用户名: 密码: 验证码:
miR-145抑制结肠癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结肠癌是一种常见的消化道恶性肿瘤,发病率呈逐年上升趋势。2010年美国癌症协会发布的统计报告指出,在美国男性和女性肿瘤患者中,发病率和病死率均上升,分别位列第2位和第3位。我国原本是结肠癌发病率比较低的国家,随着我国经济的发展、人们生活水平的提高及膳食结构的改变,近年来我国结肠癌发病率逐年上升。统计资料显示,我国男性结肠癌的发病率仅次于肺癌和胃癌,女性仅次于乳腺癌和子宫颈癌,均位列第三位,其术后5年生存率仅50%左右。目前研究表明,结肠癌可能起因于结肠上皮原癌基因突变、抑癌基因失活、基因组表观遗传学修饰改变和环境等多因素共同作用,但其确切机制仍不十分明了。深入研究结肠癌的发病机制,对结肠癌的早期诊断、治疗和改善患者生活质量有着十分重要的意义。
     miRNA (microRNA)是生物体内一类长度为21.25个核苷酸,内源性的非编码小分子单链RNA,主要通过转录后水平调节,抑制靶基因的表达。miRNA广泛参与细胞增殖、分化、凋亡、组织器官发育等生理过程和肿瘤发生、发展、侵袭、转移等病理过程的调控。近年来,miRNA涉及到多种人类肿瘤,通过一系列不同的机制,miRNA功能的增强或减弱都影响了肿瘤的进程。正因为miRNA能调控肿瘤细胞的分化、增殖、存活及转移,所以无论正性还是负性的肿瘤相关miRNA,都可以为干预肿瘤的发生及发展提供强大的治疗策略。
     为了深入研究miRNA在结肠癌中的作用机制,首先,本课题组采用miRNA表达芯片筛选结肠癌组织和癌旁组织中差异表达miRNA分子,获得了一组结肠癌相关候选miRNA分子,其中miR-145差异表达最明显,相对于癌旁组织,结肠癌组织中miR-145表达水平显著下调,并在实时定量RT-PCR实验中得到了证实;其次,选取miR-145作为进一步研究对象,通过体内、体外实验研究miR-145在结肠癌中的生物学功能;最后在结肠癌细胞HCT116中通过荧光素酶活性分析和Western blot初步证明miR-145可以靶向调控转录因子SOX9。本研究首次提出“miR-145可能通过靶向调控转录因子SOX9参与结肠癌恶性表型发生”的假说,将为全面阐明miR-145在结肠癌中的作用机制奠定理论基础,更为结肠癌候选诊断分子和治疗药物的研发提供理论依据。
     第一部分结肠癌相关候选miRNA的筛选与验证
     目的:
     探讨结肠癌组织和癌旁组织中miRNA的表达差异,获得结肠癌相关的候选miRNA分子。
     方法:
     对6例结肠癌组织和癌旁组织进行miRNA表达芯片检测,对感兴趣的差异表达miRNA分子采用实时定量RT-PCR进行验证。
     结果:
     1. miRNA差异表达谱分析发现,51个miRNA在结肠癌组织和癌旁组织表达有差异,差异均在2倍变化以上,具有统计学意义。其中,24个miRNA在结肠癌组织中表达下调,27个miRNA表达上调。相对于癌旁组织,结肠癌组织中miR-145和miR-143表达下调3.492和2.899倍,结肠癌组织中miR-96表达上调3.083倍。
     2.实时定量RT-PCR检测显示结肠癌组织中miR-145和miR-143表达水平相对癌旁组织下调3.533倍和2.425倍,miR-96表达水平相对癌旁组织上调2.363倍。
     结论:
     相对于癌旁组织,结肠癌中miRNA具有差异表达谱,miR-145表达水平变化与结肠癌密切相关,可供进一步研究。
     第二部分miR-145体外抑制结肠癌细胞HCT116增殖的实验研究
     目的:
     体外实验研究miR-145在结肠癌细胞HCT116中的生物学功能。
     方法:
     1.采用PCR扩增miR-145基因片段,将其克隆入真核表达载体pCMV-myc中,构建重组质粒pCMV-miR-145。
     2.酶切及DNA测序鉴定重组质粒后,脂质体法转染结肠癌细胞HCT116,运用实时定量RT-PCR检测转染后细胞中miR-145的表达情况。
     3.分别运用CCK8、流式细胞术和细胞划痕试验检测过表达miR-145对HCT116细胞增殖、细胞周期和迁移能力的影响。
     结果:
     1.成功构建了miR-145的真核表达载体pCMV-miR-145。实时定量RT-PCR证明转染该载体后,相对于空载体转染组,HCT116细胞中miR-145表达水平上升754倍。
     2.相对于对照组,真核表达载体pCMV-miR-145转染组G1期百分比升高(62.80±1.22%vs51.61±0.91%),吸光度值降低(0.345±0.032vs0.632±0.033),划痕中央区细胞数目减少(176±24vs276±26)。
     结论:
     体外过表达miR-145,可导致结肠癌细胞HCT116细胞周期发生G1期阻滞、细胞增殖速度变慢、细胞迁移能力降低。
     第三部分miR-145抑制裸鼠皮下移植瘤的实验研究
     目的:
     体内实验研究miR-145在结肠癌中的生物学功能。
     方法:
     建立结肠癌细胞HCT116裸鼠皮下移植瘤模型,观察过表达miR-145对肿瘤体积大小、倍增时间的影响。
     结果:
     过表达miR-145后,肿瘤体积明显减少(368.18±78mm3vs914.14±204mm3)、倍增时间延长(6.5±1.5天vs3.8±0.9天)。
     结论:
     miR-145可在体内抑制结肠癌细胞HCT116增殖。
     第四部分miR-145抑制结肠癌细胞HCT116增殖机制的研究
     目的:
     探讨miR-145抑制结肠癌细胞HCT116增殖功能的可能机制。
     方法:
     1.采用生物信息学分析miR-145的下游靶基因及其与靶基因的结合位点。
     2.构建基于靶基因SOX9含miR-145结合位点的荧光素酶报告载体pMIR-Report, DNA测序鉴定重组质粒。
     3.将重组质粒转染入结肠癌细胞HCT116,检测荧光素酶活性的变化。
     4. Western-blot实验检测过表达miR-145和降低内源性miR-145水平时靶基因SOX9的表达变化。
     5.实时定量RT-PCR和Western-blot检测癌组织与癌旁组织中miR-145和SOX9及其下游分子MUC2的mRNA表达水平和蛋白表达水平。
     结果:
     1.生物信息学结合文献检索,确定转录因子SOX9为miR-145的潜在下游靶基因,SOX9的mRNA3'UTR区-282和-1402有两个可能结合位点。
     2.含有miR-145结合位点的pMIR-282和pMIR-1402,在过表达miR-145时,其荧光素酶活性相对空载体分别下降50.29%和59.83%;在对核心结合位点突变后,荧光素酶活性恢复,与野生型水平接近。
     3.过表达miR-145后,Western-blot检测显示SOX9蛋白显著下降,MUC2蛋白水平相应增加;通过化学修饰的反义寡核苷酸降低内源性miR-145表达水平后,Western-blot检测发现SOX9蛋白显著增加,MUC2蛋白表达减少。
     4.相对于癌旁组织,miR-145的mRNA水平在癌组织中下调,SOX9的mRNA水平相应增加,MUC2的mRNA水平相应下降,同时,癌组织中SOX9的蛋白水平上调,其下游MUC2因为受到SOX9抑制其蛋白水平下降。
     结论:
     miR-145可能通过调节SOX9及下游分子MUC2抑制结肠癌细胞增殖。
