用户名: 密码: 验证码:
微电子机械系统(MEMS)中介孔硅材料的热学、力学及电学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅(PS)具有大的体积表面比、高效率的发光特性,良好的化学稳定性以及与传统IC工艺的兼容性,使其在SOI技术,微电子机械系统(MEMS)技术以及微传感器技术等众多方面得到极大重视。近年来,随着MEMS技术的迅猛发展,作为一种新兴的牺牲层和绝热层材料,多孔硅以其优良的力学性能和绝热性能在制造化学微传感器、热微传感器、光电子器件以及太阳能电池等MEMS领域中得到广泛的应用。介孔硅(Meso-PS)作为多孔硅技术的一个分支,因其具有适中的孔径尺寸、孔隙率,良好的绝热特性、机械性能等特点在上述MEMS领域应用最为广泛。
     本论文采用双槽电化学腐蚀法制备介孔硅,主要针对MEMS中介孔硅材料的热学、力学和电学基本性质以及金属薄膜和半导体薄膜微温度传感器中基于介孔硅功能绝热层的绝热特性进行分析和研究。
     采用准确便捷且对样品无损伤的微拉曼光谱技术测量介孔硅的热导率,研究了实验条件及氧化后处理对其热导率的影响,并对实验测量的结果进行对比分析研究,得出介孔硅热导率随孔隙率及氧化后处理的变化规律。探讨了介孔硅的传热机理,基于有效介质理论,提出用于分析所制备介孔硅和氧化介孔硅热导率的理论模型,对影响所制备介孔硅和氧化介孔硅有效热导率的因素进行了理论分析,得出用于计算所制备介孔硅和氧化介孔硅有效热导率的理论计算公式,揭示了介孔硅层热导率与硅基底热导率间的巨大差异。研究分析表明理论计算与所获得的实验数据相一致,为今后利用介孔硅材料制作绝热层打下了良好的理论基础。
     由于介孔硅薄膜材料的尺度较小,传统的材料力学测试方法难以对其机械力学参数进行测量。纳米压痕技术具有操作简单、测量精度高、可以在很小的局部范围测试材料的力学性能等优点,在材料的微观力学性能研究方面得到了广泛的应用,逐渐成为微机械材料力学性能测量中应用最广的一种方法。通过纳米压痕技术研究了所制备介孔硅和氧化介孔硅的硬度和杨氏弹性模量随纳米压入深度的变化规律,比较了经不同温度处理的氧化介孔硅的力学性能差异。研究分析表明,所制备介孔硅的硬度和杨氏弹性模量随其孔隙率的增加而减小,经过不同温度的氧化后处理,氧化作用形成的二氧化硅包覆层可以明显提高其微观力学性能。
     在对介孔硅材料的热学和微机械力学性能的研究基础上,进一步探讨了所制备介孔硅及氧化介孔硅的电学性能。以金属半导体接触原理为基础,对铂金属薄膜与介孔硅所组成的金属—所制备介孔硅或氧化介孔硅—单晶硅微结构的纵向和横向接触特性进行分析和研究,得出其I-V特性随制备条件及氧化后处理的变化规律。研究发现,介孔硅层具有良好的电绝缘特性,介孔硅基微器件可以形成稳定的电接触。基于介孔硅的微结构的I-V特性主要由介孔硅层的电学特性所决定,表现出非整流的接触特性。
     基于介孔硅优良的绝热特性、良好的机械稳定性和电绝缘特性,对其在热微传感器中作为功能绝热层的应用作了进一步的研究。以具有正电阻温度系数(PTC)的铜金属薄膜和具有负电阻温度系数(NTC)的氧化钒薄膜为热敏元件对介孔硅功能结构层的绝热特性进行分析,并对相应热敏元件的电阻温度特性进行了研究。研究结果表明,基于介孔硅优良的绝热特性,热敏薄膜表现出良好的电阻温度特性,较高的灵敏度,可以应用于更加广泛的热敏感材料制作基于介孔硅功能绝热层的热微传感器,从而扩展了介孔硅功能绝热层的应用范围。
Due to its very large surface to volume ratio, intense visible photoluminescence, good chemical stability and easy compatibility with modern standard IC technology, porous silicon (PS) has received considerable attention in various fields such as silicon-on-insulator (SOI), micro-electro-mechanical-system (MEMS), micro-sensors technologies and so on. In recent years, with the rapid development of MEMS technologies, PS has been utilized as new kinds of sacrificial and thermal isolation materials. This very promising material has been an object of numerous MEMS applications in fabrication of chemical microsensors, thermal microsensors, optoelectronics and solar cell because of its excellent mechanical and thermal isolation properties. As a part of PS technologies, meso-PS has been effectively investigated in the above-mentioned MEMS applications for its moderate pore-size and porosity, excellent thermal isolation and mechanical properties.
