用户名: 密码: 验证码:
黄土高原粗泥沙集中来源区水沙时空分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄土高原粗泥沙集中来源区为对象,以流域为单元,采用野外调查与室内分析、定量与定性分析相结合的方法,系统研究了1960-1999年间黄土高原粗泥沙集中来源区皇甫川、孤山川、窟野河、秃尾河和佳芦河5条流域河川径流、输沙量的时空变化,取得如下主要结论:
     分析了流域径流量和输沙量年际变化的基本特征。各流域年均径流量及变差系数,皇甫川为1.41×108 m3和0.65,孤山川为0.76×108 m3和0.63,窟野河为6.08×108 m3和0.40,秃尾河为3.51×108 m3和0.21,佳芦河为0.63×108 m3和0.56。各流域年均输沙量及变差系数,皇甫川为4525.98×104 t和0.82,孤山川为1967.31×104 t和0.63,窟野河为9750.14×104 t和0.81,秃尾河为2103.01×104 t和0.92,佳芦河为1344.98×104 t和0.67。根据径流量、输沙量的极值比和径流量、输沙量变差系数,得出粗泥沙集中来源区5条流域的河川径流量、输沙量年际变化都比较大;5条流域最小径流量出现的年份均为1999年;皇甫川、孤山川和窟野河流域最小输沙量出现的年份均为1999年,秃尾河、佳芦河流域的输沙量最少年份分别为1969、1983年;各流域最大径流量、输沙量出现年份均在1980年以前。
     采用距平累积法、Mann-Kendall法及Pettit法系统分析了5条流域径流量和输沙量年际变化过程及其趋势。指出:(1)与各流域多年平均值相比,5条流域径流量都经历了明显的增加期、减少期和稳定期三个阶段;(2)5条流域的年径流量、输沙量变化从上世纪70年代末以来表现出明显的减少趋势,皇甫川、孤山川、窟野河、秃尾河和佳芦河流域径流量显现趋势性减少的突变年份分别为1976年、1979年、1979年、1979年和1976年。秃尾河和佳芦河流域输沙量发生趋势性减少的临界年份为1978年;皇甫川、孤山川、窟野河流域输沙量也表现出趋势性减少,但没有通过0.05信度检验水平。
     采用不均匀系数等方法分析了流域径流量和输沙量年内分配特征。结果表明:(1)按日历年,各流域月平均径流量年内变化具有“双峰型”变化特征;皇甫川、窟野河和秃尾河流域月平均输沙量年内分配呈现双峰型趋势,孤山川和佳芦河流域输沙量则呈现“单峰型”。(2)分析了5条流域径流量、输沙量的集中度和集中期,除秃尾河流域径流量的集中期为7月份外,其余4条流域径流量的集中期均为8月份;皇甫川流域的径流量集中度最大,秃尾河流域的径流量集中度最小。5条流域输沙量集中期均为8月份;皇甫川和孤山川流域的输沙量集中度最大,秃尾河流域的输沙量集中度最小。(3)以连续最大4个月(6-9月)径流量占年径流量百分比(ξr)、月最大与最小径流量差值(Δr)反映各流域径流量年内分配极不均匀性,从1960-1999年径流量年内分配不均匀性的变化幅度有减少的趋势。以河流输沙量的相对变化幅度( )和河流输沙量的绝对变化幅度( )衡量各流域输沙量的年内分配变化幅度较为激烈,但5条流域输沙量年内变化幅度的激烈程度有缓和的趋势。
     分析了粗泥沙集中来源区内的流域水沙协同关系。利用数学理论推导和各流域逐年径流量、逐年输沙量累积关系曲线,进一步论证了除皇甫川流域外,其余4条流域水沙协同关系呈弱化趋势的主要原因是径流量、输沙量年际减少量的非同步性。皇甫川和佳芦河流域的洪峰和沙峰出现的月份基本上吻合,而孤山川、窟野河和秃尾河流域的输沙量最大的月份同时或滞后于径流量最大的月份。皇甫川、窟野河、秃尾河和佳芦河流域的径流量与含沙量间呈正相关关系,而孤山川流域的水沙异源使得该流域的水沙关系较差。在同一时段中,皇甫川流域的降雨损失量最大,形成径流深度最小,径流模数数值最小;而秃尾河流域的降雨损失量最小,形成径流深度最大,径流模数数值最大。
     分析了粗泥沙集中来源区内各流域径流量和输沙量的空间变化特征。除佳芦河流域外多年平均径流系数表现为由北向南增加的趋势;多年平均径流量、多年平均输沙量、多年平均输沙率和多年平均输沙模数在空间上并未呈现任何变化趋势。以流域地貌作为径流、输沙的再分配因子,选取水土保持人类活动影响相对较小的1959-1969年期间的水文泥沙资料,建立了包含粗泥沙集中来源区5条流域在内的黄河中游20多条支流水沙与流域地貌因素的定量关系。结果表明:在研究区内,研究的地貌参数与流域径流量或输沙量之间表现出类似的变化趋势,即年均输沙量或径流量与集水区面积或河道干流长呈显著的正相关关系,与河道平均坡降呈幂函数减少关系,而与流域相对高差未表现出某种趋势性变化特征。年均径流系数与地貌参数之间均没有表现出明显的趋势性变化。
The temporal-spatial characteristics of the five catchments runoff and sediment of coarse sand source regions at Huangfuchuan (HFC), Gushanchuan (GSC), Kuyehe (KYH), Tuweihe (TWH) and Jialuhe (JLH) in the Loess Plateau were studied through the field investigation and the laboratory analysis using the data from the year of 1960 to 1999. The main results are as follows:
     The basic characteristics of runoff and sediment were analysesed from the year of 1960 to 1999. The results showed the means value of runoff and variation coefficient of HFC, GSC, KYH, TWH, and JLH are 1.41×108 m3 and 0.65, 0.76×108 m3 and 0.63, 6.08×108 m3 and 0.40, 3.51×108 m3 and 0.21, 0.63×108 m3and 0.56, respectively. The means value of sediment and variation coefficient of the above regions are 4 525.98×104 t and 0.82, 1 967.3×104 t and 0.63, 9 750.14×104 t and 0.81, 2 103.01×104 t and 0.92, 1 344.98×104 t and 0.67, respectively. The