Colon cancer is one of the most common gastrointestinal malignant tumors, with the incidence increasing each year. Statistical reports of the American Cancer Society in2010shows that the incidence and case fatality rate of colon cancer in male and female cancer patients was ranked No.3and ranked2in the tumor in the U.S. respectively. China was in countries with low incidence of colon cancer, but in recent years as China's rapid economic development and improved living standards, lifestyle and dietary pattern of change, there is an increasing trend in the incidence of colon cancer which was ranked NO.3both in male and female. The five-year survival rate after surgery is only about fifty percent. The previous study showed that the colon cancer caused by gain of function of oncogene and lose of function of tumor suppressor gene in colonic epithelial cells, epigenetic modification of genomic changes and environment factors. But its pathogenesis is not yet very clear, in-depth study of the pathogenesis of colon cancer is greatly benefits for early diagnosis, treatment and improved quality of life of patients.
     miRNA (microRNA) is a endogenous single-stranded non-coding small RNA with its length of21-25nucleotide in organisms, mainly through the inhibition of target gene expression at post-transcriptional level. miRNA are widely involved in cell proliferation, differentiation, apoptosis, tissue and organ development, tumor genesis, and tumor metastasis. In recent years, many studies show that miRNAs involved in a variety of human tumors through a series of different mechanisms. Enhancing or diminishing miRNA function will affect the process of tumor. Precisely because of the miRNA regulation of cancer cell differentiation, proliferation, survival and metastasis, positive or negative tumor-associated of miRNA can be thought to provide a powerful treatment strategy for tumor occurrence and development of intervention.
     For further research on the mechanism of miRNAs in colon cancer, firstly we carried out the expression profiling analysis both in the tumor tissues and adjacent tissues from clinical patients respectively and gain a group of colon cancer-related candidate miRNAs. The expression level of miR-145in colon cancer is significantly lower than adjacent tissue by using Chip array and the real time reverse transcription polymerase chain reaction experiments.Secondly this study intends to verify and analyze the biological role of miR-145in colon cancer. Finally, we want to initially verify the hypothesis that miR-145may lead to the occurrence of colon cancer malignant phenotype through the regulation of target gene SOX9and related downstream signaling pathways by fluciferase assay and western blot. This research put forward the hypothesis that miR-145may cause development of colon cancer by target regulating transcription factors SOX9for the first time, lay base for a comprehensive understanding of the roles of miR-145in colon cancer, provide the theory basis for the diagnosis and drug treatment of colon cancer drug.
     PartⅠ The screening and validation of the colon cancer-related candidate miRNAs
     Objective
     To explore the miRNA expression pattern difference between colon cancer tissues and adjacent tissues and gain a group of colon cancer-related candidate miRNAs.
     Methods
     miRNA expression microarray analysis was carried out in tumor tissue and adjacent tissue from six clinical patients. We further validated the expression of interesting candidate miRNA using real time reverse transcription polymerase chain reaction (real-time RT-PCR) method.