     In this paper, meso-PS was prepared in a double-tank cell by using the electrochemical corrosion method. The thermal, mechanical and electrical properties of meso-PS in MEMS were investigated in detail. Besides, the thermal isolation properties of meso-PS as functional isolation layer used in metal film and semiconductor thermoresistors were also thoroughly analyzed.
     Thermal conductivity (TC) of meso-PS was measured using a direct non-contact and non-destuctive technique based on micro-Raman scattering spectroscopy. The affection of experimental conditions and post-oxidation process on its TC was studied. The comparison of measured data was also analyzed. TC values of meso-PS with respect to porosity and post-oxidation process were given. Theoretical models describing mechanisms of heat transfer in as-prepared and oxidized meso-PS based on the effective medium theory were brought forward. The factors affecting effective thermal conductivity (ETC) of as-prepared and oxidized meso-PS were analyzed theoretically, and the calculating formulas of ETC of as-prepared and oxidized meso-PS were given. The great difference between TC of meso-PS and that of silicon wafer was also revealed. It is shown that theoretical values are quite in good agreement with experimental data and this research has contributed to the construction of a systematic theoretical base for the usage of meso-PS as thermal isolation material in future.
     The characteristic dimensions of meso-PS films are so small that their mechanical parameters can not be measured by traditional mechanical testing methods. Due to its easy operation, high-resolution, characterization of mechanical behavior of materials in a very small region, nanoindentation technique has been widely adopted and used in the characterization of mechanical behavior of materials at small scales. For this reason, the method has become a primary technique for determining the mechanical properties of thin films and small structural features. The hardness and Young’s elastic modulus of as-prepared and oxidized meso-PS with respect to nanoindentation depth were thoroughly investigated using nanoindentation. The mechanical properties of oxidized meso-PS under various oxidized temperatures were also compared. The experimental results reveal that the hardness and Young’s elastic modulus of as-prepared meso-PS decrease with increasing porosities. SiO2 cladding layers are formed after post-oxidation process at different temperatures, and the mechanical properties of the films are distinctly improved.
     Based on the investigation of the thermal and mechanical properties of meso-PS, the electrical properties of as-prepared and oxidized meso-PS were deeply discussed. According to the theories of metal-semiconductor contacts, the longitudinal and transverse contact properties of Pt/as prepared or oxidized meso-PS/monocrystalline silicon microstructures were analyzed. Then their I-V characteristics with respect to preparation conditions and post-oxidation process were known. These results indicate that meso-PS layers have excellent electrical insulation properties and microdevices with meso-PS can obtain stable electrical contacts. I-V characteristics of meso-PS based microstructures exhibit nonrectifying contact properties and are mainly determined by the electrical properties of meso-PS layers.
     Owing to the favorable thermal isolation, mechanical stability and electrical insulation of meso-PS, its usage as thermal isolation layer in thermal microsensors was thoroughly studied. Taken Cu thin films exhibiting a positive temperature coefficient (PTC) characteristic and vanadium oxide thin films exhibiting a negative temperature coefficient (NTC) characteristic as thermal-sensitive devices, the analysis of thermal isolation properties of meso-PS functional structural layers were undergone. The resistance-temperature properties of corresponding thermal-sensitive devices were also investigated. It is found that these thermal sensitive films show fine resistance-temperature properties on account of the excellent thermal isolation of meso-PS. A wide range of materials can be utilized as thermal-sensitive materials in the fabrication of thermal microsensors with meso-PS functional structural layers, and consequently, the applications of meso-PS functional structure layers can be broadened.