means value of runoff and sediment, stream flow and sediment of five catchments have a large variation during the studied period according to the ratio between the largest and smallest runoff and the ratio between the largest and smallest sediment among the studied years. The minimal values of the total runoff for the five catchments are all appeared in 1999 without exception. The minimal values of the sediment in HFC, GSC, and KYH are also appeared in 1999. The minimal values of the sediment in TWH and GLH are appeared in 1969 and 1983, respectively. The maximum values of runoff and sediment of five catchments are all displayed before 1980.
     Annual stream flow and sediment for five catchments was studied using the cumulative departure method, the Mann-Kendall method and Pettit method. The results showed that (1) Five catchments have all experienced the obvious increasing, reducing, and stabilization period compared with the means value of runoff. (2) An obvious decreasing trends of runoff and sediment were detected since 1970`s in the studied catchments. The change points of runoff for the five catchments occurred in 1976,1979,1979,1979, and 1976, respectively. The change points of sediment for TWH and JLH started in1978. HFC, GSC, and KYH also displayed a reduction of the sediment, but significant differences were not detected (P>0.05).
     The change character of runoff and sediment within a year were studied by using uneven coefficient method. The results are: (1) Monthly average river flows for many years’have two peaks in five catchments according to calendric years. Changing process line of monthly average sediment for many years was a peak, except HFC, KYH, and TWH catchments of which sediment remain has two peaks. (2) Concentrating scheduled time of runoff and sediment, centralized degree of them were analysesed. Concentrating scheduled time of runoff is in August, except TWH, which of runoff concentrating scheduled time is in July. The catchment, which is the maximal centralized degree of runoff, is HFC, and the catchment of minimal runoff centralized degree is TWH. Concentrating scheduled time of sediment is on summer floods, and the peak value is in August. The catchment, which is the maximal centralized degree of sediment, is HFC and GSC, the catchment of minimal sediment centralized degree is TWH. (3) The non-uniform of stream flow distribution in coarse sand source regions of the Loess Plateau has been analyzed by the ratio of continuously maximum four months` runoff and the subtracts value of the maximum and minimum runoff value in a year. The changing of the non-uniform of stream flow distribution within the year is reducing from 1960 to 1999. The non-uniform of sediment distribution in coarse sand source regions of the Loess Plateau has been analyzed by the relatively and absolutely changing of sediment. The changing of the non-uniform of sediment distribution is also reducing.