     Results
     1. The Genechip found51miRNAs, including that there are24miRNAs downregulated and27miRNA upregulated in tumor tissue comparing with adjacent tissues, the differences were statistically significant in more than two times. Expression levels of miR-145and miR-143were down-regualted3.492fold and2.899fold respectively, while expression level of miR-96was up-regualted 3.083fold in colon cancer.
     2. The expression levels of miR-145and miR-143in tumor tissue were down-regualted3.533fold and2.425fold comparing to adjacent tissues through real-time RT-PCR validation, the expression level of miR-96in tumor tissues was up-regualted2.363fold comparing to adjacent tissues through real-time RT-PCR validation.
     Conclusion
     The expression profile of miRNA is different between tumor tissues and adjacent tissues. miR-145may play roles in colon cancer and available for further study.
     Partll The study of miR-145suppressing the proliferation of HCT116cells in vitro
     Objective
     To investigate the biological function of miR-145involved in HCT116cells in vitro.
     Methods
     1. miR-145genes fragment was obtained by PCR from genomic DNA extracted from normal tissue and inserted into eukaryotic expression plasmid pCMV-myc.
     2. The constructed plasmids containing right sequence of target miR-145were transfected into HCT116cells via lipofectamine. The expression level of miR-145was detected by real-time RT-PCR.
     3. The proliferation of HCT116over-expressed with miR-145was detected using CCK8kit and the cell cycle was detected by Flow Cytometer, and the transfer ability change was detected by scratch test.
     Results
     1. The pCMV-miR-145plasmid which over expressing miR-145was successfully constructed, the plasmid could increase expression level of miR-145in HCT116cells by754times comparing to empty vector.
     2. Comparing to control, after transferred by pCMV-miR-145plasmid, percentage of G1phase increased (62.80±1.22%vs51.61±0.91%); OD value decresed (0.345±0.032vs0.632±0.033); cells number of scramble decresed (176±24vs276±26)
     Conclusion
     Over-expression of exogenous miR-145can suppress the proliferation of HCT116cells by cuasing G1cell cycle block and suppressing proliferation and transfer ability in vitro.
     PartⅢ The experiment of miR-145restraining growth of subcutaneous transplant tumors in nude mice
     Objective
     To investigate the biological function of miR-145involved in HCT116cells in vivo.
     Methods
     Animal model of subcutaneous transplant tumor induced by colon cancer HCT116cells in nude mice was established. Tumor size and doubling time were observed after overexpression of miR-145.
     Results
     Tumor size significantly reduced (368.18±78mm3vs914.14±204mm3), as well as doubling time extended after overexpression of miR-145(6.5±1.5day vs3.8±0.9day).
     Conclusion
     Over-expression of exogenous miR-145can suppress the proliferation of HCT116cells in vivo.
     PartⅣ The mechan ism of miR-145suppressing the proliferation of HCT116cells Objective
     To study possible mechanisms of miR-145inhibiting proliferation of HCT116cells.
     Methods
     1. Identification of the potential target of miR-145using bioinformatics.
     2. miR-145binding site in SOX9gene locus was obtained by PCR from genomic DNA extracted from normal tissue and inserted into luciferase reporter plasmid pMIR-reporter.
     3. The constructed plasmids containing right sequence of target were transfected into HCT116cells via lipofectamine for the detection of luciferase activity. The expression change of SOX9was detected by western blotting, when over expressed or low expressed miR-145.
     4. Detect the mRNA level of miR-145, SOX9and MUC2in tumor and adjacent tissues from clinical patients. Furthermore, the protein level of SOX9and MUC2was also detected by western blotting.
     Results
     1. SOX9was selected as the potential target of miR-145by bioinformatics. There are two miR-145binding site in the3'UTR of SOX9, which located at the-282bp and-1402bp downstream of stop codon respectively.
     2. The luciferase activity of pMIR-282and pMIR-1402was decreased significantly50.29%and59.83%respectively comparing with the control. After the'seed sequence'was mutated, the luciferase activity can back to the normal level.
     3. Over-expressed miR-145can decrease the protein level of SOX9and elevate the protein level of MUC2. Knock down of miR-145using antisense inhibitor can increase the protein level of SOX9, vice versa.
     4. The expression level of miR-145is significantly down-regulated in tumor tissues. Meanwhile, the expression level of SOX9increased and MUC2decreased on the contrary.
     Conclusion
     miR-145may suppress the proliferation of colon cancer by suppressing target gene SOX9and downstream MUC2.
引文
[1]Jemal A, Siegel R, Xu J,et al. Cancer Statistics,2010[J]. CA Cancer J Clin,2010,60 (5):277-300.
    [2]李宝国.结肠癌诊治的回顾与展望[J].齐齐哈尔医学院学报,2010,31(13):2124-2126.
    [3]Bartel DP. MiRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281-297.
    [4]Erson AE, Petty EM.MicroRNAs in development and disease[J]. Clin Genet,2008,74(4):296-306.
    [5]Cho WC. OncomiRs:the discovery and progress of miRNAs in cancers [J]. Mol Cancer,2007, 6:60.
    [6]Finnerty JR, Wang WX, Hebert.SS,et al. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases[J]. J Mol Biol,2010,402(3):491-509.
    [7]Ma L. Role of miR-10b in breast cancer metastasis [J]. Breast Cancer Res.2010,12 (5):210.
    [8]Mohd Saif Zaman, Varahram Shahryari, Guoren Deng, et al. Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival[J]. PLoS One,2012,7(2):e31060.
