用户名: 密码: 验证码:
脑活素及法舒地尔诱导骨髓间充质干细胞增殖分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究大鼠骨髓间充质干细胞(BMSCs)体外分离、培养和扩增方法,使其保持干细胞特性--自我更新和多向分化潜能;并探讨脑活素及法舒地尔体外诱导骨髓间充质干细胞增殖分化为神经元样细胞的可能性和条件,为神经系统损伤和神经退行性疾病的治疗提供良好的理论基础和实验依据。
     方法:
     本课题选取150g左右SD大鼠股骨和胫骨骨髓做骨髓间充质干细胞的分离培养,采用全骨髓直接贴壁法获得原代大鼠骨髓BMSCs,差速贴壁结合消化控制法纯化细胞。MTT法检测BMSCs生长最佳血清浓度及生长曲线。流式细胞仪细胞检测BMSCs生长周期及表面抗原CD34、CD44、CD29、CD90、CD45和CD31的表达。BMSCs经bFGF预诱导后,使用脑活素和法舒地尔诱导骨髓间充质干细胞,并用倒置相差显微镜观察记录细胞的形态学变化;细胞免疫组织化学法检测诱导后各组细胞巢蛋白(Nestin)、神经丝蛋白(NF),神经元特异烯醇化酶(NSE)、胶质纤维酸性蛋白(GFAP)等神经细胞特异性标志物的表达情况。
     结果:
     1.大鼠BMSCs的分离、培养和鉴定
     (1)通过贴壁法能获得纯度较高的BMSCs,原代培养3天后细胞呈纺锤形。7天后细胞呈团簇、集落状生长。细胞传代3代后仍增殖旺盛呈梭形。
     (2)10%血清浓度为BMSCs生长最佳浓度。
     (3)从传代细胞生长曲线可见:第1-2天为细胞生长潜伏期,第3-4天为对数增长期,6天以后细胞的生长进入平台期,符合干细胞的生长规律。
     (4)细胞周期分析显示:处于G0/G1期的细胞为93.99%,处于非增殖状态,S期的细胞为5.46%,G2/M0期的细胞为0.54%。G0/G1期占整个细胞群的比例达93.99%,同时也说明了BMSCs的高分化潜能。
     (5)流式细胞仪检测细胞表面标志:表达CD90、CD29、CD44,不表达CD34、CD45、CD31。
     2.体外诱导BMSCs后的形态学变化
     (1)脑活素体外诱导BMSCs增殖分化
     以10ng/mlbFGF预诱导24小时后,细胞形态较预诱导前未发生改变。接着以脑活素诱导后,细胞生长状态较未加入脑活素前好,细胞数量增多,且具有统计学意义(P<0.05),但细胞形态改变不明显,细胞收缩,出现三角形样细胞,但未见明显细胞突起。
     (2)法舒地尔体外诱导BMSCs增殖分化
     法舒地尔诱导组诱导6小时后细胞形态逐渐发生变化,出现双极形、多极形和锥形细胞,呈神经元样细胞。诱导24小时后,可见较多神经元样细胞,突触逐渐形成并增多,细胞突起相互交织呈现网络状连接。诱导48小时后,细胞突触发生断裂溶解,网络状连接消失,细胞数量减少。
     3免疫组织化学染色结果
     对照组Nestin、NSE、NF、GFAP抗体均未见阳性染色。脑活素组中免疫组化可见少数Nestin、NSE、NF、GFAP染色阳性细胞,与空白对照组相比,无显著性差异(P>0.05)。
     法舒地尔诱导实验组:诱导6小时后Nestin、NSE、NF、GFAP抗体染色呈阳性反应,与脑活素组及空白对照组相比,有显著性差异(P<0.05)。诱导24小时后Nestin、NF、GFAP抗体染色阳性率高于6小时,有显著性差异(P<0.05);NSE阳性率低于6小时,无显著性差异(P>0.05)。诱导48小时后,Nestin、NF、GFAP阳性率高于24小时,有显著性差异(P<0.05);NSE阳性率低于24小时,无显著性差异(P>0.05)。
     Nestin、NF与GFAP:随诱导时间延长阳性率逐渐增高,各组差异均有显著性(P<0.01)。
     NSE:阳性细胞率6小时>48小时>24小时,差异无显著性(P>0.05)。
     结论:
     通过贴壁筛选法体外分离、培养,传代后可获得纯度较高的骨髓间充质干细胞。脑活素诱导BMSCs后细胞形态改变不明显,胞体收缩,出现三角形样细胞,但未见明显细胞突起;法舒地尔在体外可诱导BMSCs分化为神经元样细胞,免疫组化显示诱导细胞表达Nestin、NSE、NF、GFAP等神经细胞特异性标记物。为进一步研究BMSCs应用于神经系统损伤和神经退行性疾病的细胞治疗提供了良好的实验基础。
Objective:To study the method to maintain stem cell characteristics - self-renewal, and multi-directional differentiation potential in its isolation, culture and amplification for rat bone marrow mesenchymal stem cells (BMSCs), and to investigate the possibility and the proper condition that BMSCs could be proliferated and differentiated into neuron neuron-like cells by cerebrolysin,fsudil. To provide a theoretical and experimental basis for the BMSCs therapy for nervous system injuries and neurodegenerative diseases.