     The relationship between runoff and sediment were also analyzed in coarse sand source regions of the Loess Plateau. The results also further indicated that the water and sand coordination relations assumes the attenuated tendency in the other four catchments except HFC, using mathematics theory reasoning method and accumulation curve of runoff and sediment year by year because of decrement non- synchronism between runoff with sediment. The month of sand peak is almost simultaneously appeared with runoff peak in HFC and JLH. Most of the month of sand peak shows simultaneous or late than that of sand peak in GSC, KYH, and TWH. Because of allos of the runoff and sediment, the correlativity between runoff with sediment in GSC appeared not to be related. But the other four catchments` runoff seemed to be well fit with the sediment. In same period, among the five catchments, the maximal rain loss amounts is HFC ,which is the minimal runoff depth value and the minimal runoff modulus value, and the catchment of minimal rain loss amounts is TWH, which is the maximal runoff depth value and the maximal runoff modulus value.
     The spatial character of runoff and sediment in coarse sand source regions of the Loess Plateau were also analyzed. The mean annual runoff coefficient displayed the tendency of increasing from north to south, except JLH. But the mean annual runoff, the mean annual sediment, the mean annual sediment rates and the mean annual sediment modulus were not related among the catchments. The Quota relations, between geomorphologic factors with water and soil, have been established in Yellow River middle reaches, more than 20 branches, which contained the five catchments in coarse sand source regions of the Loess Plateau by taking geomorphologic factors as the redistribution factor of runoff and sediment and by selecting the hydrology silt material from 1959 to 1969, when the influence of human activity in water and soil conservation was smaller. The results showed that both the mean annual runoff and the mean annual sediment load seemed to be well fit by positive linear regression with the catchments area and the length of main river course. Both the mean annual runoff and the mean annual sediment load appeared a negative exponential regression with the mean slope gradient of river course. There is no obviously relationship between the mean annual runoff coefficient and geomorphologic factors.
引文
[1]穆兴民,徐学选,陈霽巍.黄土高原生态水文研究[M].北京林业出版社,2001.
    [2]王万忠,焦菊英.黄土高原水土保持减沙效益预测[M].黄河水利出版社,2002.
    [3] http://www.yellowriver.org/huanghe/hh-shtlsh.htm.
    [4] Ludwing W.and Probst Jean.Luc.River sediment discharge to the oceanspresent-day controls and global budgets[J].Amercian J.Science.1998,298(4):265-295.
    [5]陈霽巍,穆兴民.黄河断流的态势成因与科学对策[J].自然资源学报,2000,15(1):31-35.
    [6] Brown L R , Halweil B.China`s water shortages could shake world food security[A].World-Watch.1998,July/august:10-18.
    [7]水利部水政司.黄河断流及其对策[M].北京:中国水利出版社,1997.
    [8]穆兴民,陈霽巍.黄河断流人之过[J].科学,1999.
    [9]黄河断流成因分析及研究对策组.黄河下游断流及对策研究[J].人民黄河,1997,(10):1-9.
    [10]钟宾,张学俭主编.黄河断流万里探源[M].北京:经济日报出版社,1999.
    [11]田家怡等.黄河断流对三角洲生态环境的影响与缓解的研究.见黄河断流与流域可持续发展[M].北京:中国环境科学出版社,1997.17-24.
    [12]许越光等.黄河断流对下游农业发展的影响,见黄河断流与流域可持续发展[M].北京:中国环境科学出版社,1997.46-50.
    [13]陶思明.黄河断流昭示我们更加注意流域性生态平衡万体.见黄河断流与流域可持续发展[M].北京:中国环境科学出版社,1997.180-188.
    [14]何乃维等.万里黄河断流焦虑.光明日报,1995-08-08.