    [9]Barh D, Malhotra R, Ravi B, et al. MicroRNA let-7:an emerging next-generation cancer [J]. Curr Oncol,2010,17 (1):70-80.
    [10]Xu Q, Liu LZ, Qian X, et al. MiR-145 directly targets p70S6Kl in cancer cells to inhibit tumor growth and angiogenesis therapeutic. Nucleic,2012,40(2):761-764.
    [11]Sachdeva M, Zhu S, Wu F, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145[J]. Proc Natl Acad Sci USA,2009,106(9):3207-3212.
    [12]Ozen M, Creighton CJ, Ozdemir M, et al. Widespread deregulation of miRNA expression in human prostate cancer[J]. Oncogene,2008,27(12):1788-1793.
    [13]Cho WC, Chow AS, Au JS. Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation[J].Eur J Cancer,2009,45(12):2197-2206.
    [14]Gregersen LH, Jacobsen AB, Frankel LB, et al.MiRNA-145 targets YES and STAT1 in colon cancer cells[J]. PLoS One,20105(1):8836.
    [15]Akao Y, Nakagawa Y, Kitade Y, et al. Downregulation of miRNAs-143 and-145 in B-cell malignancies[J]. Cancer Sci,2007,98(12):1914-1920.
    [16]La Rocca G, Badin M, Shi B, et al. Mechanism of growth inhibition by MiRNA 145:the role of the IGF-I receptor signaling pathway[J].J Cell Physiol,2009,220(2):485-491.
    [17]Shi B, Sepp-Lorenzino L, Prisco M, et al.MicroRNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells[J]. J Biol Chem,2007,282(45): 32582-32590.
    [18]Sachdeva M, Mo YY. MiRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1[J].Cancer Res,2010,70(1):378-387.
    [19]Xu N, Papagiannakopoulos T, Pan G, et al. MiRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells [J]. Cell,2009,137(4):647-658.
    [20]Suzuki HI, Yamagata K, Sugimoto K, et al. Modulation of miRNA processing by p53[J]. Nature,2009,460(7254):529-533.
    [21]Spizzo R, Nicoloso MS, Lupini L, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells[J].Cell Death Differ,2010,17(2):246-254.
    [22]Scott CE, Wynn SL, Sesay A, et al. SOX9 induces and maintains neural stem cells[J]. Nat Neuro sci,2010,13(10):1181-1189.
    [23]Wang H, Leav I, Ibaragi S, et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion[J]. Cancer Res,2008,68(6):1625-1630.
    [24]Bastide P, Darido C, Pannequin J, et al. SOX9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium[J]. J Cell Biol,2007,178(4):635-648.
    [25]Blache P, van de Wetering M, Duluc I, et al.SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes [J]. J Cell Biol,2004,166(1):37-47.
    [26]吴珊.SOX9基因沉默对大肠癌细胞系生物学行为的影响硕士论文.浙江大学,42,2011.
    [27]Matheu A, Collado M, Wise C, et al. Oncogenicity of the Developmental Transcription Factor Sox9[J]. Cancer Res,2012, doi:10.1158/0008-5472.
    [28]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [29]Mestdagh P, Feys T, Bernard N, et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA[J]. Nucleic Acids Res,2008, 36(21):e143.
    [30]Schroeder A, Mueller O, Stocker S, et al. The RIN:an RNA integrity number for assigning integrity values to RNA measurements[J]. BMC Mol Biol,2006,7:3.
    [31]Beral V, Peto R. UK cancer survival statistics[J]. BMJ,2010,341:c4112. [32]Haberland J, Bertz J, Wolf U, et al. German cancer statistics 2004[J]. BMC Cancer,2010, 10:52.
    [33]Kiviniemi MT, Bennett A, Zaiter M, et al. Individual-level factors in colorectal cancer screening:a review of the literature on the relation of individual-level health behavior constructs and screening behavior[J]. Psychooncology,2011,20(10):1023-1033.
    [34]Aiello M, Vella N, Cannavo C, et al. Role of genetic polymorphisms and mutations in colorectal cancer therapy (Review) [J].Mol Med Report,2011,4(2):203-208.
    [35]Zlobec I, Lugli A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer:tumor budding as oncotarget[J]. Oncotarget,2010,1(7):651-661.
    [36]Kemper K, Grandela C, Medema JP. Molecular identification and targeting of colorectal cancer stem cells[J]. Oncotarget,2010,1(6):387-395.
    [37]Markowitz SD, Dawson DM, Willis J, et al. Focus on colon cancer. Cancer Cell,2002, 1(3):233-236.
    [38]Greene FL. Current TNM staging of colorectal cancer[J]. Lancet Oncol,2007, 8(7):572-573.
    [39]van Steenbergen LN, Lemmens VE, Rutten HJ, et al. Was there shortening of the interval between diagnosis and treatment of colorectal cancer in southern Netherlands between 2005 and 2008?[J]. World J Surg,2010,34(5):1071-1079.
    [40]Zhang L, Ren X, Alt E, et al. Chemoprevention of colorectal cancer by targeting APC-deficient cells for apoptosis[J]. Nature,2010,464(7291):1058-1061.
    [41]Weekes J, Ho YH, Sebesan S, et al. Irinotecan and colorectal cancer:the role of p53, VEGF-C and alpha-B-crystallin expression[J].Int J Colorectal Dis,2010,25(7):907.
