKY70 Transcription Factor:A Node of Convergence for Jasmonate-Mediated and Salieylate-Mediated Signals in Plant Defense.Plant Cell.2004,16:319-332.
    Liu X,Kasuga M,Sakurna Y,et al.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis.Plant Cell.1998,10:1391-1406.
    Llorente F,Oliveros JC,Martinez-Zapater JM,et al.A freezing-sensitive mutant of Arabidopsis,frsl,is a new aba3 allele.Planta.2000,211:648-655.
    Maruyama,K.Sakuma Y,Kasuga M et al.Identification of cold-inducible downstream genes of the Arabidopsis DREB 1A/CBF3 transcriptional factor using two microarray systems.Plant J.2004,38:982-993.
    Mastrangelo A.M,Belloni S, Barilli S, et al. Low temperature promotes intron retention in two e-cor genes of durum wheat. Planta. 2005,221:705-715.
    McCouch Y.G, Cho M,Yano, et al. Report on QTL nomenclature. Rice Genet. Newsl.1997,14:11-13.
    McCouch S R, Leonid Teytelman, Xu YB. Development and Mapping of 2240 New SSR Markers for Rice(Oryza sativa L.). DNA Research. 2002,9: 199-207.
    Mechelen J R, Schuurink R C, Smits M. Molecular characterization of two lipoxygenases from barley. Plant Mol Biol. 1999,39(6): 1283-1298.
    Mittler R, Kim YS, Song L, et al. Gain-and loss-of-function mutations in ZatlO enhance the tolerance of plants to abiotic stress. FEBS Lett. 2006,580:6537-6542.
    Miura K, Jin J B, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cel.l 2007,19:1403-1414.
    
    Miyasaka H., Kanaboshi H,Ikeda K, et al. Isolation of several anti-stress genes from the halotolerant green alga Chlamydomonas by simple functional expression screening with Escherichia coli, World J. Microb. Biot. 2000 , 16: 23-29.
    
    Monroy A F, Castonguay Y, Laberge S. A new cold-induced alfalfa gene is associated with enhanced hardening at subzero temperature.Plant Physiol. 1993 ,102(3):873
    Morishita H. Inheritance of low temperature tolerance at young seedling stage. Japan:National Institute of Genetics. 1996,411-413.
    Mundy J, Chua N H . Abscisic acid and water stress induce the expression of a novel rice gene. EMBO J. 1988,7:2275-2287.
    Mundy J, Yamaguchi-Shinozaki K, Chua N H. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA.1990,87:1406-1410.
    Neven L G, HaskellDW, Hofig A, et al. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993,21: 291-305.
    Nylander M, Svensson J, Palva E T, et al. Stress induced accumulation and tissue specific localization of dehydrins in A rabidopsis thaliana. Plant Mol Biol. 2001,45:263-279.
    Nakayama K, Okawa K, Kakizaki T, et al. Arabidopsis Cor15am Is a Chloroplast Stromal Protein That Has Cryoprotective Activity and Forms Oligomers. Plant Physiology.2007,144:513-523
    Oh S.J, Song SI, Kim YS, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth.Plant Physiol.2005,138:341-351.
    Ohno R,Takurn i S,N akamura C.Kinetics of transcript and protein accumulation of a low molecular weight LEA D-Ⅱ dehydrin in response to low temperature.J Plant Physiol.2003,160:193-200.
    Oono Y,Seki M,Nanjo T,et al.Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca.7000 full-length cDNA microarray.Plant J.2003,34:868-887.
    Orvar B.L,Sangwan V,Omann F,et al.Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity.Plant J.2000,23:785-794.
    Palusa S.G,Ali GS,Reddy AS.Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins:regulation by hormones and stresses.Plant J.2007,49:1091-1107.
    Parrnentier L ine C M,Panta G R,Row land L J.Changes in dehydrin expression associated with cold,ABA and PEG treatment in blueberry cell cultures.Plant Sci.2002,162:273-282.
    Rinne P.L.H,Kaikuranta P.L.M,vander Plas L.H.W,et al.Dehydrins in cold-acclimated apices of birch(Betula pubescens Ehrh.):production,localization and potential role in rescuing enzyme function during dehydration.Planta.1999,209:377-388.
    Robertson M,Chandler P M.A dehydrin cognate protein from pea(Pisum sativum L.) with an atypical pattern of expression.Plant Mol Biol.1994,26:805-816.