引文
[1]李德胜,关佳亮,石照耀,等.微纳米技术及其应用,北京:科学出版社, 2005, 1~3
    [2] Senturia S D, Microsystem design, Massachusetts 02061 USA: Kluwer Academic Publishers, 2002, 1~13
    [3]姜岩峰,谢孟贤,微纳电子器件,北京:化学工业出版社, 2005, 219~222
    [4]胡雪梅,吕俊霞,微机电系统的发展现状和应用,机电设备, 2005, 22 (6):41~44
    [5]石庚辰,郝一龙,微机电系统技术基础,北京:中国电力出版社, 2006, 1~3
    [6]王亚珍,朱文坚,微机电系统(MEMS)技术及发展趋势,机械设计与研究, 2004, 85(3):56~63
    [7]赵长根,德国微系统技术的发展,科技大视野, 2004, 4:61~63
    [8] Zhang Y, Lu J, Shimano S, et al. Development of MEMS-based direct methanol fuel cell with high power density using nanoimprint technology, Electrochemistry Communications, 2007, 9(6):1365~1368
    [9]邢婉丽,程京,生物芯片技术,北京:清华大学出版社, 2004, 2~12
    [10] Schmalzing D, Belenky A, Novotny M A, et al. Microchip electrophoresis: a method for high speed SNP detection, Nucleic Acids Research, 2000, 28(9):E43
    [11]李旭辉, MEMS发展应用现状,传感器与微系统, 2006, 25(5):7~9
    [12] Janusz B, Impact of MEMS technology on society, Sensors and Actuators A, 1996, 56:15~23
    [13] Nagel D J, MEMS:micro technology, Circuits & Device, 2001, 17(2):14~25
    [14]亢春梅,曹金名,刘光辉,国外MEMS技术的现状及其在军事领域中的应用,传感器技术, 2002, 21(6):4~7
    [15]冯亚林,郝一龙, MEMS技术及其在军事中的应用,微电子学, 2006, 36(1):66~69
    [16]张吉良,周勇,戴旭,微传感器:原理、技术及应用,上海:上海交通大学出版社, 2005:1~4
    [17]方震,赵湛,武宇,等.基于MEMS技术的温湿传感器模拟和设计,测控技术, 2004, 23(3):10~14
    [18]蒋蓁,罗均,谢少荣,微型传感器及其应用,北京:化学工业出版社, 2005, 5~6
    [19] Bruschi P, Piotto M, Barillaro G, Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensors, Sensors and Actuators A, 2006, 123(1):182~187
    [20]加德纳(Gardner J W),瓦拉旦(Varadan V K),韦德尔卡姆(Awadelkarim O O),微传感器、微机电系统和灵巧器件= Microsensors, MEMS, and Smart Devices,北京:清华大学出版社, 2004:230~247
    [21] Perichon S, Lysenko V, Roussel P, et al. Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems, Sensors and Actuators A, 2000, 85(1):335~339
    [22] Korvink J G, Paul O, MEMS-A Practical Guide to Design, Analysis, and Applications, William Andrew Publishing, 2006, 229~279
    [23] Tsamis C, Nassiopoulou A G, Tserepi A, Thermal properties of suspended porous silicon micro-hotplates for sensor applications, Sensors and Actuators B, 2003, 95:78~82
    [24] Triantafyllopoulou R, Chatzandroulis S, Tsamis C, et al. Alternative micro-hotplate design for low power sensor arrays, Microelectronic Engineering, 2006, 83:1189~1191
    [25] Herwaarden A W, Duyn D C, Oudheusden B W, et al. Integrated thermopile sensors. Sensors and Actuators A, 1989, 22(1-3):621~630
    [26] Xie B, Mecklenburg M, Danielsson B, et al. Microbiosensor based on an integrated thermopile, Analytica Chimica Acta, 1994, 299(2):165~170
    [27] Mzerd A, Tcheliebou F, Sackda A, et al. Improvement of thermal sensors based on Bi2Te3, Sb2Te3 and Bi0.1Sb1.9Te3, Sensors and Actuators A, 1995, 47(1-3):387~390
    [28] Wolf A, Brendel R, Thermal conductivity of sintered porous silicon films, Thin Solid Films, 2006, 513:385~390
    [29] Papadimitriou D, Tsamis C, Nassiopoulou A G, The influence of thermal treatment on the stress characteristics of suspended porous silicon membranes on silicon, Sensors and Actuators B 2004, 103(1-2):356~361
    [30] Gorbanyuk T I, Evtukh A A, Litovchenko V G, et al. Porous silicon microstructure and composition characterization depending on the formation conditions, Thin Solid Films, 2006, 495:134~138
    [31] Boughaba S, Wang K, Fabrication of porous silicon using a gas etching method, Thin Solid Films, 2006, 497:83~89
    [32] Deresmes D, Marissael V, Stievenard D, et al. Electrical behavior of aluminum-porous silicon junctions, Thin Solid Films, 1995, 255:258~261