    [15]李锐等主编,穆兴民等副主编.区域水土流失快速调查与管理信息系统研究[M].郑州:黄河水利出版社,2000.197-202.
    [16]新华社.黄河源头出现断流,生态环境严重恶化[N].西安晚报,1998-10-29(4).
    [17]徐建华,林银平,吴成基等.黄河中游粗泥沙集中来源区界定研究[M].郑州:黄河水利出版社,2006.2.
    [18]李国英.维持黄河健康生命[M].郑州:黄河水利出版社,2004.
    [19] S.Weisberg著(王静龙等译).应用线性回归[M].北京:中国统计出版社,1998.
    [20]王学仁.地址数据的多变量分析[M].北京:科学出版社,1992.
    [21]王学仁等.使用多元统计分析[M].上海:上海科学技术出版社,1990.
    [22] Mann HB.Non-parametric tests again trend.Econometrica.1945,13:245-259.
    [23] Kendall MG.Rank correlation Measures.Charles GriffinLondon.1975.
    [24] Hirsch RM,Slack JR,Smith RA.Techniques of trend analysis for monthly water quality data.Water Resources research.1982,107-121.
    [25]汤奇成,程天文,李秀云.中国河川月径流的集中度和集中期的初步研究[J].地理学报,1982,37(4):383-393.
    [26]杨远东.河川径流年内分配的计算方法[J].地理学报,1984,39(2):218-227.
    [27] D.M.Hannah,et al1 An approach to hydrograph classification Hydro -logical Processes.2000,14:317-338.
    [28]施嘉炀.水资源综合利用[M].北京:中国水利电力出版社,1995.
    [29]冯国章,王双银.河流枯水流量特征研究[J].自然资源学报,1995,10 (2):127-135.
    [30] Biswas A.History of Hydrology [M].AmsterdamNorth-Holland.1970.336.
    [31] Nace R.General evolution of the concept of the hydrological cycle [A].UNESCO Three Centuries of Scientific Hydrology [C].ParisUNESCO.1974.40-51.
    [32] Charles A.Lin & Lei Wen et al.A Coupled atmospheric-hydrologal modeling study of the 1996 River basin flash flood in Quebec,Canada,Geophysical Research Letters.Vol.29,No.2,2002.
    [33]刘苏峡,张士峰,刘昌明.黄河流域水循环研究的进展和展望[J].地理研究,2001,20(3):257-265.
    [34]穆兴民,陈国良,徐学选.黄土高原降水量与地理因素关系分析[J].中科院水利部西北水土保持研究所集刊,1992,12(16):80-86.
    [35]刘昌明,成立.黄河干流下游断流的径流系列分析[J].地理学报,2000,55(3):257-265.
    [36]张晓萍.黄河中游河龙区间土地利用/植被变化对河川径流影响研究[D].陕西:中国科学院研究生院博士论文,2007.(1).
    [37]沈桂芬,张敬东,严小轩,董雪峰,付东康.武汉降雨径流水质特性及主要影响因素分析[J].水资源保护,2005,21(2):57-71.
    [38]沈庆霞.南桠河流域降雨径流特性[J].四川水利,2002,(4):36-37.
    [39]王云璋,康玲玲,王国庆.近50年黄河上游降水变化及其对径流的影响[J].人民黄河,2004,26(2):5-7.
    [40]李学勤,管利群.浑江流域降水径流变化浅析[J].吉林水利,2001,220(3):20-22.
    [41]丁启,马爱护,尤琪,李令武.淮北东部地区降雨径流与暴雨洪水特征浅析[J].安擞水利科技,2001,(5):56-57.
    [42]许珂艳,陶新,刘龙庆,秦飞,孙文娟.2003年9月洛河洪水产汇流特性分析[J].人民黄河,2004,26(1):26-23.
    [43] Ahmed Y.HacHum and Jose F.Alfaro.A physically-Based model to predict Runoff under variable Rain intensity.TRANCASTIONS of the ASAE(general edition).VOL.21.No.2,1978.
    [44]穆兴民,徐学选,王文龙.黄河干流天然径流量时空分布特征分析[J].水土保持通报,2000,16(7):28-31.