    Rodriguez E M,Svensson J T,Malatrasi M,et al.Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression.Theoretical Applied Genetics.2005 110(5)::852-858
    Rorat T.Plant dehydrins-tissue location,structure and function.Cell Mol Biol Lett.2006,11:536-556.
    Rouse D T,M aro tta R,Parish R W.Promoter and expression studies on an Arabidopsis thaliana dehydrin gene.FEBS Lett.1996,381:252-256.
    Salto,K,Miura K,Nagano,K,et al.Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length.Theor.Appl.Genet.2001,103:862-868.
    Saito K,Hayano-Saito Y,Maruyama-Funatsuki W,et al.Physical mapping and putative candidate gene identification of a quantitative trait locus Ctbl for cold tolerance at the booting stage of rice, Theor. Appl Genet. 2004,109:515-522.
    Sakuma Y, Liu Q, Dubouzet JG, et al. Yamaguchi- Shinozaki K: DNA binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold inducible gene expression. Biochem Biophys Res Com. 2002,290:998-1009.
    Sanan-Mishra, N. Pham XH, Sopory SK, et al. Pea DNA helicase 45 over-expression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci.U. S. A. 2005,102: 509-514.
    Sangwan V, Foulds I, Singh J, et al. Cold activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca~(2+) influx. Plant J. 2001,27:1-12.
    Sarhan F, Ouellet F, V azquez2Tello A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing to lerance in cereals. Physl Plant, 1997,101:439-445.
    Sasahara T, Kambayashi, Komiya K, et al. Inheritance of cold tolerance at early growing and maturing stages in rice. Japan J Breeding, 1982,32:311-316.
    Satoh R, Nakashima K, Seki M, et al. ACTCAT, a novel cis-acting element for proline and hypoosmolarity responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiol. 2002,130:709-719.
    Shinozaki K, Yamaguchi-Shinozaki K: Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000, 3:217-223.
    Smith, N.A., Singh, S.P., Wang, M.-B., et al. Total silencing by intron-spliced hairpin RNAs. Nature. 2000,407, 319-320.
    Soulages J L, Kim K, Arrese E L, et al. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol. 2003,131:963-975.
    Stockinger E J, Gilmour S J, Thomashow M F. A rabidopsis thaliana CBF1 encodes an AP2 domain containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA. 1997,94:1035-1040.
    Stupnikova I V, Borovskii G B, Dorofeev N V, Accumulation and disappearance of dehydrins and sugars depending on freezing tolerance of winter wheat plants at different developmental phase.J Ther Biol.2002,27:55-60.
    Sub J.P,Aim S.N,Moon H.P,et al.QTL analysis of low temperature germinability in a Korean weedy rice(Oryza sativa L.).Rice Research Newsletter.1999,16:53-55.
    Sunkar R,Zhu J.K.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell.2004,16:2001N2019.
    Sunkar R,Kapoor A,Zhu JK.Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance.Plant Cell.2006,18:2051-2065.
    Sunkar R,Chirmusamy V,Zhu J,et al.Small RNAs as big players in plant abiotie stress responses and nutrient deprivation.Trends Plant Sci.2007,12:301-309.
    Takahashi R,Joshee N,Kitagawa Y.Induction of chilling resistance by water stress,and cDNA sequence analysis and expression of water stress-regulated genes in rice.Plant Mol.Biol.1994,26(1):339-352.
    Takehisa H,Shimodate T,Fukuta Y,et al.Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water.Field Crops Research.2004,89:85-95.
    Tanaka S,Ikeda K,Miyasaka H,et al.Enhanced tolerance against salt-stress and freezing-stress of Escherichia coli cells expressing algal bbcl gene,Curr.Microbiol.2001,42:173-177.
    Ulrich H.D.Mutual interactions between the SUMO and ubiquitin systems:A plea of no contest.Trends Cell Biol.2005,15:525-532.
    Vannini C,Locatelli F,Bracale M,et al.Over-expression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants.Plant J..2004,37:115-127.
    Vashisht A.A,Pradhan A,Tuteja R,et al.Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C.Plant J.2005,44:76-87.
    Vaultier M.N,Cantrel C,Vergnolle C,et al.Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglyeerol kinase pathway in Arabidopsis cells.FEBS Lett.2006,580:4218-4223.
    Vergnolle C,Vaultier MN,Taeonnat L,et al.The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.Plant Physiol.2005,139:1217-1233.
    Vogel J.T,Zarka DG,HA Van Buskirk,et al.Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.Plant J.2005,41:195-211.