     Method:BMSCs were separated from rats bone marrow through femoral and tibial by plastic adherence methods and purified by controlling the time of digestion combied with adhesion separation.To investigate the optimal serumlevels and growth curve by MTT Assay.To investigate growth cycle and cell surface antigen CD34, CD44, CD29, CD90, CD45 and CD31 expression of BMSCs by flow cytometry.In vitro the BMSC were preindueed by bFGF and then induced by cerebrolysin and fasudil.The morphological changes were observed under phase contrast microscope, the specific markers of induced cells were identified by immunocytochemically with Nestin, NF, NSE, GFAP.
     Results:
     1.Isolation, culture and identification of BMSCs
     (1)Pure BMSCs were successfully obtained by adherence sieving from rat bone. After culturing primary BMSCs for 3 days, BMSCs were characterized by spindle-shaped spperearence and proliferated rapidly for 7 days, the cells were cluster, colony-like growth. Cells after 3 passage still on spindle.
     (2) 10%FBS of growth BMSCs is optimal serum levels.
     (3)Growth curve of passage cells showed that: the first 1-2d is latency, the first 3-4d is the logarithmic growth phase,6d after the cells enter the plateau phase.
     (4) Cell growth cycle analysis:cells in G0/G1 phase of 93.99%, S phase cells were 5.46%, G2/M0 0.54% of the cells. G0/G1 phase proportion of the total cell population reached 93.99%, while suggested that most of cells are not in period of proliferation.
     (5)Cell surface markers by flow cytometry:BMSCs expressed CD90, CD29, CD44. In contrast, no expression of the hematopoietic lineage marker CD34, CD45, CD31.
     2. Morphological changes after BMSCs induced
     (1)proliferation and differentiation of BMSCs induced by cerebrolysin
     lOng/mlbFGF pre-induction of 24h, the cells did not change. Then after exposed to cerebrolysin, the cell growth state was better than before and number of cells increased, and was statistically significant (P<0.05). However, no obvious morphological changes, cell shrinkage, triangle-like cells appeared, but no obvious cell processes.
     (2) Proliferation and differentiation of BMSCs induced by fasudil
     Fasudil induced group after 6h induced morphological changes gradually emerged bipolar shape, multipolar shape and conical cells present neuron-like cells.24h after induction, showing that more neuron-like cells, synapse formation and the gradual increase in cell processes are intercrossed present network-like connection.48h after induction, cell synapse fracture dissolution, the network-like connections disappear, the number of cells decreased.
     3.Immunocytochemical staining
     The control group showed no positive staining of the four antibodies. cerebrolysin group immunohistochemistry shows that a small number of Nestin, NSE, NF, GFAP positive cells, compared with the control group (P> 0.05).
     Fasudil induced experimental groups:6h after induction of Nestin, NSE, NF, GFAP antibody staining was positive (P<0.05).24h after induction the positiverate of Nestin, NF, GFAP were higher than 6h (P<0.05); NSE-positive rate was lower than 6h (P> 0.05).48h after induction, Nestin, NF, GFAP-positive rate is higher than 24h (P<0.05); but the positive rate of NSE was in contrast (P> 0.05).
     Nestin, NF and GFAP:With the prolongation of induction time positive rate increased gradually (P<0.01).
     NSE:The positive rate of the 24h group was lower than those of the 6h and the 48h group, no significant difference(P> 0.05).