    [42]Hoogwater FJ, Ni jkamp MW, Smakman N, et al.Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells [J]. Gastroenterology,2010,138(7):2357-2367.
    [43]Zlobec I, Bihl MP, Schwarb H, et al. Clinicopathological and protein characterization of BRAF- and K-RAS-mutated colorectal cancer and implications for prognosis[J]. Int J Cancer,2010,127(2):367-380.
    [44]Auclair J, Vaissiere T, Desseigne F, et al. Intensity-dependent constitutional MLH1 promoter methylation leads to early onset of colorectal cancer by affecting both alleles[J]. Genes Chromosomes Cancer,2011,50(3):178-185.
    [45]Frank B, Hoffmeister M, Klopp N, et al. Single nucleotide polymorphisms in Wnt signaling and cell death pathway genes and susceptibility to colorectal cancer[J]. Carcinogenesis,2010,31(8):1381-1386.
    [46]Li JM, Zhao RH, Li ST, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer[J].Saudi Med J,2012,33(1):24-29.
    [47]Wang Y, Luo H, Li Y, et al. Hsa-miR-96 up-regulates MAP4K1 and IRS1 and may function as a promising diagnostic marker in human bladder urothelial carcinomas[J]. Mol Med Report,2012,5(1):260-265. doi:10.3892/mmr.2011.621. Epub 2011 Oct 11.
    [48]Center MM, Jemal A, Smith RA, et al. Worldwide variations in colorectal cancer. CA Cancer J Clin,2009,59(6):366-378.
    [49]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin,2008, 58(2):71-96.
    [50]Bougatef K, Ouerhani S, Moussa A, et al. Prevalence of mutations in APC, CTNNB1, and BRAF in Tunisian patients with sporadic colorectal cancer [J]. Cancer Genet Cytogenet,2008, 187(1):12-18.
    [51]Alhopuro P, Phichith D, Tuupanen S, et al. Unregulated smooth-muscle myosin in human intestinal neoplasia[J]. Proc Natl Acad Sci U S A,2008,105(14):5513-5518.
    [52]Chen X, Ba Y, Ma L, Cai X, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res,2008, 18(10):997-1006.
    [53]Chen Z, Zeng H, Guo Y, Liu P, et al. miRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc[J].J Exp Clin Cancer Res,2010,29:151.
    [54]Zhang J, Guo H, Zhang H, et al. Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene[J]. Cancer,2011,117(1):86-95.
    [55]Chiyomaru T, Enokida H, Tatarano S. et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer [J]. Br J Cancer,2010, 102(5):883-891.
    [56]Arndt GM, Ossey L, Cullen LM, et al. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer[J]. BMC Cancer,2009,9 (374):1-17.
    [57]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120(1):15-20.
    [58]Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005,37(5):495-500.
    [59]Lai R, Bekessy A, Chen CC, et al. Megaprimer mutagenesis using very long primers. Biotechniques,2003,34(1):52-54,56.
    [60]Perez K, Yeam I, Jahn MM, et al. Megaprimer-mediated domain swapping for construction of chimeric viruses[J]. J Virol Methods,2006,135(2):254-262.
    [61]Xu Z, Colosimo A, Gruenert DC. Site-directed mutagenesis using the megaprimer method[J]. Methods Mol Biol,2003,235:203-207.
    [62]Grimson A, Farh KK, Johnston WK, et al.MicroRNA targeting specificity in mammals: determinants beyond seed pairing[J]. Mol Cell,2007,27(1):91-105.
    [63]Betel D, Wilson M, Gabow A, et al. The microRNA. org resource:targets and expression[J]. Nucleic Acids Res,2008,36(Database issue):D149-153.
    [64]John B, Enright AJ, Aravin A, et a1. Human MicroRNA targets. PLoS Biol,2004, 2(11):e363.
    [65]Friedman RC, Farh KK, Burge CB, et al.Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res,2009,19(1):92-105.
    [66]Garcia DM, Baek D, Shin C, et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs[J]. Nat Struct Mol Biol,2011,18(10):1139-1146.
    [67]Milev I, Yahubyan G, Minkov I, et al. miRTour:Plant miRNA and target prediction tool [J]. Bioinformation,2011,6(6):248-249.
    [68]Xia W, Cao G, Shao N. Progress in miRNA target prediction and identification[J]. Sci China C Life Sci,2009,52(12):1123-1130.
    [69]Fahlgren N, Carrington JC. miRNA Target Prediction in Plants[J]. Methods Mol Biol, 2010,592:51-57.
    [70]Ritchie W, Rasko JE. Integrated miRNA expression analysis and target prediction [J]. Methods Mol Biol,2012,822:289-293.
    [71]田文洪,董小岩,王刚,等.一种利用分泌型荧光素酶基因表达变化监测活细胞中miRNA活性的新方法[J].生物工程学报,2010,26(6):809-816.
    [72]Dong C, Wilhelm D, Koopman P.Sox genes and cancer. Cytogenet Genome Res,2004, 105(2-4):442-447.
    [73]Jia X, Li X, Xu Y, et al.SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell[J]. J Mol Cell Biol,2011,3(4):230-238.
    [74]Uozaki H, Barua RR, Minhua S, et al. Transcriptional factor typing with SOX2, HNF4aP1, and CDX2 closely relates to tumor invasion and Epstein-Barr virus status in gastric cancer[J].Int J Clin Exp Pathol,2011,4(3):230-240.