    [33] Diligenti A, Nannini A, Pennelli G, et al. Electrical characterization of metal Schottky contacts on luminescent porous silicon, Thin Solid Films, 1996, 276:179~182
    [34] Simons A J, Cox T I, Uren M J, et al. The electrical properties of porous silicon produced from n+ silicon substrates, Thin Solid Films, 1995, 255:12~15
    [35] Mart?n-Palma R J, Mart?nez-Duart J M, Li L, et al. Electrical behavior of double-sided metal porous silicon structures for optoelectronic devices, Materials Science and Engineering C, 2002, 19(1):359~362(4)
    [36] Theodoropoulou M, Karahaliou P K, Krontiras C A, et al. Transient and ac electrical transport under forward and reverse bias conditions in aluminum/porous silicon/p-cSi structures, Journal of Applied Physics, 2004, 96(12):7637~7642
    [37] Korcala A, Ba?a W, Bratkowski A, et al. Electrical properties study of porous silicon layer prepared by electrochemical etching, Optical Materials, 2006, 28(1-2):143~146
    [38] Uhlir A, Electrolytic shaping of germanium and silicon, The Bell System Technical Journal, 1956, 35:333~347
    [39] Turner D S, Electropolishing silicon in hydrofluoric acid solutions, Journal of Electrochemical Society, 1958, 105(1):402~408
    [40] Canham L T, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 1990, 57(9-10):1046~1048
    [41] Loni A, Simons A J, Cox T I, et al. Electroluminescent porous silicon device with an external quantum efficiency than 0.1% under CW operation, Electronics Letters, 1995, 31(15):1288~1289
    [42] Canham L T, Cox T I, Loni A, Progress towards silicon optoelectronics using porous silicon technology, Applied Surface Science, 1996, 102:436~441
    [43] Steiner P, Lang W, Micromachining applications of porous silicon, Thin Solid Films, 1995, 255(1-2):52~58
    [44] Smith R L, Collins S D, Porous silicon formation mechanisms, Journal of Applied Physics, 1992, 71(8):R1~R22
    [45] Lehmann V, G?sele U, Porous silicon formation: A quantum wire effect, Applied Physics Letters, 1991, 58(8):856~858
    [46] Dücs? C S, Vázsonyié, Adám M, et al. Porous silicon bulk micromachining for thermally isolated membrane formation, Sensors and Actuators A, 1997, 60(1-3):235~239
    [47] Kronast W, MülleR B, Siedel W, et al. Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap. Sensors and Actuators A, 2001, 87(3):188~193.
    [48] Chang C C, Chen L C, A new process for the fabrication of silicon-on-insulator structures by using porous silicon, Materials Letters, 1997, 32(4):287~290
    [49] Rocchia M A, Garrone E, Geobaldo F, et al. Sensing CO2 in a chemically modified porous silicon film, Physica Status Solidi A, 2003, 197(2):365~369
    [50] Massera E, Nasti I, Quercia L, et al. Improvement of stability and recovery time in porous-silicon-based NO2 sensor, Sensors and Actuators B, 2004, 102(2):195~197
    [51] Irajizad A, Rahimi F, Chavoshi M, et al. Characterization of porous poly-silicon as a gas sensor, Sensors and Actuators B, 2004, 100(3):341~346
    [52] Grigoris K, Athanase A, Nassiopoulos, Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation, IEEE Sensor Journal, 2002, 2(5):463~475
    [53] Tsamis C, Tserepi A, Nassiopoulou A G, Fabrication of suspended porous silicon micro-hotplates for thermal sensor applications, Physica Status Solidi A, 2003, 197(2):539~543
    [54] Canham L, Properties of Porous Silicon, London: INSPEC, 1997:221~247.