     Conclusion:
     High purity BMSCs were successfully obtained by screening adherence in vitro.After induction by cerebrolysin, no obvious morphological changes were found. It was after induction by fasudil that neuron like cells were induced to differentiate from BMSCs in vitro. By immunohistochemical analysis, these induced cells expressed neural cell-specific markers such as Nestin, NSE, NF, GFAP. It suggested that BMSCs might be used as nervel seed cells for stem cell therapy for brain injury and neurodegenerative diseases.
引文
[1]Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. Neurosci Res,2000,61(4):364-370.
    [2]Long X, Olszewski M, huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells[J]. Stem Cells 2005, 14(1):65-69.
    [3]Lin W, Chen X, Wang X, et al. Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro[J]. In Vitro Cell Dev Biol Anim,2008,44(1-2):31-40.
    [4]Sanehez-Ramos J, SongS, Cardozo-Pelaez, et al. Adult bone marrow stromal cells differeniiate into neural cells in vitro[J]. Exp Neurol,2000,164(2):247-256.
    [5]Bahat-Stroomza M, Barhum Y, Levy YS, et al. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells:potential for restorative treatment in Parkinson's disease[J]. J Mol Neurosci,2009,39(1-2):199-210.
    [6]Wright KT, Masri WE, Osman A, et al. The cell culture expansion of bone marrow stromal cells from humans with spinal cord injury:implications for future cell transplantation therapy[J]. Spinal Cord,2008,46(12):811-817.
    [7]Choi MR, Kim hY, Park JY, et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis[J]. Neurosci Lett,2010,472(2):94-98.
    [8]Kretlow JD, Jin YQ, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells[J]. BMC Cell Biol,2008,9:60.
    [9]Mareschi K, Ferrero I, RustichelliD, et al. Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow[J]. Cell Biochem,2006, 97(4):744-754.
    [10]Long X, Olszewski M, huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells[J]. Stem Cells,2005, 14(1):65-69.
    [11]TalbotM, CarrierP, GiassonCJ, et al. Autologoustrans Plantation of rabbit limbale Pithelia cultured on fibrin gelsf or oculars urface reconstruction[J]. Mol Vis,2006,12:65-75.
    [12]Sotiropoulou PA, Perez SA, SalagianniM, et al. Characterization ofthe op timal culture conditions for clinical scale p roduction of human mesenchymal stem cells[J]. Stem Cells,2006,24(2):462-471.
    [13]Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol,1999,181 (1):67-73.
    [14]AziziSA, StokesD, AugeliBJ, et al. Engratfment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astroeyt graft[J]. Proe Natl Aead Sei USA,1998,95(7):3908-3913.
    [15]Krampera M, Pas ini A, Rigo A, et al. hB-EGF/hER-1 signalling in bone marrow mesenchymal stem cells:inducing cell expans ion and reversibly preventing multi-lineage differentiation[J]. Blood 2005,106(1):59-66.
    [16]QianX, Davis AA, Goderie SK, et al. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells[J]. Neuron, 1997,8(1):81-89.
    [17]Quirici N, Soligo D, Bossolasco P, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies [J]. Exp hematol, 2002,30 (7):783-791.
    [18]刘爱军,项平,黄锦桃,等.碱性成纤维细胞生长因子对大鼠骨髓间质干细胞增殖的影响[J].中山大学学报,2004,25(6):508-511.
    [19]Jacobi C, Reiber h. Clinical relevance of increased neuron specific enolase concentrain in cerebrosp inal fluid [J]. Clin Chim Acta,1988,177 (1):49-54.
    [20]Varma S, Janesko KL, Wisniewski SR, et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children [J]. Neurotrauma,2003,20(8):781-786.
    [21]Al-Rawi, Natheer h, Atiyah, et al. Salivary neuron specific enolase:an indicator for neuronal damage in patients with ischemic stroke and stroke-prone patients [J]. Clinical Chemistry & Laboratory Medicine,2009,47(12):1519-1524.
    [22]Lendahl U, Zimmerman LB, Mckay RDG. CNS stem cells express a new class of intermediate filement protein[J]. Cell,1990,60(4):585-595.
    [23]Nakayama D, Matsuyama T, Ishibashi-Ueda h, et al. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex [J]. Eur J Neurosci, 2010,31(1):90-98.
    [24]Vukojevic K, Petrovic D, Saraga-Babic M. Nestin expression in glial and neuronal progenitors of the developing human spinal ganglia[J]. Gene Expr Patterns,2010,10(3):144-151.