    [45]穆兴民,李靖,王飞,徐学选.黄河天然径流量年际变化过程分析[J].干旱区资源与环境,2003,17(2):1-5.
    [46]李立平,张燕.英那河水库径流分析[J].水利水电技术,2004,35(3):11-12.
    [47]叶柏生,李种,杨大庆,丁永建,沈永平.我国过去50a来降水变化趋势及其对水资源的影响(II)月系列[J].冰川冻土,2005,27(1):100-104.
    [48]余学林.疏勒河径流时空分布规律及其变化趋势分析[J].甘肃水利水电技术,2000,36(3):145-147.
    [49]杨峰,杨涛,李学春.黄河三川河流域水沙特性分析[J].水资源与水工程学报,2004,15(3):59-61
    [50]王玉明,张学成,王玲,周建波.黄河流域20世纪90年代天然径流量变化分析[J].人民黄河,2004,24(3):9-11.
    [51]韩添丁,叶柏生,丁永建.近40a来黄河上游径流变化特征研究[J].干旱区地理,2004,27(4):553-557.
    [52]刘晓燕,常晓辉.黄河源区径流变化研究综述[J].人民黄河,2005,27(2):6-8.
    [53]杨勤科,李锐,王占礼.区域水土流失监测与评价指标体系研究[J].水土保持通报,2000,20(7):74-76.
    [54]李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题[J].中国水土保持,1999,(11):31-33.
    [55]许炯心.流域因素与人类活动对黄河下游河道输沙功能的影响[J].中国科学D辑地球科学,2004,34(8):775-781.
    [56]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):423-427.
    [57]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.170-181
    [58]王占礼,绍明安.黄土丘陵沟壑区第二副区山坡地土壤侵蚀特征研究[J].水土保持研究,1998,5(4):11-20.
    [59]王晓,白志刚,刘立斌,白平良.黄土区丘陵沟壑第一副区山坡地土壤侵蚀特征及其对土地生产力影响研究[J].水土保持研究,1998,5(4):6-10.
    [60]魏天兴,朱金兆.黄土残塬沟壑区坡度和坡长对土壤侵蚀的影响分析[J].北京林业大学学报,2002,24(1):59-62.
    [61]王光谦.中国泥沙研究评述[J].水科学进展,1999,10(3):245-255.
    [62] http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=21657.
    [63]姚文艺,李占斌,康玲玲.黄土高原土壤侵蚀治理的生态环境效应[M].北京:科学出版社,2005.9.
    [64]柳荣先,马勇,杨国礼.论水土保持措施治理作用及防止措施—以昕水河流域的水沙变化为例[J].水土保持学报,1995,9(4):43-48.
    [65]刘宝元等.黄河水沙变化时空图谱[M].北京,1993.
    [66]茹玉英,刘杰,朱岐武,朱世同.黄河口水沙变异研究[J].水文·泥沙,2005,27(1):28-32.
    [67]饶素秋,霍世青,薛建国,张永平,孙艾芳.黄河上中游水沙变化特点分析及未来趋势展望[J].泥沙研究,2001,(4):74-77.
    [68]李占斌,李鹏,张晓萍等.黄土高原水土流失过程与调控对策[M].郑州:黄河水利出版社,2004.79-85.
    [69]郑良勇,李占斌,李鹏.黄土区坡面径流侵蚀实验研究[M] .郑州:黄河水利出版社,2004.110-114.
    [70]朱兴平.丘陵五副区小流域水土流失的时空变化[J].水土保持,1995,(12):12-15.
    [71]黄治江,段玉东,张会茹.黄土丘陵沟壑区第二副区小流域水土流失的影响[M] .郑州:黄河水利出版社,2004.141-144.
    [72]白志刚,加生荣,穆兴民.黄土一副区水土保持智力对小流域地表径流的影响[M].郑州:黄河水利出版社,2004.231-236.
    [73]张国辉,付洪淘,张锦玉.柳河泥沙变化分析[J].东北水利水电,1999,(4):32-34.
    [74]懂雪娜,钱云平,赵六奇.汾河水沙特性变化分析[J].人民黄河,1999,21(8):19-21.