    Wan J,Yamaguchi Y,Kato H,et al.Two new loci for hybrid sterility in cultivated rice (Oryza sativa L).Theor Appl Genet.1996,92:183-190.
    Wan J.Analysis of genetic loci for pollen sterility in remote crosses of cultivated rice (Oryza Sativa L.).Breeding Science.1997,47(Suppl 2):188.
    Wan J,Tamura K,Sakal M,et al.Lingkage analysis of low temperature germinability in rice(Oryza sativa L.).Breeding Sci,Suppl.1999,2(122).(in Japanese)
    Wang X J,Loh C S,Yeoh H H.Drying rate and dehydrin synthesis associated with abscisic acid induced dehydration tolerance in Spathog lottis plieata orch idaceae protocorms.J Exp Bot.2002,53:551-558.
    Wang X S,Zhu H B,Jin GL,et al.Genome scale identification and analysis of LEA genes in rice(Oryza sativa L.) Plant Science.2007,172:414-420.
    Waterhouse P M,Graham M W,Wang M B,et al.Resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA.Proc Natl Acad SciUSA,1998,95(23):13959-13964.
    Wisniewski M,Webb R,Balsamo R,Purification,immuno localization,cryoprotective,and antifreeze activity of PCA 60:A dehydrin from peach(Prunus persica L.).Physl Plant.1999,105:600-608.
    Wyrick J.J,Young R.A.Deciphering gene expression regulatory networks.Curr.Opin.Genet.Dev.2002,12:130-136.
    Xiao J,Li J,Grandillo S,et al.Identification of trait-improving quantitative trait loci alleles from a wild rice relative,Oryza rufipogon.Genetics 1998,150:899-909.
    Xin Z.G,Mandaokar Ajin,Chen JP,et al.Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.Plant J.2007,49:786-799.
    Xiong L,Ishitani M,Lee H,et al.The Arabidopsis LOS5/ABA3 locus encodes a molybdenum eofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression.Plant Cell.2001,13:2063-2083.
    Yamaguchi-Shinozaki K,Mundy J,Chua NH.Four tightly linked rab genes are differentially expressed in flee.Plant Mol Biol.1989,14:29-39.
    Yamaguchi-Shinozaki K,Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annu.Rev.Plant Biol. 2006,57:781-803.
    Yan L,Loukoianov A,Tranquilli G,et al.Positional cloning of the wheat vernalization gene VRN1.PNAS.2003,100(10):6263-6268.
    Yanagisawa S,Akiyama A,Kisaka H,et al.Metabolic engineering with Dofl transcription factor in plants:Improved nitrogen assimilation and growth under low-nitrogen conditions.PNAS.2004,101:7833-7838.
    Yanagisawa S,Sheen J.Involvement of Maize Dof Zinc Finger Proteins in Tissue-Specific and Light-Regulated Gene Expression.Plant Cell.1998,10(1):75-90.
    Yanagisawa S.The Dof family of plant transcription factors.Trends Plant Sci.2002,7:555-560.
    Yanagisawa S.The transcriptional activation domain of the plant specific doll factor functions in plant,animal and yeast cells.Plant Cell Physiol.2001,42(8):813-822.
    Yuan S,Lin H H.Transcription,translation,degradation,and circadian clock.Biochem Biophys Res Commun,2004,321:1-6.
    Yu D,Chen C,Chen Z.Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression.Plant Cell,2001,13:1527-1540.
    Zeng H Z,Luo L J,Zhang WX,et al.Plant QTL-GE:a database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information.Nucleic Acids Research.2007,35:879-882.
    Zhang X,Fowler S.G,Cheng H,et al.Freezing-sensitive tomato has a functional CBF cold response pathway,but a CBF regulon that differs from that of freezing-tolerant Arabidopsis.Plant J.2004,39:905-919.
    Zhang ZH H,Su L,Li W,et al.A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice(Oryza sativa L.).Plant Science.2005,168:527-534.
    Zimmermann P,Hirsch-Hoffmann M,Hennig L,et al.GENEVESTIGATOR.Arabidopsis microarray database and analysis toolbox.Plant Physiol.2004,136:2621-2632.
    Zhu J,Shi H,Lee BH,et al.An Arabidopsis homeodomain transcription factor gene,HOS9,mediates cold tolerance through a CBF-independent pathway.Proc.Natl.Acad.Sci.U.S.A.2004,101:9873-9878.
    Zhu J,Verslues PE,Zheng X,et al.HOS 10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants.Proc.Natl.Acad.Sci.U.S.A.2005,102:9966-9971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700