    [25]Xu R, Wu C, Tao Y, et al. Nestin-positive cells in the spinal cord:a potential source of neural stem cells[J]. Int J Dev Neurosci,2008,26(7):813-820.
    [26]Fabrizi GM, Cavallaro T, Angiari C, et al. Giant axon and neurofilament accumulation in Charcot-Marie-Tooth disease type-E[J]. Neurology,2004,62 (8):1429-1431.
    [27]Naghdi M, Tiraihi T, Namin SA, et al. Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype:a potential source for cell therapy in spinal cord injury[J]. Cytotherapy,2009,11(2):137-152.
    [28]Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidi protein (GFAP) modulation by growth factors and its implication in astroeyte differentiation [J]. Braz J Med Biol Res,1999,32 (5):619-631.
    [29]Qi X, Shao M, Peng h, et al. In vitro differentiation of bone marrow stromal cells into neurons and glial cells and differential protein expression in a two-compartment bone marrow stromal cell/neuron co-culture system[J]. J Clin Neurosci.2010 Apr 6
    [30]hutter-Paier B, Grygar E, Windisch M. Death of cultured telencephalon neurons induced by glutamate is reduced by the peptide derivative Cerebrolysin[J]. J Neural Transm,1996,47:267-273.
    [31]Wronski R,Tompa B, hutter-Paier B, et al. Inhibitory effect of a brain derived peptide preparation on the intracellular calcium Ca2+ dependent protease, calpain[J]. J Neural Transm,2000,107:145-157.
    [32]Onose G, Muresanu DF, Ciurea AV, et al. Neuroprotective and consequent neurorehabilitative clinical outcomes, in patients treated with the pleiotropic drug cerebrolysin[J]. J Med Life,2009,2(4):350-360.
    [33]Ubhi K, Rockenstein E, Doppler E, et al. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin[J]. Acta Neuropathol,2009, 117(6):699-712.
    [34]Wei Zh, he QB, Wang h, et al. Meta-analysis:the efficacy of nootropic agent Cerebrolysin in the treatment of Alzheimer's disease[J]. J Neural Transm, 2007,114(5):629-634.
    [35]Hong Z, Moessler h, Bornstein N, et al. A double-blind, placebo-controlled, randomized trial to evaluate the safety and efficacy of Cerebrolysin in patients with acute ischaemic stroke in Asia-CASTA[J]. Int J Stroke,2009,4(5):406-412.
    [36]Maksimova MIu, Briukhov VV, Timerbaeva SL, et al. Effectiveness of cerebrolysin in hypertensive supratentorial intracranial hemorrhages:results of a randomized triple blind placebo-controled study[J]. Zh Nevrol Psikhiatr Im S S Korsakova,2009,109(1):20-26.
    [37]Gusev El, Gekht AB, Belousov IB, et al. Clinical and pharmacoeconomic peculiarities of the treatment with cerebrolysin in the period of rehabilitation of is ischemic stroke[J]. Zh Nevrol Psikhiatr Im S S Korsakova.2007,107(10):26-33.
    [38]Ladurner G, Kalvach P, Moessler h, et al. Neuroprotective treatment with cerebrolysin in patients with acute stroke:a randomised controlled trial[J]. J Neural Transm.2005,112(3):415-428.
    [39]Pacary E, Legros h, Valable S, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-ike cells [J]. J Cell Sci 2006,119(13):2667-2678.
    [40]Sun Y, Nadal-Vicens M, Misono S, et al. Neurogenin promotes neurogesis and inhibits glial differentiation by independent mechanisms[J]. Cell,2001, 104(3):365-376.
    [41]Dezawa M, Kanno h, hoshino M, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologus transplantation[J]. J Clin Invest,2004,113(12):1701-1710.
    [42]Lundkvist J, Lendahl U. Notch and the birth of glial cells[J]. Trends Neurosci, 2001,24:492-494.
    [43]Dezawa M, hoshino M, Ide C. Treatment of neurodegenerative diseases using adult bone marrow stromal cell-derived neurons[J]. Expert Opin Biol Ther, 2005,5(4):427-435.
    [44]Stork PJ, Schmitt JM.Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proferation[J].Trends Cell Biol,2002,12(6):258-266.
    [45]Siber-Blum M, Zhang JM. Growth factor action in neural crest cell diversification[J]. J Anat,1997,191:493-499.