    [75]武晓林.湫水河流域水沙变化现状及成因分析[M].科技情报开发与经济,2003.11.
    [76]冉大川,高健翎,赵安成,王愿昌.皇甫川流域水沙特性分析及其治理对策[J].水利学报,2003,2(2):123-128.
    [77]张军政,惠养渝.清涧河水沙变化分析[J].中国水土保持,1994,(11):21-26.
    [78]张军政,惠养渝.延河水沙变化分析[J].中国水土保持,1995,(6):16-21.
    [79]邓居礼.祖厉河流域水沙时空分布及变化分析[J].水文,2001,21(2):47-50.
    [80]陈明华.闽东南地区水土流失动态变化初探[J].福建水土保持,1999,11(1):45-49.
    [81]黄英,李波.云南省水土流失变化趋势分析[J].中国水土保持,1995:(4):8-12.
    [82]毛世民,金正越.二十世纪下半叶淮河中游的水沙特性及变化趋势[J].安徽水利科技,2000,(1):17-18.
    [83]夏岑,卞传恂.地貌学和水文学的交叉研究[J].安徽水利技,1995,(2):10-13.
    [84]芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,22(3):56-58.
    [85] http://www.nsfc.gov.cn/nsfc/cen/00/kxb/dW/yjjz/1-53.htm.
    [86]任立良,刘新仁.数字高程模型信息提取与数字水文模型研究进展[J].水科学进展,2000,11(4):463-469.
    [87]任立良.流域数字水文模型研究[J].河海大学学报(自然科学版),2000,28(4):1-7.
    [88] Horton.R.E.Erosional fevelopment of streams and their drainage basin,hydrological approach to quantitative morphology.Grol.Soc.Amer.Bull.1954, 5(6):286-295.
    [89] Gregory K J , Walling D B.Drainage Basin Form and Process : a Gemorphological Approach.Edward Around.1973.272-273.
    [90] Schumm S A .The Flurial System.Jdhn Wiley and Sons.1977.70-71.
    [91]钱宁,张仁,周志德.河床演变学[M].北京:科学出版社,1987.37-45.
    [92]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.157-169.
    [93]齐矗华,甘枝茂等.黄土高原侵蚀地貌与水土流失关系研究[M].西安:陕西人民教育出版社,1991.116-127
    [94]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究.1987,6(1):68-74
    [95] Schumm S A.Evolution of drainage and slop in bandlands at Perth Ambody[J].New Jersey.Bulletin of Geological Society of American .1956,6(7):597-647.
    [96] Hadley B P ,Schumm S A.Sediment source drainage basin characteristics in upper cheyenne river basin U.S.geological surve[J] .Water2supply paper1531– B.1961:169-177.
    [97]汪丽娜,穆兴民,高鹏,粟小玲.黄土丘陵区产流输沙量对地貌因子的响应[J].水利学报,2005,8(36):956-960.
    [98]卢金发.黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):1-8.
    [99] http://www.cnsbd.cn/htmlnews/2006-3/20060307191316198.htm.
    [100] G.E.Petts,et al1 flow management to sustain groundwater-dominated stream eco system s1 Hydro logical Processes.1999,(13):497-513.
    [101] N.M.Harris,et al1 Classification of river regimes:a context for hydroecoogy Hydrological Processes.2000,(14):2831-2848.
    [102] D.M.Hannah,et al1 An approach to hydrograph classification Hydro -logical Processes.2000,(14):317-338.
    [103] A.C.Disalvo,et al1 Climatic and stream-flow controls on tree growth in a Western Montane Riparian Forest EnvironmentalM anagement.2002,30(5):678-691.
    [104] M.J.Lilover,et al1 Flow regime in the Irbe Strait A quat1Sci1.1998,(60):253-265.
    [105]水利电力部水文局.中国水资源评价[M].北京:水利电力出版社,1987.
    [106]水利电力部水利电力规划设计院.中国水资源利用[M].北京:水利电力出版社,1989.
    [107] Zhang Xinbao,Wen Anbang.Variation of sediment in upper stream of Yangtze River and its tributary[J].Tournal of Hhdraulic Engineering.2002,(4):56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700