    [55]沈桂芬,多孔硅及其应用研究,辽宁大学学报(自然科学版), 2000, 27(3):249~255
    [56]汪开源,刘柯林,唐洁影,多孔硅的光致发光谱,电子器件, 1994, 17(2):47~53
    [57]林军,张丽珠,陈志坚,等.多孔硅蓝光发射与发光机制,物理学报, 1996, 45(1):121~125
    [58]付世,丁德宏,姚朋军,等.多孔硅形成机理研究的新进展,辽宁大学学报(自然科学版), 2003, 30(1):93~96
    [59]郭鹤桐,覃奇贤,电化学教程,天津:天津大学出版社, 2000, 165~167
    [60]房振乾,胡明,窦雁巍,双槽电化学腐蚀法制备多孔硅的孔隙率研究,压电与声光, 2007, 29(2):230~232(6)
    [61] Witten T A, Sander L M, Difusion-limited aggregation, Physical Review B, 1983, 27(9):5686~5697
    [62] Lim P, Brock J R, Traehtenberg I, Laser-induced etching of silicon in hydrofluoric acid, Applied Physics Letters, 1992, 60(4):486~488
    [63] Laiho R, Pavlov A, Preparation of porous silicon films by laser ablation, Thin solid films, 1995, 255:9~11
    [64]陈乾旺,李新建,朱警生,多孔硅研究的新进展,电子显微学报, 1997, 16(4):493~496
    [65] Saadoun M, Ezzaouia H, Bessais B, et al. Formation of porous silicon for large-area silicon solar cells: a new method, Solar Energy Materials and Solar Cells, 1999, 59(4):377~385
    [66] Saadoun M, Mliki N, Kaabi H, Vapour-etching-based porous silicon: a new approach, Thin solid films, 2002, 405(1-2):29~34
    [67]胡明,田斌,王兴,化学刻蚀法制备多孔硅的表面形貌研究,功能材料, 2004, 35(2):223~224
    [68] Kurowski A, Schuitze J W, Luth h, et a1. Micro and nano patterning of sensor chips by means of macroporous silicon, Sensors and Actuators B, 2002, 83(1-3):123~128
    [69] Bischoff T, Muller G, Welser W, et a1. Frontside micromachining using porous-silicon sacrificial-layer technologies, Sensors and Actuators A, 1997, 60(1-3):228~234
    [70] Lammel G, Renaud P, Free-standing, mobile 3D porous silicon microstructures, Sensors and Actuators A, 2000, 85(1-3):356~360
    [71]窦雁巍,胡明,宗杨, MEMS中多孔硅绝热技术,纳米技术与精密工程, 2005, 3(2):106~111
    [72] Splinter A, Sturmann J, Benecke W, New porous silicon formation technology using internal current generation with galvanic elements, Sensors and Actuators A, 2001, 92(1-3):394~399
    [73] Wang R, Xu H M, Guo L Q, et al. Growth of single-walled carbon nanotubes on porous silicon, Applied Surface Science, 2006, 252(20):7347~7351
    [74] Rittersma Z M, Splinter A, Bodecker A, et al. A novel surface-micromachined capacitive porous silicon humidity sensor, Sensors and Actuators B, 2000, 68(1-3):210~217
    [75] Roussel Ph, Lysenko V, Remaki B, et al. Thick oxidized porous silicon layers for the design of a biomedical thermal conductivity microsensor, Sensors and Actuators A, 1999, 74:101~103
    [76]周俊,谢克文,王晓红,等.基于微机械的多孔硅牺牲层技术,固体电子学研究与进展,2004, 24(1):73~76
    [77] Sim J H, Cho C S, Kim J S, et al. Eight-beam piezoresistive accelerometer fabricated by using a selective porous silicon etching method, Sensors and Actuators A, 1998, 66:273~278
    [78] Kronast W, Muller B, Siedel W, et a1. Single chip condenser microphone using porous silicon as sacrificial layer for the air gap, Proc MEMS 98, 1998:591~596
    [79] Hedrich F, Billat S, Lang W, Structuring of membrane sensors using sacrificial porous silicon, Sensors and Actuators A, 2000, 84(3):315~323
    [80] Splinter A, Bartels O, Benecke W, Thick porous silicon formation using implanted mask technology, Sensors and Actuators B, 2001, 76(1):354~360
    [81] Gracia I, Santander J, Cane C, et al. Results on the reliability of silicon micromachined structures for semiconductor gas sensors, Sensors and Actuators B, 2001, 77(1-2): 409~415
    [82] Sberveglieri G, Hellmich W, Muller G, Silicon hotplates for metal oxide gas sensor elements, Microsystem Technologies, 1997, 3:183~190
    [83] Kaltsas G, Nassiopoulou A G, Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation, Sensors and Actuators A, 1999, 76(1-3):133~138