    [46]Gimble JM, Wanker F, Wang CS, et al. Regulation of marrow stromal cell differentiation by cytokines whose receptors share the gp130protein[J]. Jcell Bioehem,1994,54(1):122-133.
    [47]项鹏,夏文杰,张丽蓉,等.碱性成纤维细胞生长因子等诱导间质干细胞分化为神经元样细胞的研究[J].中华神经外科杂志,2002,35(6):165-167.
    [48]Quirici N, Soligo D, Bossolasco P, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies[J]. Exp hematol, 2002,30 (7):783-791.
    [49]Matsui T, Amano M, Yamamoto T, et al. Rho- associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho[J]. EMBO J,1996,15(9):2208-2216.
    [50]Budzyn K, Marmey P, Sobey C, et al. Targeting rho and Rho-kinase in the treatment of cardiovascular disease [J]. Trends Pharmacol Sci,2006,27: 97-104.
    [51]AmanoM, Kaneko T, Maeda A, et al. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase [J]. J Neurochem,2003,87: 780-790.
    [52]FournierAE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS [J]. J Neurosci,2003,23:1416-1423.
    [53]hendriks JJ, Alblas J, van der Pol SM, et al. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis [J]. J Exp Med,2004,200:1667-1672.
    [54]Kitaoka Y, Kumai T. Involvement of RhoA and possible neuroprotective effect of fasudil, a Rho kinase inhibitor, in NMDA2 induced neurotoxicity in the rat retina [J]. Brain Res,2004,1018:111-118.
    [55]Rikitake Y, Kim hh, huang Z, et al. Inhibition of Rho kinase leads to increased cerebral blood flow and st roke protection[J]. Sroke,2005(36):2251-2257.
    [56]Shin hK, Salomone S, Potts EM, et al. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endot helial mechanisms [J]. J Cereb Blood Flow Metab,2007,27:998-1009.
    [57]Yagita Y, Kitagawa K, Sasaki T, et al. Rho-kinase activation in endot helial cells cont ributes to expansion of infarction after focal cerebral ischemia [J]. J Neurosci Res,2007,85 (11):2460-2469.
    [58]Yamashita K, Kotani Y, Nakajima Y, et al. Fasudil, a rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting Directly on Neurons [J]. Brain Res,2007,1154:215-224.
    [59]Satoh S, Toshima Y, IKegaki I, et al. Wide therapeutictime window for fasudil neuroprotection against ischemia-induced delayed neuronal death in Gerbils [J]. Brain Res,2007,1128:175-180.
    [60]Satoh S, Toshima Y, hitomi A, et al. Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model [J]. Brain Res,2008,1193:102-108.
    [61]Shibuya M, Chirai S, Seto M, et al. Effect s of fasudil in acute ischemic stroke:result s of a prospective placebo-cont rolled double-blind trial [J]. J Neurol Sci,2005,238:31-39.
    [62]Mallat Z, Gojova A, Sauzeau V, et al. Rho-associated protein kinase cont-ributes to early at herosclerotic lesion formation in mice[J]. Circ Res,2003, 93:884-888.
    [63]Kansui Y, Fujii K, Goto K, et al. Chronic fluvastatin treatment alters vascular contraction by inhibiting the Rho/Rho-kinase pathway [J]. Clin Exp Pharmacol Physiol,2006,33:673-678.
    [64]Wang KC, Kim JA, Sivasankaran R, et al. p75 interacts with the Nogo Receptor as a co-receptor for Nogo, MAGand Omgp [J]. Nature,2002,420:74-78.
    [65]Diebold BA, Fowler B, Lu J, et al. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem, 2004,279:28136-28142.
    [66]Rajnicek AM, Foubister L E, McCaig CD. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field[J]. J Cell Sci,2006,119:1723-1735.
    [1]Friedenstein AJ, Genkaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp haematol,1976,4(5):267-274.
    [2]Bailey AS, Jiang S, AfentoulisM, et al. Transplanted adult hemato poietic stems cells differentiate into functional endothelial cells[J]. Blood,2004,103(1): 13-19.
    [3]Li W, Ferkowcz MJ, Johnson SA, et al. Endothelial cells in the early murine yolk sac give rise to CD412exp ressing hematopoietic cells [J]. Stem Cells Dev, 2005,14 (1):44-54.