    [75]Medina PP, Castillo SD, Blanco S, et al. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer[J]. Hum Mol Genet,2009, 18 (7):1343-1352.
    [76]Shen R, Pan S, Qi S, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer[J]. Biochem Biophys Res Commun,2010, 394(4):1047-1052.
    [77]Lai YH, Cheng J, Cheng D, Fet al. SOX4 interacts with plakoglobin in a Wnt3a-dependent manner in prostate cancer cells[J]. BMC Cell Biol,2011,12:50.
    [78]Gure AO, Stockert E, Scanlan MJ, et al. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer[J]. Proc Natl Acad Sci USA 2000,97(8):4198-4203.
    [79]Zhou X, Huang SY, Feng JX, et al. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells[J]. World J Gastroenterol,2011,17 (44):4922-4927.
    [80]Zhang Y, Huang S, Dong W, et al. SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells[J]. Cancer Lett,2009, 277(1):29-37.
    [81]Darido C, Buchert M, Pannequin J, et al. Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells[J]. Cancer Res,2008,68(11):4258-4268.
    [82]Mayordomo E, Machado I, Giner F, et al. A tissue microarray study of osteosarcoma: histopathologic and immunohistochemical validation of xenotransplanted tumors as preclinical models[J]. Appl Immunohistochem Mol Morphol,2010,18(5):453-461.
    [83]Wang H, McKnight NC, Zhang T, et al.SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells[J]. Cancer Res,2007, 67(2):528-536.
    [84]Endo Y, Deonauth K, Prahalad P, et al. Role of Sox-9, ER81 and VE-cadherin in retinoic acid-mediated trans-differentiation of breast cancer cells[J].PLoS One,2008, 3(7):e2714.
    [85]Lu B, Fang Y, Xu J, et al. Analysis of SOX9 expression in colorectal cancer[J]. Am J Clin Pathol,2008,130(6):897-904.
    [86]Topol L, Chen W, Song H, et al. Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus[J]. J Biol Chem,2009,284(5):3323-3333.
    [87]Yano F, Kugimiya F, Ohba S, et al.The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner[J]. Biochem Biophys Res Commun,2005,333(4):1300-1308.
    [88]Park J, Zhang JJ, Moro A, Ket al.Regulation of Sox9 by Sonic Hedgehog (Shh) is essential for patterning and formation of tracheal cartilage[J]. Dev Dyn,2010, 239(2):514-526.
    [89]Tavella S, Biticchi R, Schito A, et al. Targeted expression of SHH affects chondrocyte differentiation, growth plate organization, and Sox9 expression [J]. J Bone Miner Res,2004, 19 (10):1678-1688.
    [90]Addeo R, Abbruzzese A, Del Prete S. MUC2:a new key for pancreas cancer prognosis[J]. Cancer Biol Ther,2009,8(11):1000-1001.
    [91]Moriya T, Kimura W, Hirai I, et al. Expression of MUC1 and MUC2 in ampullary cancer [J]. Int J Surg Pathol,2011,19(4):441-447.
    [92]于秀文,程慧,王静芬.黏蛋白MUC1_MUC2及基质金属蛋白酶MMP-3在大肠癌中的联合表达及临床意义[J].医学研究杂志,2008,37(1):23-27.
    [93]Conze T, Carvalho AS, Landegren U, et al. MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas [J]. Glycobiology,2010,20 (2):199-206.
    [94]Fujishima Y, Goi T, Kimura Y, et al. MUC2 protein expression status is useful in assessing the effects of hyperthermic intraperitoneal chemotherapy for peritoneal dissemination of colon cancer[J]. Int J Oncol,2012,40(4):960-964.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [2]Mohd Saif Zaman, Varahram Shahryari, Guoren Deng, et al. Up-Regulation of MicroRNA-21 Correlates with Lower Kidney Cancer Survival[J]. PLoS One,2012,7(2):e31060.
    [3]Wang R, Wang ZX, Yang JS, et al. MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14) [J]. Oncogene. 2011,30(23):2644-2658.
    [4]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II[j]. EMBO J,2004,23(20):4051-4060.
    [5]Borchert GM, Lanier W, Davidson BL. RNA polymerase Ⅲ transcribes human microRNAs[J]. Nat Struc Mol Biol,2006,13(12):1097-1101.
    [6]Filippov V, Solovyev V, Filippova M, et al. A novel type of RNase Ⅲ family proteins in eukaryotes[J].Gene,2000,245(1):213-221.
    [7]Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature,2004,432(7014):235-240.
    [8]Han J, Lee Y, Yeom KH, et al. The Drosha-DGCR8 complex in primary microRNA processing [J]. Genes Dev,2004,18(24):3016-3027.
    [9]Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J]. RNA,2004,10(2):185-191.
    [10]Zhang H, Kolb FA, Jaskiewicz L, et al. Single processing center models for human Dicer and bacterial RNase Ⅲ[J]. Cell,2004,118(1):57-68.
    [11]Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature,2005,436(7051):740-744.
    [12]Lee Y, Hur I, Park SY, Kim YK, et al. The role of PACT in the RNA silencing pathway [J]. EMBO J,2006,25(3):522-532.
    [13]Filipowicz W. RNAi:the nuts and bolts of the RISC machine[J]. Cell,2005,122(1):17-20.
    [14]Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science,2004,305(5689):1437-1441.