    [84] Lysenko V, Roussel P, Delhomme G, et al. Oxidized porous silicon: a new approach in support thermal isolation of thermopile-based biosensors, Sensors and Actuators A, 1998, 67(1-3): 205~210
    [85] Liang Dong, Ruifeng Yue, Litian Liu, Design and fabrication of single-chip a-Si TFT-based uncooled infrared sensors, Sensors and Actuators A, 2004, 116(2):257~263
    [86] Tsao S S, Porous silicon techniques for SOI structures, IEEE Circuits and Devices Magazine, 1987, 3(6):3~7
    [87]古美良,胡明, SOI技术及其发展和应用,压电与声光, 2006, 28(2):236~239
    [88] Cristoloveanu S, Introduction to silicon on insulator materials and devices, Microelectronic Engineering, 1997, 39:145~154
    [89]黄庆安,硅微机械加工技术,北京:科学出版社, 1996, 44~46
    [90]崔昊杨,李宏建,谢自芳,等.多孔硅传感器的研究进展,材料导报, 2004, 118(3):35~37
    [91] Erson R C, Muller R S, Tobias C W, Investigations of porous silicon for vapour sensing, Sensors Actuators A, 1990, 23(1-3):835~859
    [92] Kim S J, Lee S H, Lee C J, et a1. Organic vapour sensing by current response of porous silicon layer, Journal of Physics D:Applied Physics, 2001, 34(24):3505~3509
    [93] Baratto C, Faglia G, Sberveglieri G, Multiparametric porous silicon sensors, Sensors, 2002, 2(3):121~126
    [94] Mahmoudia B, Gabouze N, Guerbous L, et al. Photoluminescence response of gas sensor based on CHx/porous silicon:Effect of annealing treatment, Materials Science and Engineering B, 2007, 138:293~297
    [95] Seals L, Golea J L, Tse L A, et a1. Rapid, reversible, sensitive porous silicon gas sensor, Journal of Applied Physics, 2002, 91(4):2519~2523
    [96] Pancheri L, Oton C J, Gaburro Z, et a1. Very sensitive porous silicon NO2 sensor, Sensors and Actuators B, 2003, 89(3):237~239
    [97] Francia G D, Castaldo A, Massera E, et al. A very sensitive porous silicon based humidity sensor, Sensors and Actuators B, 2005, 111-112: 135~139
    [98] Lewis S E, Deboer J R, Gole J L, et al. Sensitive, selective, and analytical improvements to a porous silicon gas sensor, Sensors and Actuators B, 2005, 110(1):54~65
    [99] Arakelyana V M, Galstyana V E, Martirosyana K S, et al. Hydrogen sensitive gas sensor based on porous silicon/TiO2-x structure, Physica E, 2007, 38:219~221
    [100]潘洪哲,徐明,纳米硅的光致发光机制,材料导报, 2006, 20(z1):16~19
    [101]任聘,刘小兵,多孔硅发光研究,赣南师范学院学报, 2006, 3:10~14
    [102] Halimaoui A, Oules C, Bomchil G, et a1. Electroluminescence in the visible range during anodic oxidation of porous silicon films, Applied Physics Letters, 1991, 59(3):304~306
    [103] Richter A, Steiner P, Kozlowski F, et al. Current-induced light emission from a porous silicon device, IEEE Electron Device Letters, 1991, 12(12):691~692
    [104] Nobuyoshi K, Hideki K, Visible electroluminescence from porous silicon, Applied Physics Letters, 1992, 60(3):347~349
    [105] Zheng J P, Jiao K L, Shen W P, et a1. Highly sensitive photodetector using porous silicon, Applied Physics Letters, 1992, 61(4):459~461
    [106] Fan S, Chapline M G, Franklin N R, et a1. Self-oriented regular arrays of carbon nanotubes and their fie1d emission properties, Science, 1999, 283(5401):512~514
    [107] Wong K W, Zhou X T, Field emission characteristics of SiC nanowires prepared by chemical vapor deposition, Applied Physics Letters, 1999, 75(16):2918~2920
    [108] Lee C J, Lee T J, Lyu S C, et a1. Field emission from well-aligned zinc oxide nanowires grown at low temperature, Applied Physics Letters, 2002, 1(19):3648~3650
    [109] Boswell E, Seong T Y, Wilshaw P R, Studies of porous silicon field emitters, Journal of Vacuum Science and Technology B, 1995, 13(2):437~440