    [4]Lin hT, Tarng YW, Chen YC, et al. Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its mutiple-lineage potential[J]. Transplant Proc,2005,37(11):4504-4505.
    [5]Carvalho KA, Guarita-Souza LC, Simeone RB, et al. Proliferation of bone marrow mesenchymal stem cells, skeletal muscle cells and co-culture of both for cell myocardium therapy in Wistar rats[J]. Transplant Proc,2006,38(6):1955-1956.
    [6]Tamir A, Petrocelli T, Stetler K, et al. Stem cell factor inhibits erythroid differentiation by modulating the activity of Gl-cyclin-dependent kinase complexes:A role for p27 in ery-throid differentiation compled Gl arrest [J]. Cell Growth Differ,2000,11 (5):269-277.
    [7]Conget PA, Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells[J]. J Cell Physiol,1999,181(1):67-73.
    [8]AziziSA, StokesD, AugeliBJ, et al. Engratfment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astroeyt graft[J]. Proe Natl Aead Sei USA,1998,95(7):3908-3913.
    [9]Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci USA,2003,100(14):8407-8411.
    [10]Lee Rh, Kim B, Choi I, et al. Characterization and express ion analys is of mesenchymal stem cells from human bone marrow and adipose tissue[J]. Cell Phys iol Biochem,2004,14(4-6):311-324.
    [11]Krampera M, Pas ini A, Rigo A, et al. hB-EGF/hER-1 s ignalling in bone marrow mesenchymal s tern cells:inducing cell expans ion and reversibly preventing multi-lineage differentiation[J]. Blood,2005,106(1):59-66.
    [12]Martinez C, hofinann TJ, Marino R, et al. Human bone mesenchymal stromal cells express the neural ganglioside GD2:a novel surface marker for the identification of MSCs[J]. Blood,2007,109(10):4245-4248.
    [13]Long X, Olszewski M, huang W, et al. Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells[J]. Stem Cells 2005, 14(1):65-69.
    [14]TalbotM, CarrierP, GiassonCJ, et al. Autologoustrans Plantation of rabbit limbale Pithelia cultured on fibrin gelsf or oculars urface reconstruction[J]. Mol Vis,2006,12:65-75.
    [15]Srouji S, Maurice S, Livne E. Microscopy analysis of bone marrow-derived osteoprogenitor cells cultured on hydrogel 3-D scaffold[J]. Microsc Res Tech, 2005,66(223):132-138.
    [16]Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta2tricalcium phosphate [J]. Biomaterials,2005,26(17):3587-3596.
    [17]Li WJ, Tuli R, huang X, et al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold[J]. Biomaterials,2005,26(25):5158-5166.
    [18]Li WJ, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells [J]. Biomaterials,2005,26(6):599-609.
    [19]Yan J, Li X, Liu L, et al. Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering[J]. Artif Cells Blood Substit Immobil Biotechnol,2006,34(1):27-39.
    [20]Sanehez-Ramos J, SongS, Cardozo-Pelaez, et al.Adult bone marrow stromal cells differeniiate into neural cells in vitro[J]. Exp Neurol,2000,164(2):247-256.
    [21]Yang h, Xia Y, Lu SQ, et al. Basic fibroblast growth factor induced neuronal differentiation of mouse bone marrow stromal cells requires FGFR-1, MAPK/ERK, and transcription factor AP-1 [J]. Biol Chem,2008,283 (9):5287-5295.
    [22]Quirici N, Soligo D, Bossolasco P, et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies[J]. Exp hematol, 2002,30(7):783-791.
    [23]Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. JNeurosci Res,2000,61(4):364-370.
    [24]Lei Z, Yongda L, Jun M, et al. Culture and neural differentiation of rat bone mallow mesenchymal stem cells in vitro[J]. Cell Biol Int,2007,31(9):916-923.
    [25]Lu P, Blesch A, Tuszynski Mh. Induction of bone marrow stromal cells to neurons:differentiation,transdiferentiation or artifact[J].J Neurosci Res, 2004,77(2):174-191.
    [26]Liu Y, Rao MS. Transdifferentiation-fact or artifact[J]. J Cell Biochem,2003, 88(1):29-40.
    [27]Neuhuber B, Gallo G, howard L, et al.Reevaluation of in vitro differentiation protocols for bone marrow stromal cells:Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype[J]. J Neurosci Res,2004,77(2):192-204.
    [28]Pacary E, Legros h, Valable S, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells [J]. J Cell Sci 2006,119(13):2667-2678.