    [15]Forstemann K, Horwich MD, Wee L, et al. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1[J]. Cell,2007,130(2):287-297.
    [16]Rand TA, Petersen S, Du F, et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation[J]. Cell,2005,123(4):621-629.
    [17]Leuschner PJ, Ameres SL, Kueng S, et al. Cleavage of the siRNA passenger strand during RISC assembly in human cells[J]. EMBO Rep,2006,7(3):314-320.
    [18]Kawamata T, Seitz H, Tomari Y.2009. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding[J]. Nat Struct Mol Biol,2009,16(9):953-960.
    [19]Martinez J, Patkaniowska A, UrlaubH, et al.2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi[J]. Cell,2002,110(5):563-574.
    [20]Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms?[J]. Trends Cell Biol,2007,17(3):118-126.
    [21]Meister G. miRNAs get an early start on translational silencing[J]. Cell,2007,131(1):25-28.
    [22]Petersen CP, Bordeleau ME, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells[J].Mol Cell,2006,21(4):533-542.
    [23]Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes[J]. Nat Struct Mol Biol,2006,13(12):1108-1114.
    [24]Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2[J]. Cell,2007,128(6):1105-1118.
    [25]Vasudevan S, Tong Y, Steitz JA. Cell cycle control of microRNA-mediated translation regulation[J].Cell Cycle,2008,7(11):1545-1549.
    [26]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation:microRNAs can upregulate translation[J]. Science,2007,318(5858):1931-1934.
    [27]Calin GA, DumitruCD, ShimizuM, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [28]Shi ZM, Wang J, Yan Z, et al. MiR-128 Inhibits Tumor Growth and Angiogenesis by Targeting p70S6K1[J]. PLoS One,2012,7(3):e32709.
    [29]Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis[J]. Nature,2008,451(7175):147-152.
    [30]Metzler M, Wilda M, Busch K, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma[J]. Genes Chromosom Cancer,2004,39(2):167-169.
    [31]Kluiver J, Poppema S, de Jong D, et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas[J]. J Pathol,2005,207(2):243-249.
    [32]Rushworth SA, Murray MY, Barrera LN, et al. Understanding the role of miRNA in regulating NF-κB in blood cancer [J]. Am J Cancer Res,2012,2(1):65-74.
    [33]Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia[J]. Blood,2008,111 (6):3183-3189.
    [34]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci USA,2006,103(7):2257-2261.
    [35]Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155,203, 210 and 222 in pancreatic tumors is associated with poorer survival[J]. Int J Cancer,2010,126(1):73-80.
    [36]Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA,2004, 10 (12):1957-1966.
    [37]Fujita S, Ito T, Mizutani T, et al. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism[J]. J Mol Biol,2008,378(3):492-504.
    [38]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res,2005,65(14):6029-6033.
    [39]Si ML, Zhu S, WuH, et al. miR-21-mediated tumor growth [J]. Oncogene,2007,26(19):2799-2803.
    [40]Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J].Cell Res,2008,18(3):350-359.
    [41]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene,2008,27(15):2128-2136.
    [42]Sathyan P, Golden HB, Miranda RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure:evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium[J]. J Neurosci,2007, 27(32):8546-8557.
    [43]Vriens MR, Weng J, Suh I, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer[J]. Cancer,2011, doi:10.1002/cncr.26587.
    [44]Fornari F, Gramantieri L, Ferracin M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene,2008, 27(43):5651-5661.
    [45]Di Leva G, Gasparini P, Piovan C, et al. MicroRNA cluster 221-222 and estrogen receptor a interactions in breast cancer[J].J Natl Cancer Inst,2010,102(10):706-721.
    [46]Felicetti F, Errico MC, Bottero L, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms[J].Cancer Res,2008,68(8):2745-2754.
    [47]le Sage C, Nagel R, Egan DA, et al. Regulation of the p27Kipl tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation[J]. EMBO J,2007,26(15):3699-3708.
    [48]Garofalo M, Quintavalle C, Di Leva G, et al. MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer[J]. Oncogene,2008,27(27):3845-3855.
    [49]Garofalo M, Di Leva G, Romano G, et al. miR-221/222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation[J]. Cancer Cell,2009,16(6):498-509.
    [50]Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis[J].Proc Natl Acad Sci USA,2009,107(1):264-269.
    [51]Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGF β-dependent cell-cycle arrest and apoptosis in gastric cancer[J]. Cancer Cell,2008, 13(3):272-286.
    [52]Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma[J].Cancer Res,2004,64(9):3087-3095.
    [53]Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation[J]. Cancer Res,2005,65(21):9628-9632.
    [54]Manni I, Artuso S, Careccia S, et al. The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms[J]. FASEB J,2009,23 (11):3957-3966.
    [55]Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia[J]. Blood,2009,114(15):3265-3275.
    [56]Park JK, Lee EJ, Esau C, et al. Antisense inhibition of microRNA-21 or-221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma[J]. Pancreas,2009,38(7):e190-199.
    [57]Inomata M, Tagawa H, Guo YM, et al. MicroRNA-17-92 downregulates expression of distinct targets in different B-cell lymphoma subtypes[J]. Blood,2009,113(2):396-402.
    [58]Wang PY, Li YJ, Zhang S, et al. Regulating A549 cells growth by ASO inhibiting miRNA expression[J]. Mol Cell Biochem,2010,339(1-2):163-171.