    [110] Kleps I, Nicolaescu D, Lungu C, et a1. Porous silicon field emitters for display application, Applied Surface Science, 1997, 111:228~232
    [111] Kim H R, Jessing J R, Parker D L, Emission stability of anodized silicon field emitter arrays, Journal of Vacuum Science and Technology B, 1999, 17(2):601~603
    [112] Jessing J R, Parker D L, Weichold M H, Porous silicon field emission cathode development, Journal of Vacuum Science and Technology B, 1996, 14(3):1899~1901
    [113] Kim D, Kwon S J, Lee J D, Fabrication of Silicon Field Emitters by Forming Porous Silicon, Journal of Vacuum Science and Technology B, 1996, 14(3):1906~1909
    [114]曾凡光,刘兴辉,朱长纯,等.钴钝化多孔硅的制备及其场发射特性研究,功能材料, 2005, 36(4):604~605
    [115]孙建刚,多孔硅的有效场致发射,半导体技术, 2006, 31(4):300~302(9)
    [116] Tien C L, Chen G, Challenges in microscale conductive and radiativeheat-transfer, Journal of Heat Transfer, Transactions of the ASME, 1994, 116 (4):799~807
    [117] Tamma K K, Zhou X M, Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives, Journal of Thermal Stresses, 1998, 21(3-4):405~449
    [118]刘静,微米/纳米尺度传热学,北京:科学技术出版社, 2001, 160~218
    [119] Cahill D G, Thermal conductivity measurement from 30 to 750K: the 3ωmethod, Review of Scientific Instrument, 1990, 61(2):802~808
    [120] Gesele G, Linsmerier J, Drach V, et al. Temperature-dependent thermal conductivity of porous silicon, Journal of Physics D: Applied Physics, 1997, 30(21):2911~2916
    [121] Okuda M, Ohkubo S, A novel method for measuring the thermal conductivity of submicrometre thick dielectric films, Thin Solid Film s, 1992, 213(5):176~181
    [122] Brotzen F R, Loos P J, Brady D P, Thermal conductivity of thin SiO2 films, Thin Solid Films, 1992, 207:197~201
    [123] Monticone E, Boarino L, Lerondel G, et al. Properties of metal bolometers fabricated on porous silicon, Applied Surface Science, 1999, 142(1-4):267~271
    [124] Kading O W, Skurk H, Goodson K E, Thermal conduction in metanized silicon-dioxide layer on silicon, App1ied Physics Letters, 1994, 65:1629~1631
    [125] Canham L T (Ed.), Properties of Porous Silicon, INSPEC, The Institution of Electrical Engineers, London, UK, 1997, 13~15
    [126] Looyenga H, Dielectric constants of heterogeneous mixtures, Physica, 1965, 31(3):401~406
    [127] Chen G, Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, Journal of Heat Transfer-Transactions of the ASME, 1996, 118(11):539~545
    [128] Majumdar A, Microscale heat conduction in dielectric thin films, Journal of Heat Transfer-Transactions of the ASME, 1993, 115(1):7~16
    [129]张泰华,杨业敏,赵亚溥,等. MEMS材料力学性能的测试技术,力学进展, 2002, 32(4):545~562
    [130] Tabor D, Indentation hardness: fifty years on a personal view, Philosophical Magazine A, 1996, 74(5):1207~1212
    [131]曲敬信,汪泓宏,表面工程手册,北京:化学工业出版社, 1998, 856~857
    [132]中国大百科全书·力学卷,北京-上海:中国大百科全书出版社, 1985, 549~551
    [133]戴莲瑾,力学计量技术,北京:中国计量出版社, 1996, 150~150
    [134]周启玲,对正确使用布氏硬度测试技术几个问题的探讨,现代机械, 2002,4:99~101
    [135] Li Min,Zhang Tai-hua, Hardness testing on surface layer of material and results analyzing contrastively, Chinese Journal of Aeronautics, 2002, 15(2):82~89.
    [136]张泰华,杨业敏,纳米硬度技术的发展和应用,力学进展, 2002, 32(3):349~364.
    [137] Oliver W C, Pharr G M, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 1992, 7(6):1564~1583
    [138] Doerner M F, Nix W D, A method for interpreting the data from depth-sensing indentation instruments, Journal of Materials Research, 1986, 1(4):601~609
    [139] Oliver W C, Pharr G M, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, 2004, 19(1):3~20.