    [29]Sagara J, Makino N. Glutathione induces neuronal differentiation in rat bone marrow stromal cells[J]. Neuroehem Res,2008,33 fll:16-21.
    [30]Deng W, Obrocka M, Fishcher Iv et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP[J]. Biochem Biophysic Res Commun,2001,282(1): 148-152.
    [31]Kitazawa S, kitazawa R. Epigenetic control of mouse recep tor activator of NF2kB ligand gene exp ression [J]. Biochem Biophys Res Commun,2002, 293(1):126-131.
    [32]Lin X, Zhang Y, Dong J, et al. GM-CSF enhances neural differentiation of bone marrow stromal cells [J]. Neuroreport,2007,18(11):1113-1117.
    [33]Jori FP, Napolitano MA, Melone MA, et al. Molecular pathways involved in neural in vitro differentiation ofmarrow stromal stem cells[J]. Cell Biochem, 2004,944(4):645-655.
    [34]Choi CB, Cho YK, Prakash KV, et al. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells [J]. Biochem Biophys Res Commun,2006,350(1):138-146.
    [35]Cuevas P, Carceller F, DujovonyM, et al. Peripheral nerve regeneration by bone marrow stromal cells[J]. Neurol Res,2002,24(7):634-638.
    [36]Abouelfetouh A, Kondoh T, Ehara K, et al. Morphological differentiation of bone marrow stromal cells into neuron-like cells after coculture with hippocampal slice [J]. Brain Res,2004,1029 (1):114-119.
    [37]Zurita M, Vaquero J, Oya S, et al. Neurotrophic Schwann-cell factors induce neural differentiation of bone marrow stromal cells[J]. Neuroreport,2007, 18(16):1713-1717.
    [38]Shichinohe h, Kuroda S, Tsuji S, et al. Bone marrow stromal cells promote neurite extension in organotyp ic sp inal cord slice:signifi cance for cell transp lantation therapy[J]. Neurorehabil Neural Repair,2008,22(5):447-457.
    [39]Terada N, hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature,2002,416(6880):542-545.
    [40]Zurita M, Vaquero J, Oya S, et al. Neurotrophic Schwann-cell faetors induce neural differentiation of bone marow stromal cells[J]. Neuroreport,2007,18(1 6):1713-1717.
    [41]Wu J, Sun Z, Sun hS, et al. Intravenously administered bone marow cells migrate to damaged brain tissue and improve neural function in ischemic rats[J]. Cell Transplant,2008,16(10):993-1005.
    [42]Okazaki T, Magaki T, Takeda M, et al. Intravenous administration of bone marow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats [J]. Neurosci Len, 2008,43(2):109-114.
    [43]hellmann M A, Panet h, Barhum Y, et al. Increased survival and migration of engrafted mesenehymal bone mallow stem cells in 6-hydroxydopamine-lesioned rodents[J]. NeurosciLett,2006,395(2):124-128.
    [44]Wu QY, Li J, Feng zT, ec al. Bone maiTow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer s disease rat model [J]. Neurosci Lett,2007,417(3):281-285.
    [45]Lepore AC, Bakshi A, Swanger SA, et al. Neural precursor cells call bedelivered into the iniured cervical spinal cord by intrath ecal injection at the lumbarcord Ⅲ. Brain Res,2005,1045 fll:206-216.
    [46]Liu W, Jiang X, Fu X, et al. Bone marrow stromal cells can be delivered to the site of traumatic brain iniury via intrathecal transplantation in rabbits [J]. Neurosci Lett,2008,434(2):160-164.
    [47]Qu C, Mahmood A, Lu D, et al. Treatment of traumatic brain injury in mice with marrow stromal cells [J]. Brain Res,2008,1208:234-239.
    [48]Moviglia GA, Varela G, Gaeta CA, et al. Autoreative T cells induce in vitro BM mesenchymal stem cell transdifferentiation to neural stem cells[J]. Cytotherapy, 2006,8(3):196-201.
    [49]Coronel MF, Musolino PL, Villar MJ. Selective migration and engraftment of bo ne marrow mesenchymal stem cells in rat lum bar dorsal root ganglia after sciatic nerve constfcfion[J]. NeuroseiLet,2006,405(1):5-9.
    [50]Isele NB, Lee hs, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons[J]. Neurochem Int,2007,50(1):243-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700