    [59]Bandi N, Zbinden S, Gugger M, et al.2009. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non - small cell lung cancer[J]. Cancer Res,2009,69(13):5553-5559.
    [60]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J].Proc Natl Acad Sci,2005, USA 102 (39):13944-13949.
    [61]Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities[J]. Nat Med,2008,14(11):1271-1277.
    [62]Tolcher AW, Chi K, Kuhn J, et al. A phase Ⅱ, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer[J]. Clin Cancer Res,2005,11(10):3854-3861.
    [63]Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia[J]. Cancer Cell,2010,17(1):28-40.
    [64]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005,120(5):635-647.
    [65]Sampson VB, Rong NH, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells[J]. Cancer Res,2007,67(20):9762-9770.
    [66]Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene [J]. Genes Dev,2007,21(9):1025-1030.
    [67]He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network [J]. Nature,2007,447(7148):1130-1134.
    [68]Cole KA, Attiyeh EF, Mosse YP, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene[J].Mol Cancer Res,2008,6(5):735-742.
    [69]Li Y, Guessous F, Zhang Y, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes[J]. Cancer Res,2009,69(19):7569-7576.
    [70]Gallardo E, Navarro A, Vinolas N, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer[J]. Carcinogenesis,2009, 30(11):1903-1909.
    [71]Mott JL, Kobayashi S, Bronk SF, et al. mir-29 regulates Mcl-1 protein expression and apoptosis[J]. Oncogene,2007,26(42):6133-6140.
    [72]Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42[J].Nat Struct Mol Biol,2009,16(1):23-29.
    [73]Tsai WC, Hsu PW, Lai TC, et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma[J]. Hepatology,2009,49 (5):1571-1582.
    [74]Garzon R, Heaphy CE, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia[J]. Blood,2009,114(26):5331-5341.
    [75]Furuta M, Kozaki KI, Tanaka S, et al. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma[J]. Carcinogenesis,2010,31(5):766-776.
    [76]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival [J]. Cancer Res,2004,64(11):3753-3756.
    [77]Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha[J]. EMBO J,2005,24(1):138-148.
    [78]Mclaughlin J, Cheng D, Singer 0, et al. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics [J]. Proc Natl Acad Sci USA,2007,104(51):20501-20506.
    [79]Liang Z, WuH, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA[J]. Biochem Biophys Res Commun,2007,363(3):542-546.
    [80]Chung KH, Hart CC, Al-Bassam S, et al. Polycistronic RNA polymerase Ⅱ expression vectors for RNA interference based on BIC/miR-155[J]. Nucleic Acids Res,2006,34(7):e53.
    [81]Love TM, Moffett HF, Novina CD. Not miR-ly small RNAs:big potential for microRNAs in therapy[J].J Allergy Clin Immunol,2008,121(2):309-319.
    [82]Kota J, Chivukula RR,0'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J]. Cell,2009,137(6):1005-1017.
    [83]Alexander IE, Cunningham SC, Logan GJ, et al. Potential of AAV vectors in the treatment of metabolic disease[J]. Gene Ther,2008,15(11):831-839.
    [84]Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver[J]. Blood,2007,110(7):2334-2241.
    [85]Alexander JJ, Hauswirth WW. Adeno-associated viral vectors and the retina[J]. Adv Exp Med Biol,2008,613:121-128.
    [86]Chatterjee S, Li W, Wong CA, et al. Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vectors[J]. Blood,1999,93(6):1882-1894.
    [87]Fein DE, Limberis MP, Maloney SF, et al. Cationic lipid formulations alter the in vivo tropism of AAV2/9 vector in lung[J].Mol Ther,2009,17(12):2078-2087.
    [88]Lee YS, KimHK, Chung S, et al. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation[J]. J Biol Chem,2005,280(17):16635-16641.
    [89]Cheng AM, Byrom MW, Shelton J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic Acids Res,2005,33 (4):1290-1297.
    [90]Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation [J]. J Biol Chem,2004,279(50):52361-52365.
    [91]Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality[J]. Nucleic Acids Res,2005,33(1):439-447.
    [92]Braasch DA, Jensen S, Liu Y, et al. RNA interference in mammalian cells by chemically modified RNA[J]. Biochemistry,2003,42(26):7967-7975.
    [93]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Cancer Res,2005,65(14):6029-6033.
    [94]Galardi S, Mercatelli N, Giorda E, et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kipl[J]. J Biol Chem,2007,282(32):23716-23724.
    [95]Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-delivered S-TRAIL in human gliomas[J]. Cancer Res,2007,67(19):8994-9000.
    [96]Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates [J]. Nature,2008,452(7189):896-899.
    [97]Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J]. Nat Methods,2007,4(9):721-726.
    [98]Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths[J].Mol Biol Cell,2008,19(8):3272-3282.
    [99]Scherr M, Venturini L, Battmer K, et al. Lentivirus-mediated antagomir expression for specific inhibition of miRNA function[J]. Nucleic Acids Res,2007,35(22):e149
    [100]Kim VN, Han J, Siomi MC.2009. Biogenesis of small RNAs in animals[J]. Nat Rev Mol Cell Biol,2009,10(2):126-139.
    [101]Xiao J, Yang B, Lin H, et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs:examination on the pacemaker channel genes HCN2 and HCN4[J].J Cell Physiol,2007,212(2):285-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700