    [140]张泰华,微/纳米力学测试技术及其应用,北京:机械工业出版社, 2005, 20~26
    [141] Pethica J B,Oliver W C, Tip surface interaction in STM and AFM, Physica Scripta, 1987, 191:61~68
    [142] Pethica J B, Oliver W C, Mechanical properties of nanometer volumes of material: use of the elastic response of small area indentations, In: thin films-stresses and mechanical properties, MRS Symposium Proceeding, Materials Research Society, 1989, 130:13~23
    [143] Oliver W C, Pethica J B, Method for continuous determination of the elastic stiffness of contact between two bodies, United States Patent No. 4848141, 1989
    [144] Pharr G M, Oliver W C, Brotzen F R, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation, Journal of Materials Research, 1992, 7(3):613~617
    [145] ASTM Standard Test Method E 384, Standard Test for Microhardness of Materials, Annual Book of Standards 3.01, American Society for Testing and Materials, 1989:469
    [146] Wang J, Li W Z, Li H D, et al. Nanoindentation study on the mechanical properties of TiC/Mo multilayers, Thin Solid Films, 2000, 366(1-2):117~120
    [147] Malzbender J, Toonder J M J, Balkenende A R, et al. Measuring mechanical properties of coatings: A methodology applied to nano-particle-filled sol-gel coatings on glass, Material Science and Engineering, 2002, R36(2-3):47~103
    [148] Logothetidis S, Charitidis C, Patsalas P, Engineering properties of fully sp3- to sp2-bonded carbon films and their modifications after post-growth ion irradiation, Diamond and Related Materials, 2002, 11(3-6):1095~1099
    [149] Oliver W C, Hutchings R, Pethica J B, Microindentation techniques in materials science and engineering, In: Blau P J, Lawn B R, Editors, Philadephia, ASTM, 1986, STP 889:90~108
    [150] Bhushan B, Xiaodong Li, Nanomechanical characterization of solid surfaces and thin films, International Materials Reviews, 2003, 48(3):125~164
    [151]张兴文,余大书,孙德智,等.正硅酸乙酯对杂化膜纳米力学性能的影响,哈尔滨工业大学学报, 2005, 37(4):463~466
    [152] Lévy-Clément L, Lust S, Mamor M, et al. Investigation of p-type macroporous silicon formation, Physica Status Solidi A, 2005, 202:1390~1395
    [153] Remaki B, Populaire C, Lysenko V, et al. Electrical barrier properties of meso-porous silicon, Materials Science and Engineering B, 2003, 101(1):313~317
    [154] Molnár K, Mohácsy T, Abdulhadi A H, et al. On the nature of metal–porous Si–single crystal silicon (MPS) diodes, Physica Status Solidi A, 2003, 197(2):446~451
    [155] Beale M I J, Benjamin J D, Uren M J, et al. An experimental and theoretical study of the formation and microstructure of porous silicon, Journal of Crystal Growth, 1985, 73(3):622~636
    [156] Anderson R C, Muller R S, Tobias C W, Investigation of The Electrical Properties of Porous Silicon, Journal of the Electrochemical Society, 1991, 138(11):3406~3411
    [157] Chorin M B, Moller F, Koch F, Band alignment and carrier injection at the porous silicon-crystalline silicon interface, Journal of Applied Physics, 1995, 77(9): 4482~4488
    [158] Yarkin D G, Balagurov L A, Bayliss S C, et al. Charge carrier transport in thermally oxidized metal/PS/p-Si and metal/PS/n-Si structures, Semiconductor Science and Technology, 2004, 19(1):100~105
    [159] Balagurov L A, Bayliss S C, Kasatochkin V S, et al. Transport of carriers in metal/porous silicon/c-Si device structures based on oxidized porous silicon, Journal of Applied Physics, 2001, 90(9):4543~4548
    [160] Vakulenko O V, Kondratenko S V, Shutov B M, Varistor-like current-voltage characteristic of porous silicon, Semiconductor Physics, Quantum Electronics & Optoelectronics, 1999, 2(2):88~89
    [161] Fauchet P M, Tsybeskov L, Duttagupta S P, et al. Stable photoluminescence and electroluminescence from porous silicon, Thin Solid Films, 1997, 297(1):254~260(7)
    [162] Mdler F, Chorin M B, Koch F, Post-treatment effects on electrical conduction in porous silicon, Thin Solid Films, 1995, 255(1):16~19
    [163]全红娟,热敏电阻温度传感器的非线性误差分析,中国西部科技, 2005, 10B:21~23
    [164]窦雁巍,胡明,多孔硅表面氧化钒热敏电阻薄膜的阻温特性,材料研究学报, 2006, 20(5):496~498
    [165]陈艾,敏感材料与传感器,北京:化学工业出版社, 2004, 87~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700